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ABSTRACT

We introduce a mixture model of trees to describe evolutionary processes that are char-
acterized by the ordered accumulation of permanent genetic changes. The basic building
block of the model is a directed weighted tree that generates a probability distribution on
the set of all patterns of genetic events. We present an EM-like algorithm for learning a
mixture model of K trees and show how to determine K with a maximum likelihood ap-
proach. As a case study, we consider the accumulation of mutations in the HIV-1 reverse
transcriptase that are associated with drug resistance. The fitted model is statistically vali-
dated as a density estimator, and the stability of the model topology is analyzed. We obtain
a generative probabilistic model for the development of drug resistance in HIV that agrees
with biological knowledge. Further applications and extensions of the model are discussed.

Key words: mixture models, tree models, Bayesian networks, EM algorithm, HIV drug resistance,
mutational pathways.

1. INTRODUCTION

Despite the introduction of 18 different drugs that inhibit replication of human immunodefi-
ciency virus type 1 (HIV-1), therapeutic success is still limited. A major factor contributing to therapy

failure even of modern combination therapies (highly active antiretroviral therapy, HAART) is the virus’
ability to escape from drug pressure by developing drug resistance (Perrin and Telenti, 1998; Vandamme
et al., 1999). This escape mechanism is based on HIV’s high rates of replication and mutation. Residual
viral reproduction under therapy allows for generating genetic variants that have a selective advantage
under drug pressure. Eventually, some of these mutants replicate as well or nearly as well as a wild type
virus and thus lead to viral rebound.

Considerable work has been carried out on characterizing the relationship between genetic changes in
the viral drug targets and phenotypic drug resistance. Many single mutations have been linked to resistance
against one or more drugs (Shafer, 2000). Mutational patterns conferring resistance have been identified
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by several statistical and machine learning methods (Beerenwinkel et al., 2001a, 2002; Sevin et al., 2000).
Some computational approaches make use of this (either data-derived or expert) knowledge in order to find
optimal drug combinations based on sequence information on the viral drug targets (Beerenwinkel et al.,
2003; Lathrop and Pazzani, 1999). In particular, it has been shown that predictions of clinical response
can benefit from exploring possible mutational pathways of the virus.

However, much less is known about how resistance-associated mutations accumulate. Some mutations
are known to occur preferentially in clusters (Beerenwinkel, 2001b; Gonzales et al., 2003; Wu et al.,
2003), but the order of accumulation is usually unknown. Only a few studies based on longitudinal (time
series) data have revealed directed dependencies between mutations (Boucher et al., 1992; Molla et al.,
1996). This type of analysis is not practical for many different drugs or even drug combinations, because
large longitudinal samples from patients under the same therapeutic regimen are difficult to obtain. As an
alternative, we propose a method for estimating mutational pathways from cross-sectional data (i.e., data
from different patients at different time points), which are much more abundant.

We develop the technique in a general setting and consider the development of HIV-1 drug resistance
to the nucleoside reverse transcriptase inhibitor zidovudine as a test case.

1.1. Zidovudine resistance

Zidovudine (AZT) was approved for clinical use in 1987 as the first anti-HIV drug. Soon after approval,
mutations in HIV-1 reverse transcriptase (RT) were found that decrease susceptibility to the drug and
develop within a few month of therapy (Larder et al., 1989; Larder and Kemp, 1989). The most common
RT mutations (“classical zidovudine mutations”) that develop under zidovudine therapy are M41L,1 D67N,
K70R, L210W, T215F/Y, and K219E/Q. Other mutations such as the multinucleoside resistance mutations
V75I, F77L, F116Y, Q151M, and the two amino acids insertion after position 69 are less frequent and
typically occur under prolonged combination therapies containing two or more nucleoside RT inhibitors.
K70R and T215F/Y are generally the first mutations to occur causing 4- to 8- and 10- to 16-fold zidovu-
dine resistance in vitro, respectively (Boucher et al., 1992; Larder, 1994). The double mutant 41L+215F/Y
already causes 60- to 70-fold resistance. 41L, 215F/Y and 210W tend to occur together (215-41 pathway)
as well as 70R and 219E/Q (70-219 pathway). Substitution M41L may also appear first, albeit less fre-
quently. However, in contrast to the 70R+215F/Y double mutant, the 41L+70R co-occurrence is hardly
ever observed. This discrepancy is explained by a replication defect of the 41L+70R intermediate (Jeeninga
et al., 2001).

In general, the evolution of drug resistance is driven by several factors including codon usage bias
(Keulen et al., 1996), random genetic drift, and natural selection (viral fitness). Under therapy, the viral
population is exposed to a strong selective pressure. Mutations almost always arise one at a time, and each
single advantageous mutation must be fixed into the population. In consequence, relatively few evolutionary
pathways lead from the wild type to a highly resistant, well replicating mutant as compared to the large
number of possible mutational patterns (Hall, 2002).

1.2. Outline

We describe the evolution of drug resistance as the accumulation of permanent genetic changes. Our
model of the stochastic evolutionary process aims at identifying directed dependencies between mutational
events. The basic building block of the model is a directed tree. Vertices of the tree represent binary
random variables, each indicating the occurrence of an event (mutation). Edge weights represent conditional
probabilities between events with the constraint that a child event does not occur whenever the parent event
has not occurred. These restricted Bayesian tree models have been pioneered by Desper et al. (1999) in
the context of oncogenesis. In Section 3, we recall basic model properties and an efficient combinatorial
algorithm for tree reconstruction from observed (cross-sectional) patterns of events.

The tree models provide a detailed and interpretable description of the process of accumulating genetic
changes. They represent a considerable improvement over independence or linear path models. Neverthe-
less, we will see that the special tree structure fits only certain subgroups of the data. We interpret this

1We use the syntax a x b (or simply x b) to denote amino acid substitutions in RT, where a is the amino acid in the
reference strain HXB2 at position x and b the mutated residue.
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shortcoming as indicating that the data has been generated by more than one (tree-like) process. Therefore,
we introduce the broader class of mixture models of trees. Ideally, we would like to identify multiple
evolutionary processes acting on the same gene (or genome), each process in one specialized component
of the mixture model. In particular, we will introduce a “noise component” that includes all otherwise
unexplained samples.

After reviewing related work in Section 2, we define the class of mixture models in Section 4 and
present an EM-like algorithm for learning structure and parameters of the model from data. In Section 5,
we illustrate how model selection (choosing the optimal number of trees) can be performed in a maximum
likelihood (ML) fashion. We compare the mixture model for the development of zidovudine resistance with
biological knowledge. In Section 6, we present cross-validation and bootstrap methods for the validation
of our model. Section 7 discusses further applications and extensions of the method.

2. RELATED WORK

Chow and Liu (1968) have used unrestricted Bayesian tree models to approximate multivariate discrete
probability distributions. They show that solving the maximum weight spanning tree problem in the com-
plete graph with edges between features (events) weighted by their mutual information provides an ML
tree estimate. Maximum weight branchings have been proposed in a similar setting (Heckerman et al.,
1995). Our mixture models are similar in spirit to the work of Meilă and Jordan (2000), who apply an EM
algorithm to generalize the Chow–Liu algorithm to mixtures of undirected trees. Friedman et al. (1997)
have extended the Chow–Liu procedure for classification tasks.

Related graph models have been developed for oncogenesis, where chromosomal losses and gains are
considered as events. The distance matrix between events u and v defined by

−2 log Pr(u, v) + log Pr(u) + log Pr(v)

has been used as input for distance-based phylogeny methods like neighbor-joining (Desper et al., 2000).
The resulting phylogenetic tree represents events as leaves of the tree and groups closely related events
together. Internal vertices are considered “hidden events” and do not have a direct interpretation.

A similar approach uses an ML estimation procedure for tree fitting (von Heydebreck et al., 2004). A
closed formula for the ML parameters of a tree is derived, while searching for the ML topology is done
heuristically.

Finally, generalizing from tree models, directed acyclic graph (DAG) models have been proposed (Rad-
macher et al., 2001; Simon et al., 2000). Here, vertices represent subsets of the set of events, and an edge
{u} → {u, v} represents the probability that u occurs first and v occurs second. Edges for larger subsets
are defined similarly. For limited subset size, ML estimation of model parameters is feasible.

3. MUTAGENETIC TREES

3.1. Data representation

We consider � different events {1, . . . , �}, including a special “null event” that has initially occurred in
all samples. A pattern xi of events is represented by a row vector of indicator variables of length �:

xi = (xi1, . . . , xi�),

xij =
{

1, if event j has occurred in sample i

0, else.

Thus, a set of N observed patterns is represented by the binary matrix

X = (xij ) 1≤i≤N
1≤j≤�

.

We denote by � = 2{1,...,�} the set of all possible patterns of length �.
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For the case of HIV-1 zidovudine resistance, we consider a set of N = 364 samples derived from
previously untreated patients under zidovudine mono-therapy as available from the Stanford HIV Drug
Resistance Database (Rhee et al., 2003). No resistance-associated mutations other than the six classical
zidovudine mutations are present in this dataset. Thus, the set of � = 7 events comprises 41L, 67N, 70R,
210W, 215F/Y, and 219E/Q, plus the initial null event characterized by M41, D67, K70, L210, T215, and
K219 and referred to as the “wild type.” The dataset contains 35 different mutational patterns. The null
pattern representing the wild type is observed in 115 samples.

We reconstruct dependencies between events from the joint probabilities between all pairs of events,
which can be estimated reliably from moderately large datasets.

3.2. Definition

To describe the ordered accumulation of genetic changes, we consider directed trees over the set of
events, where each edge is weighted with the conditional probability of the child event given that the
parent event has occurred. Formally, a mutagenetic tree2 T = (V , E, r, p) consists of a set of vertices
V = 1, ..., � representing events, a set of edges E, a special vertex r ∈ V , and a map p : E → [0, 1]
such that

• (V , E) is a branching, i.e., a digraph whose underlying undirected graph is a forest, and each vertex has
at most one entering edge,

• the vertex r represents the null event and has no entering edge,
• for all edges e = (u, v) ∈ E,

—p(e) = Pr(v|u) is the conditional probability of event v given that event u has occurred,
—p(e) > 0 (if p(e) = 0, we can delete e from E),
—p(e) < 1 if e leaves the root (if Pr(v|r) = 1, events v and r can be merged).

Note that a mutagenetic tree can have more than one connected component. However, most of the time we
will be concerned only with the arborescence (connected branching) containing the special root vertex r .
Figure 1 shows a mutagenetic tree for the development of resistance to zidovudine.

A mutagenetic tree induces a probability distribution on the set � of all possible mutational patterns
as follows. Draw each edge independently from E with probability p(e). Then the set of vertices that are
reachable from the root is the outcome of the experiment.

3.3. Tree reconstruction

Desper et al. (1999) have shown how to reconstruct the mutagenetic tree from all pairwise joint proba-
bilities of events. Consider the complete digraph G = (V , V ×V, w) on the set of vertices V corresponding
to the events with weights

w(u, v) = log Pr(u, v) − log(Pr(u) + Pr(v)) − log Pr(v),

where Pr(u) denotes the marginal probability of event u and Pr(u, v) the joint probability of events u

and v. Then the mutagenetic tree is the branching in G that maximizes the sum of its edge weights. The
maximum weight branching can be computed in O(|V ||E|) time by Edmonds’ branching algorithm (Chu
and Liu, 1965; Edmonds, 1967; Karp, 1971; Tarjan, 1977).

In practice, we do not know the joint probabilities of events, but have to estimate them from the data.
For sufficiently many samples, the above algorithm will reconstruct the correct mutagenetic tree with high
probability (see Desper et al. [1999] for proofs and a quantitative version of this statement).

Finally, if the observed sample does not come from a distribution generated by a mutagenetic tree, we
hope that the reconstructed tree captures many of the strong dependencies (causality flows) between events.

The weight function w scores edges e = (r, v) leaving the root with w(e) = − log(1 + Pr(v)). The
scoring implies that less frequent events are favored as initial vertices in the tree. This behavior appears to

2We follow the notation of Desper et al. (1999) who call these tree models in the context of oncogenesis oncogenetic
trees.
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FIG. 1. Mutagenetic tree for the development of zidovudine resistance. Nodes are labeled with resistance-associated
mutations in the HIV-1 reverse transcriptase; edge labels represent conditional probabilities between mutational events.

be undesirable for some applications. As an alternative, we propose the special weights w(r, v) = log Pr(v)

for edges leaving the root vertex. This modified scoring function is used for the zidovudine data.

3.4. Likelihood computation

Given a mutagenetic tree T = (V , E, r, p), the likelihood of a pattern x of events is the probability that
T generates x: L(x|T ) = Pr(x|T ). Let S ⊆ V be the set of events specified by x. If there is a subset
E′ ⊆ E such that S is exactly the set of all vertices reachable from r in the subtree (V , E′), then x can
be generated by T , and the likelihood is given by

L(x|T ) =
∏
e∈E′

p(e) ·
∏

e∈(S×V \S)

(1 − p(e)) .

If there is no such edge subset, the topology of T does not allow for generating x, and hence L(x|T ) = 0.
Note that the set E′ is well defined, because (V , E) is a tree. For example, for the mutagenetic tree
displayed in Fig. 1 and the pattern defined by the mutations 70R and 219Q, we find

L(x|T ) = 0.46 · 0.43 · (1 − 0.46) · (1 − 0.65) = 0.037,

whereas the pattern composed of 215Y and 41L can not be generated by that tree.
The likelihood computation can be done efficiently by traversing the mutagenetic tree in a breadth-first

search starting from r . Note that connected components of T other than the arborescence rooted at r do
not affect the likelihood of a pattern.

We call T a star, if all edges e ∈ E leave the root vertex r . A star models events as being inpedendent
of each other. In terms of the likelihood a star is characterized as follows.

Lemma 1. A mutagenetic tree is a star, if and only if all 2� possible patterns of events have positive
likelihood.
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Proof. If T is a star,

L(x|T ) =
∏

{u|xu=1}
Pr(u) ·

∏
{u|xu=0}

(1 − Pr(u)) > 0,

since Pr(u) = Pr(u|r) ∈ (0, 1) by definition.
If T is not a star, there is at least one edge (u, v) with u �= r , and any pattern with xu = 0 and xv = 1

has likelihood zero.

The lemma implies that for noisy real world data the assumption of a tree topology will generally be too
strict in the likelihood sense. Moreover, the estimated mutagenetic tree for the development of zidovudine
resistance (Fig. 1) does not capture all of the known pathways. Indeed, the tree topology implies that M41L
and T215F/Y can occur only after K70R despite the fact that the 215-41 pathway is also observed in the
absence of K70R. Consequently, one third of the observed mutational patterns have likelihood zero in the
estimated mutagenetic tree. In general, the tree reconstruction is not an ML procedure, and the maximum
branchings tend to describe only part of the data satisfyingly.

To overcome these limitations, we consider the broader class of mixture models of mutagenetic trees.

4. MIXTURE MODELS

4.1. Definition

Suppose that Y1, . . . , YK are multivariate discrete random variables with range � that are distributed
according to mutagenetic trees

Tk = (V , Ek, r, pk), k = 1, . . . , K,

respectively. Let �1, . . . ,�K ∈ {0, 1} be binary random variables with Pr(�k = 1) = αk . We call the
model

M =
K∑

k=1

αkTk with αk ∈ [0, 1] and
K∑

k=1

αk = 1

that generates the random variable Y = ∑K
k=1 �kYk , a K-mutagenetic trees mixture model.

Thus, the likelihood of a pattern of events x in the mixture model is

L(x|M) =
K∑

k=1

αkL(x|Tk).

Throughout, we will consider mixture models that have a special structure in the first mutagenetic tree T1.
We assume that, in addition to different pathways of accumulation of events, there is a certain probability
β of any event occurring spontaneously independent of all other events. Thus, T1 is a star with p(e) = β

for all e ∈ E1. Tree T1 can be regarded as the noise component of the model. By Lemma 1, including a
star in the mixture model ensures that all patterns of events have positive likelihood.

4.2. EM-like learning algorithm

Given the number of trees K , we want to reconstruct a K-mutagenetic trees mixture model from observed
patterns X. This task would be easy, if we knew for each pattern of events from which component of the
model it has been generated: We would apply K times the reconstruction technique for a single tree based
on the pair probabilities estimated from the respective samples. However, this information is missing and
we have to estimate it from the data, too. This procedure results in an algorithm similar to an EM algorithm
(Dempster et al., 1977).
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Our goal is to find mutagenetic trees T1, . . . , TK and mixture parameters α1, . . . , αk that maximize the
log-likelihood of the data, which can be written as

N∑
i=1

log
K∑

k=1

αkL(xi |Tk),

if the xi are independent. The responsibility of model component k for sample xi is defined as

γik = Pr(�k = 1|M, xi).

Let Nk = ∑N
i=1 γik be the weighted number of samples generated by Tk . In an iterative fashion, we

estimate γ (E step) and M (M step) from the data.
Given an estimate of M = ∑K

k=1 αkTk , we can estimate γ by

γik = αkL(xi |Tk)

K∑
m=1

αmL(xi |Tm)

.

Given an estimate of γ , we update M as follows. For the noise component (k = 1), we let T1 be a star
and estimate β as the rate of occurrence of any event in this component,

β = 1

� N1

�∑
j=1

N∑
i=1

γi1xij .

For k ≥ 2, we first estimate all joint probabilities between pairs of events within the k-th component:

pk(u, v) = 1

Nk

N∑
i=1

γikxiuxiv.

Next, we reconstruct Tk from pk by solving the maximum weight branching problem as described in
Section 3.3. Edges with pk(u, v) < 0.01 are previously deleted from the complete graph in order to avoid
weekly connected components within one mutagenetic tree. Finally, the mixture parameters are updated
by the equation

αk = Nk

N
= 1

N

N∑
i=1

γik.

We iterate the E step and the M step until the log-likelihood function does not increase any more.
To run the algorithm, we need initial values for the responsibilities γik . The starting solution can be picked

at random, but in general this strategy will yield poor results. The two common approaches to overcome
this problem are either to sample many random starting solutions, or to identify a single promising initial
solution. To limit computational costs, we decided for the latter approach and perform an ordinary k-means
clustering with k = K −1 on the set of patterns using squared Euclidean distance as dissimilarity measure3

(Hastie et al., 2001). From the k-means clusters, we derive the initial responsibilities

γik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
, if sample xi belongs to cluster k − 1

1

2(K − 1)
, else.

3The starting solution for the k-means algorithm, i.e., the set of initial cluster centers, is a random subset of the
data of size k. In all experiments, we have chosen the best k-means clustering (the one minimizing the within-cluster
point scatter) obtained from 100 random starting solutions.
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These soft assignments provide a good starting solution, but do not have too strong an effect on the final
solution.

The algorithm for learning a K-mutagenetic trees mixture model is summarized in Fig. 2. It is differing
from a true EM algorithm in the fact that the tree reconstruction step does not provide an ML estimate.
Thus, unlike with a true EM algorithm, our EM-like algorithm is not guaranteed to converge to a local
maximum of the log-likelihood function. Nevertheless, we have not observed such deviating behavior on
any real world dataset so far.

FIG. 2. EM-like algorithm for learning a K-mutagenetic trees mixture model from data.
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5. MODEL SELECTION

There is still one model parameter that we do not know, namely, the number of mutagenetic trees K in the
mixture model. Our learning algorithm is efficient enough to perform model selection in a cross-validation
setting. For the zidovudine resistance data, we have used 10-fold cross-validation in order to estimate the
likelihood on unseen data for values of K between 1 and 10. Figure 3 shows the estimated likelihood as a
function of K . We propose to apply the one-standard-error rule, i.e., to pick the most parsimonious model
within one standard error of the maximum mean log-likelihood (Hastie et al., 2001). This yields K = 3,
and the 3-mutagenetic trees mixture model for the development of zidovudine resistance in the HIV-1 RT
is shown in Fig. 4.

This model assigns 19% of the data to the noise component.4 These data are not necessarily free of
any dependencies between events, but within the model class they are best explained by the independence
assumption. Forty-seven percent of the data are estimated to be generated by a linear path model that
involves the 70-219 pathway followed by 67N and the 215-41 pathway. The remaining 34% of the data are
assigned to a mutagenetic tree with initial event 215F/Y followed by either the 70-219 pathway or—with
greater probability—the remainder of the 215-41 pathway, namely 41L and 210W.

In conclusion, the mixture model of mutagenetic trees captures all major established facts about the
development of zidovudine resistance under zidovudine mono-therapy. Moreover, it provides a quantitative,
generative probabilistic model of the accumulation of resistance-associated mutations.

6. VALIDATION

After comparing the estimated mixture model with biological knowledge, we now turn to quantitative
approaches for model validation. We will derive measures of confidence regarding the mixture model as
both a density estimator and a way of learning structural dependencies between events.

6.1. Goodness of fit

We want to quantify how closely a trained mixture model reproduces the empirical probability distribution
on � = 2{1,...,�}. To compare two discrete probability distributions, we use the following distance measures
on the probability vectors p, q ∈ [0, 1]2�

.

a) Cosine distance: 1 − cos ∠(p, q) = 1 − 〈p,q〉
‖p‖2 ‖q‖2

b) L1 distance: ‖p − q‖1 = ∑2�

i=1 |pi − qi |

c) L2 distance: ‖p − q‖2 =
√∑2�

i=1(pi − qi)2

d) Kullback–Leibler distance (relative entropy): Ep

[
p
q

]
= ∑2�

i=1 pi log2
pi

qi

Using cross-validation we calculate for each partition of the data into training and test set the distances
between the distributions induced by the test data and by

(1) the training data,
(2) the 3-mutagenetic trees mixture model estimated from the training data,
(3) the single mutagenetic tree model estimated from the training data,
(4) the null model (a single star model with nonuniform edge weights) estimated from the training data.

Test and training data give rise to empirical distributions obtained from the observed histograms, while
the model distributions are computed as described in Sections 2.4 and 3.1. We compare the mixture model

4In the sense of the mixture model: in general, each sample is distributed over several components (Section 6.1).
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FIG. 3. Ten-fold cross-validation log-likelihood estimates for K-mutagenetic trees mixture models as a function of K .

FIG. 4. Three-mutagenetic trees mixture model M = 0.19 T1 +0.47 T2 +0.34 T3 for the development of zidovudine
resistance. Each tree is preceded by its weight αk . The upper tree T1 is a star and represents the noise component.
In the second tree, we have omitted the connected component consisting of the single vertex with label 210W, and
similarly 67N in the third tree.
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with a single mutagenetic tree model and with a star model representing the null hypothesis of independence
of events. Distance (1) measures only the effect of finite sampling, whereas the distances (2)–(4) include
losses that are due to imperfect model assumptions and/or parameter estimates.

For the Kullback–Leibler distance, we replace probabilities q̂i that are estimated to be zero by the value
1/(2n), where n is the fraction of samples used for estimating the distribution (either empirically or by
training a model). Thus, we effectively use a pseudocount of 1/2, a common strategy in estimating the
Kullback–Leibler distance.

Figure 5 shows the distributions of all distances for 100 runs of 10-fold cross-validation each. For all
distance measures, the mixture model distribution closely resembles the empirical test data distribution. In
contrast, both the single tree model and the null model provide inferior density fits. The fact that the single
tree misses an entire mutational pathway becomes most evident in the L2 measure. Frequently observed
patterns from the unconsidered pathway have likelihood zero in this tree and give rise to large (quadratic)
contributions to the L2 norm.

In the same cross-validation runs, we have determined the percentage of samples that remain unexplained
by the nontrivial components of the mixture model. The mean percentage of samples with likelihood zero
in all but the noise component was 13%. Thus, the mixture model maps 87% of the observed patterns onto
the other identified mutagenetic trees. For the optimal model on the full data (Fig. 4), it happens to be the
case that the only pattern that can be generated by both nontrivial trees is the null pattern. We report in
Table 1 the distribution of samples among the trees in detail.

FIG. 5. Box-plot of distribution distances obtained from 100 runs of 10-fold cross-validation: (a) cosine distance,
(b) L1 distance, (c) L2 distance, (d) Kullback–Leibler distance. Each subfigure shows from left to right: distances
between distributions of the test data and the training data (empirical, first column), the mixture model (mixture,
second column), the single tree model (single, third column), the null model (null, fourth column). The null model
refers to the independence assumption of events and is a single star with nonuniform edge weights.
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Table 1. Distribution of Samples among the Components
of the Mixture Model Shown in Fig. 4a

Likelihood Sample subset

L(x|T1) L(x|T2) L(x|T3) Fraction Description

> 0 > 0 > 0 31.6% Null patterns
> 0 > 0 = 0 30.2% 70-219 pathway
> 0 = 0 > 0 25.0% 215-41 pathway
> 0 = 0 = 0 13.2% “Noise”

aThe fraction of samples refers to the full dataset of 364 samples.

6.2. Tree stability

We have already interpreted the topology of the mutagenetic trees in detail. Here we use the bootstrap
(Efron and Tibshirani, 1998) in order to obtain an estimate of the dependence of the topology on sampling
effects. Since there is no standard way of comparing two mixture models, we confine ourselves to analyzing
the stability of each single mutagenetic tree. For a mixture model, we fix the responsibilities γ obtained from
the EM-algorithm. For tree Tk , we resample with replacement each pattern of events xi with probability γik .
From the bootstrap sample of size N , a mutagenetic tree is reconstructed. As a test statistic, we consider
the relative count of each edge e ∈ Ek in the bootstrap trees.

In Fig. 6, we report for the zidovudine data these estimates based on 10,000 bootstrap samples. The
two mutagenetic trees are the two nontrivial components of the mixture model displayed in Fig. 4. We
find strong support for 70R as initial event and for the dependencies 215F/Y → 41L → 210W and 70R →
219E/Q → 67N. The latter edge suggests that mutation D67N may be best explained as a late event in the
70-219 pathway.

FIG. 6. Bootstrap analysis of tree stability. Edge weights represent relative counts in 10,000 bootstrap samples.
The two mutagenetic trees are the two nontrivial components of the mixture model in Fig. 4.
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7. DISCUSSION

We have presented mixture models of mutagenetic trees for modeling evolutionary processes that can be
described as an accumulation of permanent genetic changes along multiple pathways. Application to the
development of zidovudine resistance in the HIV-1 RT has shown that, compared to single mutagenetic
trees, the class of mixture models provides both better density estimation of observed patterns of events
and biologically more plausible models.

It will be interesting to compare mutagenetic trees mixture models to other statistical models, in particular
to the mixture model of undirected trees (Meilă and Jordan, 2000) and to the ML tree with hidden
variables (von Heydebreck et al., 2004). Mutagenetic trees are particularly useful for estimating mutational
pathways, because the directed edges induce an order on the set of mutational patterns. Thus, they may
serve for generating hypotheses about evolutionary processes. The software used in this paper is freely
available for noncommercial purposes as the “mtreemix” package at www.mtreemix.bioinf.mpi-sb.mpg.de/.
The zidovudine dataset used for evaluation can also be downloaded from this site.

7.1. Applications

Further applications of the model include the accumulation of mutations associated with resistance
to other antiretroviral drugs in protease and RT, the current drug targets of HAART. Together, these
models may be helpful in designing treatment protocols that avoid the accumulation of cross-resistance
conferring mutations so that clinicians do not run out of therapeutic options too early. However, since mono-
therapies are obsolete, mutational pathways under combination therapy must be identified. It remains to
be investigated whether combination therapy pathways are a function of the pathways for the single drugs
forming the combination. If such a relationship cannot be found, we may face another data scarceness
problem induced by the large number of possible drug combinations.

The generative probabilistic tree models can be used for extensive simulations of sequence populations
under the selective pressure of different drugs within or among hosts. Indeed, drawing a random sample
from a K-mutagenetic trees mixture model M = ∑K

k=1 αkTk is straightforward. We first draw a uniform
random number and decide according to the mixture parameters α = (α1, . . . , αK) which mutagenetic tree
to use. In the selected tree, we draw each edge e ∈ E independently with probability p(e). The sample
consists of all events that are reachable from r in the induced subgraph. Such sequence simulations are
useful for studying the effectiveness of different drug sequencing strategies and thus for the in silico design
of optimal drug use patterns (Phillips et al., 2003).

As density estimators, the mixture models can also be used for classification. A common classification
problem in the context of HIV drug resistance is to separate susceptible from resistant strains. With mixture
models Msus trained on the susceptible and Mres trained on the resistant subset, we consider the likelihood
ratio

L(x|Msus)

L(x|Mres)

to decide whether a pattern x is more likely to originate from the susceptible or the resistant subpopulation.
Analysis of the model Mres may reveal pathways leading to resistance independent of the applied drug
pressure, including cross-resistance pathways induced by other drugs.

7.2. Model-based clustering

The classical EM algorithm for learning Gaussian mixture models can be regarded as a soft version
of K-means clustering (Hastie et al., 2001). For each model component, the EM algorithm assigns a
responsibility to each sample, whereas the K-means clustering algorithm assigns each sample to exactly
one of the K clusters. Likewise, we can easily modify our K-mutagenetic trees mixture model learning
algorithm (Fig. 2) to obtain a clustering algorithm. It suffices to store cluster assignments instead of
responsibilities in the matrix γ :

γik =
{

1, if sample xi is in cluster k

0, else,
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and change the E step to

γik =
{

1, if k = arg max1≤m≤K L(xi |Tm)

0, else.

This model-based clustering is useful in situations where pathways are known or suspected to be mutually
exclusive.

7.3. Full ML estimation

We would arrive at a true EM algorithm if we estimated the mutagenetic trees Tk (Fig. 2, step 2(b)) in
an ML fashion. However, finding the ML topology of a mutagenetic tree appears difficult in absence of a
construction rule and in view of the large number of possible trees. Thus, heuristic search methods need
to be applied, such as those used in ML phylogeny estimation (Felsenstein, 1981).
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