
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 12, Number 6, 2005
© Mary Ann Liebert, Inc.
Pp. 847–861

Designing Multiple Simultaneous Seeds for DNA
Similarity Search

YANNI SUN and JEREMY BUHLER

ABSTRACT

The challenge of similarity search in massive DNA sequence databases has inspired major
changes in BLAST-style alignment tools, which accelerate search by inspecting only pairs
of sequences sharing a common short “seed,” or pattern of matching residues. Some of
these changes raise the possibility of improving search performance by probing sequence
pairs with several distinct seeds, any one of which is sufficient for a seed match. However,
designing a set of seeds to maximize their combined sensitivity to biologically meaningful
sequence alignments is computationally difficult, even given recent advances in designing
single seeds. This work describes algorithmic improvements to seed design that address the
problem of designing a set of n seeds to be used simultaneously. We give a new local search
method to optimize the sensitivity of seed sets. The method relies on efficient incremental
computation of the probability that an alignment contains a match to a seed π , given that
it has already failed to match any of the seeds in a set �. We demonstrate experimentally
that multi-seed designs, even with relatively few seeds, can be significantly more sensitive
than even optimized single-seed designs.

Key words: DNA sequence comparison, sequence alignment, database search, seed design,
Mandala.

1. INTRODUCTION

Similarity search using large DNA databases is critical to identifying biologically meaningful fea-
tures in genomes. Comparing a database of known features to an unannotated genome can help identify

genes and remains the method of choice for finding nongene features such as transposable elements (Smit
and Green, 1999) and putative regulatory regions (Hardison et al., 1997; Li and Miller, 2002). Pairwise
comparison of entire mammalian genomes has been used to support gene-structure prediction (Korf et al.,
2001), long-range orthology detection (Schwartz et al., 2003), and inference of genome rearrangements
(Pevzner and Tesler, 2003).

Modern biosequence databases place substantial computational demands on tools for fast detection
of similarity. These demands, whose growth parallels the exponentially increasing size of the databases
(National Center for Biological Information, 2002), have revived innovation in heuristics for fast similarity
search in DNA (Schwartz et al., 2000; Kent, 2002; Ma et al., 2002; Buhler et al., 2003). At the same time,

Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130.

847

848 SUN AND BUHLER

interest in whole-genome alignment (Bray et al., 2003; Brudno et al., 2003; Lipper et al., 2004) has led
to tools that perform local similarity search as a way to “anchor” global alignments. All of these search
methods, like their ancestors BLASTN (Altschul et al., 1990) and FASTN (Pearson and Lipman, 1988),
work by first identifying short seed matches between DNA sequences, then more carefully aligning those
pairs of sequences that exhibit one or more seed matches.

In this work, a seed π is defined to be an ordered list of indices {x1 . . . xw}. To ensure that each possible
seed has a unique representation in this notation, we fix x1 = 0 for all seeds. We say that two sequences
S and T exhibit a seed match at offsets i and j if, for 1 ≤ k ≤ w, S[i + xk] = T [j + xk]. The number
of inspected positions w is the weight of π , while the distance s = xw − x1 + 1 is its span. Traditionally,
seed matching heuristics have used the contiguous seed πc = {0, 1, . . . w − 1}, but more recent work
(Ma et al., 2002; Buhler et al., 2003; Brejova et al., 2004) has shown the desirability of utilizing seeds
which inspect a discontiguous set of sequence positions.

In a large genomic DNA comparison, the seed matching phase, which entails a complete scan of the
sequence database, can easily take 50% or more of total computation time. One way to reduce this cost is
to move it offline by preprocessing the database. Preprocessing-based search engines like FLASH (Califano
and Rigoutsos, 1993) and BLAT (Kent, 2002) index a database D so that all seed matches between D

and some query sequence q can be found in time proportional to q’s length plus the number of matches.
Depending on the density of seed matches, preprocessed searches may cost an order of magnitude less
(Kent, 2002) than a linear scan of D. A second way to accelerate seed matching is to delegate it to
specialized hardware, such as a field-programmable gate array (FPGA) (Compton and Hauck, 2002) or
network processor (Shah and Keutzer, 2002). Such hardware, combined with high-speed I/O from the
database’s storage, could greatly reduce the time needed to scan D while freeing the host processor to
investigate any seed matches in parallel. Preprocessing and hardware-accelerated seeded alignment are
therefore attractive options for designing new, faster similarity search tools.

Preprocessing- and hardware-based search share one feature of critical importance for algorithm design:
both approaches can efficiently utilize multiple seeds at once. Let � = {π1 . . . πn} be a set of seeds, and
suppose we seek all seed matches induced by at least one seed from �. Preprocessing produces one index
for each seed π ∈ �, requiring n lookups instead of one; however, for reasonable n, this cost is still
negligible compared to a linear scan of the database. Hardware-accelerated search engines can exploit the
fine-grained parallelism and wide data paths of specialized hardware to perform n single-seed searches in
parallel on the database as it streams through the device.

Alternative search technologies open up an algorithmic design space of multi-seed heuristics, but navi-
gating this space is nontrivial. For single seeds, the PatternHunter search engine (Ma et al., 2002) and our
own work on the Mandala seed design software (Buhler et al., 2003) have shown the utility of designing
a seed to optimize sensitivity in a probabilistic model M of the alignments being sought. However, these
earlier methods, while applicable to multi-seed design, scale poorly with the size n of the seed set. We
have therefore sought a robust, efficient approach to multi-seed design that leverages the power of existing
local-search methods (Buhler et al., 2003) for single seeds.

This work describes methods for designing locally optimal sets of multiple seeds for simultaneous use.
Formally, we address the following problem:

Problem 1.1. Let M be a Markov model that generates aligned pairs of biosequences (without gaps),
and let parameters w, s, and n be given. Find a set � of n seeds, each of weight w and span at most
s, that maximizes the probability that at least one seed from � matches an alignment chosen at random
from M.

Our approach to this problem greedily covers the highest-probability alignments of M with seeds that
match them. To support this strategy, we show how to compute the probability that a seed π matches
an alignment from M, conditional on some other set � of seeds failing to match. Our new methods
considerably reduce the cost of designing multi-seed sets compared to the local search algorithm of Buhler
et al. (2003). Empirical validation shows that multi-seed designs, even with maximum spans as short
as 22, can exhibit substantially improved sensitivity relative to single optimized seeds of the same or even
lower weight.

DESIGNING MULTIPLE SIMULTANEOUS SEEDS 849

The remainder of this work is organized as follows. After reviewing related work, Section 2 presents a
brief rationale for multi-seed design and describes the greedy covering approach, along with its extension
to a beam search strategy. Section 3 describes our enhancements to exact and Monte Carlo methods for
seed evaluation to efficiently compute conditional probabilities. Section 4 evaluates the new methods for
multi-seed design and validates the predicted sensitivity and specificity of designs computed by these
methods on a large mammalian genome comparison. Finally, Section 5 concludes and suggests directions
for future work.

1.1. Related work

Optimized design of multiple simultaneous seeds builds on previous work in database search generally
and biosequence similarity search in particular. One closely related thread of work is the use of randomized
seed sets, that is, sets of seeds chosen independently at random from some distribution. Califano and
Rigoutsos (1993), in their FLASH similarity search tool, chose up to tens of seeds that inspect sequence
positions chosen independently at random, creating a separate index of the database on disk for each
seed. More recently, random seed sets have been applied to geometric nearest neighbor search (Indyk
and Motwani, 1998) and to general database search (Gionis et al., 1999) under the term locality-sensitive
hashing. This approach seeks objects in a database that are close to a query object under some metric,
such as �k distance for real-valued vectors or Hausdorff distance for geometric shapes. They first construct
a low-distortion embedding mapping objects to bit strings under the Hamming metric, then use enough
randomly chosen seeds to discover with high probability all pairs of vectors that match in sufficiently
many positions.

Buhler (2001) adapted ideas from locality-sensitive hashing to biosequence comparison in the LSH-ALL-
PAIRS software. Like FLASH, this tool uses multiple seeds; unlike FLASH, it chooses the number of seeds
to guarantee a high probability of discovering sufficiently conserved ungapped alignments (i.e., pairs of
strings at small Hamming distance) regardless of how their substitutions are distributed. LSH-ALL-PAIRS
is computationally expensive because it requires a large number of seeds to bound the probability of
missing a well-conserved alignment. In contrast, the present work seeks a much smaller number of seeds
designed to optimize performance given a probabilistic model that describes the alignments being sought.

The use of an alignment model to design seeds appears in FLASH’s performance analysis, which
assumes that alignments contain uniformly distributed mutations. Ma et al. (2002) recognized that this
assumption strongly impacts the choice of even a single seed and exploited it to pick the seed used by
their PatternHunter search tool. Keich et al. (2004) gave a dynamic programming algorithm to estimate
the probability that a seed discovers an alignment with mutations distributed uniformly at random; an
equivalent algorithm using finite automata is described by Nicodéme et al. (1999). Buhler, Keich, and Sun
gave a faster algorithm that extends easily to more complex alignment models in Buhler et al. (2003),
where it was used in the Mandala seed design software. These methods extend in principle to multiple seed
design, but attempting to optimize a set � of seeds simultaneously remains computationally challenging.

Recently, Xu et al. (2004) found an LP-rounding approximation algorithm for Problem 1.1. The approx-
imation ratio depends in a nontrivial way on the properties of the seeds being designed, but in practice seed
sets can be designed whose probability of detecting a match is at least 70% of the highest possible for any
seed set of the same size. The heuristic methods described in this work do not provide such guarantees,
but the seed sets we produce empirically exhibit sensitivity comparable to that reported by Xu et al.

Other users of seed sets in similarity search include Pevzner and Waterman (1995) and Kucherov et al.
(2004). Unlike the probabilistic approach described here, their methods use carefully designed seed sets
to guarantee perfect sensitivity to alignments with a certain level of conservation while minimizing the
number of false positives. Also, Pevzner and Waterman’s pairs of seeds are used conjunctively (that is, all
seeds must match to discover an alignment), while this work uses seeds disjunctively (at least one seed
must match).

Alternative extensions of single seeds that do not explicitly use seed sets include the BLASTZ algo-
rithm (Schwartz et al., 2003), which combines seed matching with differentiation between transition and
transversion mutations in DNA, and vector seeds (Brejova et al., 2003), which sample alignments like
ordinary seeds but then add together the scores of the sampled alignment positions under some substitution
matrix.

850 SUN AND BUHLER

2. MULTI-SEED DESIGN: RATIONALE AND APPROACH

In this section, we first present a qualitative argument in favor of multi-seed designs. We then formally
define a sensitivity measure for sets of seeds and describe how we improve on the local search optimization
of Buhler et al. (2003) to more efficiently probe multi-seed design space.

2.1. Why multi-seed design?

Seed-matching heuristics must optimize a tradeoff between sensitivity—measured by the true positive
rate—and specificity—measured by one minus the false positive rate. The true positive rate is the chance
that an alignment of interest contains a seed match, while the false positive rate is the probability of a seed
match occurring by chance in sequences that lack a biologically meaningful alignment.

The specificity of a single seed π is largely controlled by its weight w. Given two i.i.d. random DNA
sequences with equal base frequencies, a false positive match to π occurs about once in 4w aligned bases.
The only way to substantially reduce π ’s false positive rate is to increase its weight; however, this increase
is usually detrimental to sensitivity because it further constrains the set of alignments that can be detected
by π .

Multiple seeds provide a potentially more attractive way to trade sensitivity for specificity. Let π be
a seed of weight w, and suppose there exists a set � of seeds, each of weight w′ > w, that together
are as sensitive as π . Under the i.i.d. model, the total expected number of chance matches to � is at
most |�|/4w′

. If |�| < 4w′−w, then the set � causes fewer expected false positives than π . Although
this analysis uses an oversimplified sequence model, its qualitative conclusion remains significant: adding
seeds to a seeded alignment algorithm at most linearly increases its false positive rate, while reducing the
seed weight produces an exponential increase.

Evidence from real sequence comparisons suggests that a set � of seeds can indeed be more sensitive
than a single, shorter seed π , even when π is optimal for its weight. Previously (Buhler et al., 2003), we
reported two seeds of weight 12 that together proved more sensitive in practice than the best single seed
of weight 11 in a comparison of human and mouse noncoding DNA. While the false positive rate of the
seed pair was lower than that of a single, shorter seed, the increased cost of checking for matches to two
seeds caused a search using them to require more time to compute overall. However, this limitation can be
circumvented by search techniques, such as the aforementioned indexing and hardware acceleration, that
parallelize or move offline the computational burden of multi-seed matching.

2.2. Definition of seed sensitivity

We measure the sensitivity of a seed with respect to a probabilistic alignment model M, which de-
scribes the distribution of matches and substitutions in ungapped alignments of some fixed length �.
Abstractly, a sample from M is a bit string α of length �, with 1’s where the aligned sequences match
and 0’s where they do not. M, which takes the form of a (possibly nonstationary) kth-order Markov
process, can be trained on biologically meaningful alignments obtained from real genomic sequence
comparisons.

We say that a seed π = {x1 . . . xw} matches an alignment α if, for some offset i and 1 ≤ j ≤ �,
α[i + xj] = 1. We denote this event as Eπ(α) and the complementary event as Eπ(α). The match
probability of π in M is given by

Prα∼M(Eπ(α)). (1)

We subsequently drop the alignment α from our event notation when referring to events over a random
alignment from M. Optimizing a seed means choosing its nonfixed positions x2 . . . xw to maximize its
match probability under M.

We say that a set � of seeds matches α if at least one of its component seeds matches. We denote
this disjunction of events as E�(α) and define the combined match probability for � using Definition (1),
substituting E� for Eπ .

DESIGNING MULTIPLE SIMULTANEOUS SEEDS 851

2.3. A greedy covering algorithm for multi-seed design

Finding an optimal set of seeds for a model M is computationally challenging because seed design
space contains numerous local maxima of sensitivity that may be substantially below the global maximum.
The algorithm of Buhler et al. (2003) addresses this challenge using a hill-climbing local search algorithm
with random restart. Given parameters w and s, the search starts with a set �0 of n randomly chosen
seeds, each with common weight w and span at most s. The algorithm then chooses i and j , 1 ≤ i ≤ n

and 2 ≤ j ≤ w, and finds the best seed set �1 in the neighborhood of sets derived from �0 by deleting
position xj of the ith seed πi ∈ �0 and replacing it with a position between 1 and s − 1 not currently
inspected by πi . This process iterates cyclically through i and j until no further local improvement is
possible. This entire procedure is then repeated for some number of different starting points chosen at
random. To design a single optimized seed, we simply run the above algorithm with n = 1.

Empirically, two factors increase the running time of local search precipitously with the set size n.
Firstly, when evaluating match probabilities using the fast dynamic programming algorithm of Buhler
et al. (2003), the cost of evaluating the match probability Pr(E�) for a seed set � is proportional to the
size of a deterministic finite automaton (DFA) A� that accepts all bit strings containing a match to �.
We have observed empirically that, for small n, adding one seed to � roughly doubles the final size of
A� after DFA minimization. Secondly, the number of evaluations needed to converge to a local optimum
grows superlinearly in n. Growth of �(n) is expected because each new seed adds w inspected positions
that can be changed by local search. However, we find empirically that optimizing larger seed sets � also
requires more complete iterations over all seeds in � before the search converges.

To address concerns both of slow convergence and of evaluating large seed sets, we have developed a
greedy covering heuristic for choosing seed sets. Given a partial seed set �0 of size n′ < n, we form a set
� of size n′ +1 by choosing the next seed π to maximize the conditional match probability Pr(Eπ | E�0).
Each step of the heuristic attempts to cover the highest-probability alignments not already matched by
some seed in the current partial set. Starting from a single locally optimal seed, n − 1 iterations of greedy
covering produce a seed set of size n.

Greedy covering can run faster than the local search of Buhler et al. (2003) for two reasons. First, most
of its seed set evaluations are performed on partial sets of size < n, while the old local search always
evaluates sets of the full size n. Second, because each covering step optimizes only a single seed, the
number of evaluations needed remains roughly constant per seed added and so grows linearly with n.

2.4. Extension to beam search

There is no guarantee that a seed set � derived by greedy covering will have an aggregate match
probability as high as that of a set in which all seeds were designed simultaneously. To improve the quality
of the chosen seed set, we can simply restart the greedy covering algorithm several times from different
initial seeds. A more aggressive, more computation-intensive strategy uses a beam search (Bisiani, 1992)
to extend several intermediate seed sets, each of size n′ < n.

Beam search is initialized by finding a number of locally optimal single seeds. The best b of these seeds
are saved and used in the next round of optimization. For each saved seed π0, we find N seeds π (for
some N), each of which locally optimizes Pr(Eπ | Eπ0). The b seed pairs {π0, π} with highest combined
match probability over all b · N pairs are again saved, and the search proceeds to find N candidate third
seeds for each pair. This process iterates until all seed sets in the beam have size n, at which time the best
seed set overall is chosen.

3. COMPUTING CONDITIONAL MATCH PROBABILITIES

Our approach to multi-seed design requires that we compute, for a set of seeds � and an additional
seed π , the conditional match probability Pr(Eπ | E�) for an alignment model M. In this section, we
describe enhancements to the methods of Buhler et al. (2003) to efficiently compute conditional match
probabilities. A single evaluation of Pr(Eπ | E�) is no faster than computing Pr(E�∪π). However, we

852 SUN AND BUHLER

can exploit the fact that optimization performs many evaluations with a common set � of fixed seeds by
factoring redundant work associated with � out of each evaluation.

3.1. Exact computation via DFAs

For seeds π whose span is not much greater than their weight (s − w ≤ 15), a highly efficient method
(Buhler et al., 2003) to compute Pr(Eπ) exactly uses dynamic programming over a finite automaton.
Briefly, we first construct a DFA Aπ that accepts precisely those alignments (represented as bit strings)
containing a seed match to π . We then compute by dynamic programming the probability that Aπ accepts
a random alignment of length � from model M. For a kth-order Markov model, we can compute the
match probability for a seed of weight w and span s in time �(�2k|Aπ |), where |Aπ | = �(w2s−w). This
algorithm extends straightforwardly to compute Pr(E�) for a set of seeds �. In practice, minimizing Aπ

before dynamic programming greatly accelerates the computation, provided it is done by a sub-quadratic-
time method such as Hopcroft’s algorithm (Hopcroft, 1971).

We can compute Pr(Eπ | E�) for a seed π and a set of seeds � as

Pr(Eπ | E�) = Pr(E�∪π) − Pr(E�)

1 − Pr(E�)
. (2)

In the context of local search, � is fixed, while π may change several hundred times over the course of
optimization. We therefore seek to factor out those parts of the computation that do not depend on π ,
rather than repeating them for each π .

Let Aπ and A� be automata accepting alignments containing a match to π and �, respectively. We
first form the complement automaton A� that accepts iff A� does not. We then form the cross-product
Ac = Aπ ⊗ A�, which accepts iff Aπ accepts but A� does not. By construction, Ac accepts an alignment
from M with probability p = Pr(Eπ ∩ E�), so that p/(1 − Pr(E�)) is the probability we want. A� can
be computed once and cached before optimization.

The cross-product construction avoids the significant costs associated with explicit construction and
minimization of A�∪π for each new seed π . In exchange, it demands construction of Aπ and of the cross
product Ac. However, if this cross product is constructed lazily (i.e., including only states reachable from
its initial state) from minimized A� and Aπ , we have in practice found that the resulting DFA is typically
at most twice the size of the minimized A�∪π and costs less to construct given A�.

3.2. Conditional sampling for Monte Carlo

For a seed π of weight w and span s, the cost of computing Pr(Eπ) is proportional to w2s−w. While this
cost is manageable (well under a second) when, e.g., w = 11 and s ≤ 22, increasing s − w to around 20
increases the cost 1,000-fold. Avoiding longer spans altogether seems unwise when exploring multi-seed
designs—packing multiple seeds into a short span could more quickly incur diminishing returns, as each
seed samples almost the same positions as the others.

To explore the regime of longer spans, we turn to a Monte Carlo approach to estimate match probabilities.
Monte Carlo estimation computes Pr(E�) in a model M by generating T similarities at random from M
and computing the fraction that contain a seed match to �. We set T = 2 × 106 to estimate match
probabilities to about three digits of accuracy.

Computing Pr(E�∪π) (and hence, using Equation (2), Pr(Eπ | E�)) by direct Monte Carlo is feasible
but requires checking every seed of � ∪ π against each sampled alignment. Moreover, this approach is
not ideal for differentiating among seeds π given a fixed set �, since relatively few samples fall into the
event subspace E�. A more desirable approach focuses sampling on this subspace, permitting either more
accurate comparison of different π ’s by their conditional probabilities or fewer samples, and hence less
computation, to achieve a given level of accuracy.

Sampling from the subspace E�, up to some target number of samples T , can be implemented with
rejection sampling, but this technique still incurs the computational cost of generating alignments from all
of M. Because only 1 in about 1/(1 − Pr(E�)) samples is accepted, rejection sampling is an inefficient
solution when � covers a substantial fraction of M’s probability mass. A more robust approach to Monte
Carlo again exploits the fact that the fixed seeds � remain constant over a large number of evaluations of

DESIGNING MULTIPLE SIMULTANEOUS SEEDS 853

different �’s. By paying a preprocessing penalty, we can sample directly from the subspace E� at speeds
close to that of sampling from the full space of M.

Let A� be the automaton of the previous section, which accepts alignments containing a seed match
to �. Every alignment α sampled from M traces a path through A�; if α is in E�, the path ends
somewhere other than A�’s final state f (which is unique by the construction of Buhler et al. [2003])
after � steps. We wish to sample such paths, and only such paths, with probability proportional to their
likelihoods under M.

Suppose that we have generated t bits of α, traversing a path that ends at state q of A�, and let r0

and r1 be the targets of transitions from q on 0 and 1, respectively. To generate α’s next bit, we need to
sample from its distribution conditional on the path not ending at f after � bits. Since M is a kth-order
Markov process, the next bit of α also depends on the history h of the last k bits generated. Hence, for
b ∈ {0, 1}, we must compute

Pr(rb
t+1 | qt , ht , f�),

where event qt (resp., rb
t+1) denotes being in state q (resp., rb) after t (resp., t + 1) bits, and the history

ht lists the last k of the first t generated bits.
We have by Bayes’ theorem that

Pr(rb
t+1 | qt , ht , f�) = Pr(f� | rb

t+1, qt , ht) Pr(rb
t+1 | qt , ht)

Pr(f� | qt , ht)
. (3)

For every state q with a transition to rb on bit b, the right-hand probability in the numerator is identical
and is equivalent to Pr(b | ht), the probability that model M generates a b bit given history ht . Moreover,
knowing that qt and rb

t+1 occur implies that the t + 1st bit is b. Let hb
t+1 be the concatenation of b with

the k − 1 most recent bits of ht ; then

Pr(f� | rb
t+1, qt , ht) = Pr(f� | rb

t+1, h
b
t+1).

Finally, the denominator of (3) is a normalizing constant γ that ensures
∑

b Pr(rb
t+1 | qt , ht , f�) = 1.

Conclude that

Pr(rb
t+1 | qt , ht , f�) = [1 − Pr(f� | rb

t+1, h
b
t+1)] Pr(b | ht)

γ
.

It remains to compute Pr(f� | qt , ht) for any state q of A� and k-bit history h and any t ≤ �. Once
again, let r0 and r1 be the targets of transitions from q on 0 and 1. We can compute the desired probability
via the following backward recurrence:

Pr(f� | qt , ht) =
∑

b

Pr(f� | rb
t+1, h

b
t+1) Pr(rb

t+1 | qt , ht)

=
∑

b

Pr(f� | rb
t+1, h

b
t+1) Pr(b | ht).

The base cases of the recurrence are that Pr(f� | f�, h�) = 1, while Pr(f� | q�, h�) = 0 for q �= f .
We can now generate samples from M conditioned on E� as follows. We first compute A�, then

precompute and store p(q, h, t) = Pr(r1
t+1 | qt , ht , f�) for each state q, each k-bit history h, and each

length t ≤ �. We generate successive bits of α while tracing its path in A�. If we reach state q after t

bits with history h, the next bit of α is 1 with probability p(q, h, t). Running this procedure for � steps
generates one random alignment.

As noted above, the automaton A� will be expensive to compute if use of Monte Carlo is warranted.
However, given that even accelerated Monte Carlo with T = 2 × 106 requires at least several seconds per
evaluation, even an up-front cost of several minutes to compute A� can be amortized over the hundreds
of evaluations needed for one local search. We note that this optimization works best on machines with
high memory bandwidth, as the sampling procedure requires nearly random access to the table p() of
worst-case size �(�2k|A�|), which by Buhler et al. (2003) is �(�w2s−w+k).

854 SUN AND BUHLER

4. RESULTS

In this section, we characterize the behavior of the greedy covering algorithm and evaluate its perfor-
mance relative to the local search of Buhler et al. (2003). We then apply our new methods to design seed
sets for a large-scale mammalian genomic DNA comparison to investigate the sensitivity and specificity
of multi-seed designs.

4.1. Sequence data and alignment models

The experiments of this section were carried out on pairs of orthologous DNA sequence blocks drawn
from the human and mouse genomes. We obtained NCBI Build 31 of the human genome and Release 2
of the mouse genome, along with the annotated coordinates of 1,262 pairs of orthologous blocks, from
the UCSC Genome Browser (Kent et al., 2002). These blocks comprised 2.65 gigabases of total DNA
sequence. Sequences were divided into annotated coding exons and the remaining noncoding DNA based
on the coding exon predictions of the Twinscan gene finder (Korf et al., 2001). Soft-masked regions of the
sequences, representing interspersed repeats and low-complexity DNA, were not used either in training or
in testing.

We mined orthologous pairs of regions for high-scoring local sequence alignments, which were used to
train probabilistic models for seed design. The noncoding training set was produced by randomly sampling
ungapped alignments of length 64 with 70–75% identity from these pairs of regions, as described by
Buhler et al. (2003). To generate the coding training set, TBLASTX was run on the coding portions of the
orthologous region pairs with the BLOSUM62 scoring function, modified so as to heavily penalize stop
codons. Translated alignments with E-values at most 10−5 were mapped back to their underlying genomic
sequences, and aligned segments with 70–75% identity were extracted for training. These procedures
generated 1.4 million noncoding and 357,000 coding alignments, respectively.

Using our sampled alignments, we trained two probabilistic models—a noncoding model Mnc and a
coding model Mc—for use in seed design. Model Mnc is a simple first-order Markov process. The coding
model Mc is a fifth-order nonstationary Markov model consisting of three stationary models, which predict
the rates of substitution at first, second, and third codon positions, respectively. Each submodel looks at the
previous five alignment positions in making its prediction. A nonstationary model more accurately predicts
the relative sensitivity of seeds in coding DNA than does a stationary model because it can capture the
three-periodic structure of codons: the second base of a codon is the best conserved, followed closely by
the first base, while the third or “wobble” base typically evolves nearly neutrally. A more comprehensive
treatment of this phenomenon appears in Brejova et al. (2004).

4.2. Performance of greedy covering

We first evaluated the performance of the greedy covering algorithm, along with the more aggressive
beam search strategy, relative to the original, more expensive local search of Buhler et al. (2003). These
experiments used the noncoding alignment model Mnc.

To validate the greedy covering approach, we designed sets of n seeds, for 1 ≤ n ≤ 5. Seeds were
constrained to have weight 11 and span at most 22, so that candidate seed sets could be efficiently
evaluated by dynamic programming. A second set of design experiments produced seeds of weight 11 and
span at most 32 using Monte Carlo evaluation. Seed sets were derived by three different methods: greedy
covering, beam search with a beam size b = 12, and the original local search of Buhler et al. (2003). The
original local search was run with 10 random restarts, while greedy covering and beam search used 10
restarts in optimizing each seed added to the set.

Figure 1 compares the match probabilities of the seed sets with span up to 22 derived by each of the
three search algorithms versus model Mnc. Despite the fact that greedy covering does not simultaneously
optimize multiple seeds, the seed sets it produced were in three of five cases (n = 1, 3, 4) at least as
sensitive as those found by the original method. Differences in match probability were generally slight
(within 0.01). Beam search, despite its more thorough exploration of the search space, produced seed sets
with nearly the same probabilities as did greedy covering, giving us additional confidence that the latter
does not unduly sacrifice the quality of its results.

DESIGNING MULTIPLE SIMULTANEOUS SEEDS 855

FIG. 1. Match probabilities of seed sets derived by greedy covering, beam search (b = 12), and Mandala’s original
local search in the first-order model Mnc.

While greedy covering yields seed sets of quality similar to those found by the original local search
of Buhler et al. (2003), it has a clear advantage in computational cost. On a 2.8 GHz Intel Pentium 4
workstation, greedy covering with the above parameters produced a set of n = 5 seeds in about 20 minutes.
The same computation with the original local search algorithm required 2.4 hours. The combined effects
of fewer evaluations (1

2 to 2
3 as many) for smaller n and more efficient computations per evaluation yielded

a seven-fold speedup.
Given that the three methods in Fig. 1 produced nearly identical results, the reader may wonder whether

there is anything to optimize, that is, whether random seeds (as suggested by Ma et al. [2002]) are just
as sensitive as the best seeds found. Figure 2 compares the match probability of locally optimal seed sets
to the average probability over 100 random seed sets of the same weight and maximum span. There is
a consistent gap of around 0.05 between the match probability of “average” seed sets and that of locally
optimal sets with span up to 22, and an even larger gap of > 0.1 for maximum span 32. The experiments
of Buhler et al. (2003) indicate that gaps of this magnitude significantly affect the sensitivity of a seed set
in real-world sequence comparisons.

4.3. Mammalian genomic comparison

We next evaluated whether the sensitivity gains estimated for multi-seed designs over single seeds
translate into practical improvement by applying these designs to a large-scale comparison of the human
and mouse genomes. In particular, we sought to determine whether the sensitivity conferred by multiple
seeds of weight w was at least that obtained with single seeds of lower weight. Moreover, the qualitative
argument of Section 2.1 suggests that sets of up to three well-designed seeds of weight w could exhibit
greater sensitivity and specificity than one seed of weight w − 1. We sought to quantitatively validate this
hypothesis.

856 SUN AND BUHLER

FIG. 2. Comparison of seed sets produced by greedy covering with random sets of same weight w = 11 and
maximum span s. “Optimal” curves for n ≤ 22 and n ≤ 32 nearly coincide. Error bars give 95% confidence intervals
of mean over 100 trials.

Our testing procedure used the masked pairs of orthologous human and mouse regions described above.
To test a set � of seeds, we compared each orthologous pair of sequences with a BLAST-like seeded
alignment algorithm using �. Each seed match was subjected to ungapped extension using NCBI BLAST’s
linear-time dynamic programming algorithm, followed by gapped extension using banded Smith–Waterman.
We scored alignments with the HOXD-70 score matrix (Chiaromonte et al., 2002) and affine gap penalties of
−400 to open and −30 to extend. We kept only non-overlapping alignments that scored above 3,000. These
scoring parameters were taken from the popular PipMaker comparison software (Schwartz et al., 2000).
Finally, the sensitivity of each seed set � was quantified by counting the total number of nonoverlapping
gapped alignments found between orthologous regions.

4.3.1. Noncoding DNA sequence. Our first experiments on noncoding DNA sequence used seed sets
designed with the model Mnc. We designed sets of up to five seeds with weight 11 and span at most 22,
as well as locally optimal single seeds of weights 10 and 9. The multi-seed sets are given in Fig. 3. In the
interest of time, evaluation used only 449 pairs of orthologous regions spanning about 500 megabases of
total unmasked sequence.

Table 1 shows the percent increases in sensitivity observed over a single optimized seed of weight 11,
either by decreasing seed weight or by increasing the set size n. We found that a pair of seeds with weight
11 outperformed a single optimized seed of weight 10, and that four seeds of weight 11 outperformed an
optimized seed of weight 9. Note that the percent increase in sensitivity observed between one weight-11
seed and three such seeds is of comparable magnitude to that obtained by switching from a contiguous
11-mer seed to the optimal single seed of the same weight.

These experiments provided an opportunity to investigate how quickly adding seeds to a set reaches the
point of diminishing returns in sensitivity. While successive improvements in sensitivity do diminish with

DESIGNING MULTIPLE SIMULTANEOUS SEEDS 857

FIG. 3. Seed sets of sizes n = 2 through 5 for noncoding DNA comparison. Each set of seeds was obtained in an
independent run of optimization, so similarities between sets reflect convergence of different runs to the same local
optimum.

Table 1. Sensitivity and Specificity of Seeds in Model Mnc
a

w n # alignments found % improvement Total seed matches

11 1 251941 — 1.57 × 109

10 1 273831 8.7 5.88 × 109

9 1 293670 16.6 1.72 × 1010

11 2 279902 11.1 3.10 × 109

11 3 292093 15.9 4.56 × 109

11 4 298968 18.7 6.05 × 109

11 5 303197 20.3 7.61 × 109

aAll seeds and seed sets shown are optimized, with span ≤ 22. Sensitivity improvement is
measured versus one optimized seed of weight 11; w: seed weight; n: number of simultaneous
seeds.

858 SUN AND BUHLER

FIG. 4. Seed sets of sizes n = 2 through 5 for coding DNA comparison. Each set of seeds was obtained in an
independent run of optimization, so similarities between sets reflect convergence of different runs to the same local
optimum.

Table 2. Sensitivity and Specificity of Seeds in Model Mc
a

w n # alignments found % improvement Total seed matches

11 1 94109 — 1.28 × 106

10 1 95804 1.8 3.27 × 106

9 1 97255 3.3 9.93 × 106

11 2 95758 1.7 1.98 × 106

11 3 96789 2.8 2.66 × 106

11 4 97229 3.3 3.30 × 106

11 5 97521 3.6 3.94 × 106

aAll seeds and seed sets shown are optimized, with span ≤ 22. Sensitivity improvement is
measured versus one optimized seed of weight 11; w: seed weight; n: number of simultaneous
seeds.

DESIGNING MULTIPLE SIMULTANEOUS SEEDS 859

increasing n, they remain above 1% even as the fifth seed is added to the set. Provided that an indexing
or hardware-accelerated search strategy can support n > 2, we find no compelling reason to stop at two
or even three seeds in designs for these platforms.

Table 1 also gives, for each experiment, the total number of seed matches investigated by the algorithm,
which is closely related to specificity because nearly all seed matches are false positives. The total seed
match rates indeed exhibit a roughly linear increase with the number of seeds n. Moreover, as predicted,
four seeds of weight 11 give roughly the same total number of matches as one seed of weight 10, though the
total match rate increases somewhat less than four-fold as w is decreased by one. These results, along with
the substantial gains in sensitivity from multiple seeds, demonstrate that multi-seed designs can outperform
single-seed designs in both sensitivity and specificity.

We note that the total seed match figures of Table 1 count matches between a given pair of locations i, j

in query and database only once, even if multiple seeds matched there. The observed linear trend therefore
shows that the different seeds of our optimized sets generate largely non-overlapping sets of false positives.

Finally, we repeated the experiments of Table 1, this time using seed sets of weight 11 and span up to
32, which were designed with our optimized Monte Carlo method. Designs with a longer maximum span
can better avoid overlap between seeds if doing so improves the overall match probability. However, as
Fig. 2 suggests, the predicted improvement in sensitivity obtained from optimized seed sets of s ≤ 32 is
small compared to sets of s ≤ 22. In practice, we found that the seed sets of longer span yielded a small
but systematic improvement of 0.3–0.5% in the number of alignments found, compared to seed sets of the
same size with maximum span 22.

4.3.2. Coding DNA sequence. For our trials with coding DNA, we designed seed sets with weight 11
and span at most 22, as well as single optimized seeds of weights 10 and 9, to optimize sensitivity in the
coding model Mc. The seed sets are given in Fig. 4. Each seed set was tested on the coding portions of
all 1262 orthologous region pairs.

Table 2 shows the sensitivity of our coding seed sets, again relative to a single optimized seed of
weight 11, and the total number of seed matches observed in each experiment. While the overall magnitude
of sensitivity improvement was lower than in noncoding DNA for both multi-seed designs and lower-weight
seeds, the multi-seed designs again showed sensitivity at least comparable to that of single-seed designs
producing considerably more false positives. The total numbers of seed matches continue to increase
nearly linearly with the number of seeds, albeit with a slope of about 0.6 rather than 1.0, suggesting that
alignments of real coding DNA incur substantially more matches by two or more seeds at the same location
than those produced by the simple i.i.d. model of Section 2.1.

5. CONCLUSIONS AND FUTURE WORK

The design of multi-seed sets for nontraditional seeded alignment technologies presents a computational
challenge, even compared to the already nontrivial problem of designing single seeds, because the space of
possible designs increases exponentially with the set size. We have proposed new methods to navigate this
larger design space either by dynamic programming or by Monte Carlo, obtaining significant improvements
in computing time over the local search scheme of Buhler et al. (2003). The resulting seed sets, all of moder-
ate size, demonstrate markedly improved sensitivity on a large mammalian genomic DNA comparison, even
relative to single seeds that inspect fewer alignment positions. Our multi-seed designs are good candidates
for inclusion in indexing- and hardware-based similarity search tools. The methods described in this work
are part of release 1.1 of the Mandala software, available at http://www.cse.wustl.edu/∼jbuhler/mandala/.

We plan to construct and evaluate alternative platforms for seeded alignment that can take advantage of
multi-seed designs. The Mercury system (Chamberlain et al., 2003) is a hardware platform designed to
stream large quantities of data from an array of disks through a controller containing an embedded FPGA
processor. This system can sustain a data rate of 800 Mbytes/second into the FPGA. We are constructing
an implementation of DNA similarity search for this system (Krishnamurthy et al., 2004) that performs
seeded alignment on the FPGA. The inherent parallelism of the FPGA makes feasible the use of several
simultaneous seeds without increasing the latency of the computation.

860 SUN AND BUHLER

The ability to efficiently design simultaneous seeds raises interesting possibilities for future improvements
in seeded alignment. One application of multi-seed design is the exploitation of the score matrix embeddings
described by Buhler (2003). In that work, it is shown that a score matrix M can be mapped to a finite
metric δ that embeds isometrically in Hamming space, so that a random seed detects a match between the
embedded representations of two sequences with probability proportional to their ungapped alignment score
under M . While incorporating score matrices into seeded alignment appears to improve the sensitivity of
DNA similarity search, our current implementation of this idea requires tens to hundreds of random seeds.
The present work raises the possibility that a few carefully designed seeds for the embedded representations
of sequences might achieve the same sensitivity at much reduced cost. Because embedding-based seeded
alignment (unlike vector seeds) would preserve the ability to use ordinary hashing to discover seed matches
between query and database, this approach should be compatible with BLAST and similar alignment tools.

ACKNOWLEDGMENTS

This work was supported by NSF career grant DBI-0237903.

REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., et al. 1990. Basic local alignment search tool. J. Mol. Biol. 215,
403–410.

Bisiani, R. 1992. Search, beam. In Shapiro, S.C., ed., Encyclopedia of Artificial Intelligence, 2nd ed., 1467–1468,
Wiley-Interscience, New York.

Bray, N., Dubchak, I., and Pachter, L. 2003. AVID: A global alignment program. Genome Res. 13, 97–102.
Brejova, B., Brown, D.G., and Vinar, T. 2003. Vector seeds: An extension to spaced seeds allows substantial im-

provements in sensitivity and specificity. In Benson, G., and Page, R., eds., Algorithms and Bioinformatics: 3rd
International Workshop (WABI), vol. 2812 of Lecture Notes in Bioinformatics, 39–54.

Brejova, B., Brown, D.G., and Vinar, T. 2004. Optimal spaced seeds for homologous coding regions. J. Bioinformatics
and Comp. Biol. 1, 595–610.

Brudno, M., Do, C.B., Cooper, G.M., Kim, M.F., Davydov, E., Green, E.D., Sidow, A., and Batzoglou, S. 2003.
LAGAN and Multi-LAGAN: Efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 13,
721–731.

Buhler, J. 2001. Efficient large-scale sequence comparison by locality-sensitive hashing. Bioinformatics 17, 419–428.
Buhler, J. 2003. Provably sensitive indexing strategies for biosequence similarity search. J. Comp. Biol. 10, 399–418.
Buhler, J., Keich, U., and Sun, Y. 2003. Designing seeds for similarity search in genomic DNA. Proc. 7th Ann. Int.

Conf. on Computational Molecular Biology (RECOMB ’03), 67–75.
Califano, A., and Rigoutsos, I. 1993. FLASH: A fast look-up algorithm for string homology. Proc. 1st Int. Conf. on

Intelligent Systems for Molecular Biology (ISMB ’93), 56–64.
Chamberlain, R.D., Cytron, R.K., Franklin, M.A., and Indeck, R.S. 2003. The Mercury system: Exploiting truly fast

hardware for data search. Proc. Intl. Workshop on Storage Network Architecture and Parallel I/Os, 65–72.
Chiaromonte, F., Yap, V.B., and Miller, W. 2002. Scoring pairwise genomic sequence alignments. Pac. Symp. Biocom-

puting, 115–126.
Compton, K., and Hauck, S. 2002. Reconfigurable computing: A survey of systems and software. ACM Computing

Surveys 34, 171–210.
Gionis, A., Indyk, P., and Motwani, R. 1999. Similarity search in high dimensions via hashing. Proc. 25th Int. Conf.

Very Large Databases.
Hardison, R.C., Oeltjen, J., and Miller, W. 1997. Long human–mouse sequence alignments reveal novel regulatory

elements: A reason to sequence the mouse genome. Genome Res. 7, 959–966.
Hopcroft, J. 1971. An n log n algorithm for minimizing states in a finite automaton. In Theory of Machines and

Computations, 189–196, Academic Press, New York.
Indyk, P., and Motwani, R. 1998. Approximate nearest neighbors: Towards removing the curse of dimensionality. Proc.

30th Ann. ACM Symp. on Theory of Computing, 604–613.
Keich, U., Li, M., Ma, B., and Tromp, J. 2004. On spaced seeds for similarity search. Disc. Appl. Math. 138, 253–263.
Kent, W.J. 2002. BLAT: The BLAST-like alignment tool. Genome Res. 12, 656–664.
Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. 2002. The human

genome browser at UCSC. Genome Res. 12, 996–1006.

DESIGNING MULTIPLE SIMULTANEOUS SEEDS 861

Korf, I., Flicek, P., Duan, D., and Brent, M.R. 2001. Integrating genomic homology into gene structure prediction.
Bioinformatics 17(Suppl 1), S140–S148.

Krishnamurthy, P., Buhler, J., Chamberlain, R., Franklin, M., Gyang, K., and Lancaster, J. 2004. Biosequence similarity
search on the Mercury system. Proc. IEEE 15th Int. Conf. on Application-Specific Systems, Architectures, and
Processors (ASAP ’04), 365–375.

Kucherov, G., Noe, L., and Roytberg, M. 2004. Multi-seed lossless filtration. Proc. 15th Ann. Combinatorial Pattern
Matching Symposium (CPM ’04), 297–310.

Li, J., and Miller, W. 2002. Significance of inter-species matches when evolutionary rate varies. Proc. 6th Ann. Int.
Conf. on Computational Molecular Biology (RECOMB ’02), 216–224.

Lipper, R.A., Zhao, X., Florea, L., Mobarry, C., and Istrail, S. 2004. Finding anchors for genomic sequence comparison.
Proc. 8th Ann. Int. Conf. on Computational Molecular Biology (RECOMB ’04), 233–241.

Ma, B., Tromp, J., and Li, M. 2002. PatternHunter—Faster and more sensitive homology search. Bioinformatics 18,
440–445.

National Center for Biological Information. 2002. Growth of GenBank. http://www.ncbi.nlm.nih.gov/Genbank/
genbankstats.html.

Nicodéme, P., Salvy, B., and Flajolet, P. 1999. Motif Statistics, 194–211, Number 1643 in Lecture Notes in Computer
Science, Springer, Berlin.

Pearson, W.R., and Lipman, D.J. 1988. Improved tools for biological sequence analysis. Proc. Natl. Acad. Sci. USA
85, 2444–2448.

Pevzner, P., and Tesler, G. 2003. Transforming men into mice: The Nadeau-Taylor chromosomal breakage model
revisited. Proc. 7th Ann. Int. Conf. on Computational Molecular Biology (RECOMB ’03), 247–256.

Pevzner, P., and Waterman, M.S. 1995. Multiple filtration and approximate pattern matching. Algorithmica 13, 135–154.
Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C., Haussler, D., and Miller, W. 2003.

Human–mouse alignments with BLASTZ. Genome Res. 13, 103–107.
Schwartz, S., Zhang, Z., Frazer, K.A., Smit, A.F., et al. 2000. PipMaker—A web server for aligning two genomic

DNA sequences. Genome Res. 10, 577–586.
Shah, N., and Keutzer, K. 2002. Network processors: Origin of species. Proc. ISCIS XVII, 17th Int. Symp. on Computer

and Information Sciences.
Smit, A.F., and Green, P. 1999. RepeatMasker, http://www.ftp.genome.washington.edu/RM/RepeatMasker.html.
Xu, J., Brown, D., Li, M., and Ma, B. 2004. Optimizing multiple spaced seeds for homology search. Proc. 15th Ann.

Combinatorial Pattern Matching Symposium (CPM ’04), 47–58.

Address correspondence to:
Yanni Sun

Dept. of Computer Science and Engineering
Washington University

St. Louis, MO 63130

E-mail: yanni@cse.wustl.edu

