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Abstract

The goal of this article is to provide a tourist guide, with
an eye towards structural issues, to what I consider some of
the major highlights of parameterized complexity.

1 Introduction

Anyone working in the area of parameterized complex-
ity gets rather schizophrenic.1 We submit papers that get
reviews saying that parameterized complexity is now well
known so why are you including this introductory stuff, to
the other extreme where reviewers say that they have never
heard about it.

It is fair to say that the groups that have picked up the
material the best are those in rather applied areas where
it is perceived as a method of systematic algorithm de-
sign : in computational biology, linguistics and the like.
It is also why we have seen a number of recent surveys
aimed at the heuristic/applied computing community, such
as [Ra97, Nie98, DF99b, DFS99, AGN01, Gr02]. On the
other hand the area has a lot of manageable and important
problems of great significance to the COMPLEXITY com-
munity, and this is perhaps not widely known.

1.1 Introduction for the Totally Dubious or
“what’s in this for me?”

You are someone who is barely aware of this theory, and
perhaps even slightly hostile, believing that it does not ad-
dress any of the central concerns of traditional complexity.
Thus I wish to being pointing out a classical problem in the�Partially supported by the Marsden Fund of New Zealand. Thanks to
Mike Fellows for helpful comment. Thanks also to Martin Grohe, Rolf
Niedermeier, and Detlef Seese who supplied corrections. Finally thanks to
Tandy Warnow and Luay Nakhleh for allowing me access to theirslides
from which I based Section 4.3.2.

1Some of us are already known as manic.

traditional STOC/FOCS/STACS/CCC mould that this the-
ory might offer some hope towards resolving, since it has
proven useful in such circumstances before.

A lot of effort has gone into trying to combat intractabil-
ity. As per Garey and Johnson [GJ79], polynomial time
approximation schemes (PTAS’s) are one of the main tradi-
tional methods. Many ingenious polynomial time approxi-
mation schemes have been invented for this reason. Often
the wonderful PCP theorem of Aroraet al. [ALMSS92]
shows that no such approximation exists. But sometimes
they do. Let’s look at some recent examples, taken from
some recent major conferences such as STOC, FOCS and
SODA, etc.� Arora [Ar96] gave aO(n 3000� ) PTAS for EUCLIDEAN

TSP� Chekuri and Khanna [CK00] gave aO(n12(log(1=�)=�8))
PTAS for MULTIPLE KNAPSACK� Shamir and Tsur [ST98] gave aO(n22 1� �1)) PTAS for
MAXIMUM SUBFOREST�Chen and Miranda [CM99] gave aO(n(3mm!)m� +1) PTAS
for GENERAL MULTIPROCESSORJOB SCHEDULING� Erlebachet al. [EJS01] gave aO(n 4� ( 1�2+1)2( 1�2+2)2)
PTAS for MAXIMUM INDEPENDENT SET for geometric
graphs.

Table 1 below calculates some running times for these
PTAS’s with a 20% error.

Reference Running Time for a
20% Error

Arora [Ar96] O(n15000)
Chekuri and Khanna [CK00] O(n9;375;000)

Shamir and Tsur [ST98] O(n958;267;391)
Chen and Miranda [CM99] > O(n1060 )

(4 Processors)
Erlebachet al. [EJS01] O(n523;804)

Table 1. The Running Times for Some Recent
PTAS’s with 20% Error.
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Now, by anyone’s measure, a running time ofn500;000 is
bad andn9;000;000 is even worse. The optimist would argue
that these examples are important in that they prove that
PTAS’s exist, and are but a first foray. The optimist would
also argue that with more effort and better combinatorics,
we will be able to come up with somen logn PTAS for the
problems. For example, Arora [Ar97] also came up with
another PTAS for EUCLIDEAN TSP, but this time it was
nearly linear and practical.

But this situation is akin to P vs NP. Why not argue that
some exponential algorithm is but a first one and with more
effort and better combinatorics we will find a feasible algo-
rithm for SATISFIABILITY . What if a lot of effort is spent
in trying to find a practical PTAS’s without success? As
with P vs NP what is desired, is either anefficientPTAS
(EPTAS), or a proof that no such PTAS exists. A primary
use of NP completeness is to give compelling evidence that
many problems are unlikely to have better than exponen-
tial algorithms generated by complete search. The trouble
is, these examples are in polynomial time. Lower bounds
are hard to come by there. Here’s where you might make
parameterized complexity your friend. Parameterized com-
plexity will allow you in certain circumstances to show that
the polynomial time algorithm with the horrible exponent
probably has nofeasiblealgorithm.

If the reader studies the examples above, they will realize
that a source of the appalling running times is the1� in the
exponent. One method that has worked in such examples is
to parameterize the problem by takingk = 1� as the relevant
parameter. As will be shown in Section 5.1, if the underly-
ing assumption of parameterized complexity is correct, a
kind of miniaturized Cook’s theorem, it is often possible to
provethat the 1� cannot be removed and hence no EPTAS
exists.In the same way that the underlying assumption forNP 6= P is that there is no way to efficiently decide if
a nondeterministic Turing Machine accepts on some path,
the underlying assumption in parametric complexity is that
there is no way to decide if a nondeterministic Turing ma-
chine acceptsin � k stepssave than by essentially trying
them. We will look at this in section 3.

We will also point out a number of other interesting con-
nections with classical complexity classes that might well
be of use to you2.

1.2 Introduction for the somewhat less dubious

You are a classically trained complexity theorist, and
pretty skeptical about the whole thing: here’s yet another
article with an introduction saying that the authors have
invented fire. You are not at all keen on spending a long

2For instance, under a parametric assumption a little weakerthan the
one above, (see Section 8) one can show thatk-INDEPENDENTSET, andk-DOMINATING SET cannot be solved inDTIME(2o(k)):

time re-tooling. Perhaps you are mainly concerned with the
deepest questions of complexity theory:� will you find a decent thesis topic?� will you get tenure?� how can you renew your grant? etc

Whilst I certainly don’t expect a mass migration into the
area, my plan is to try to convince you that parameterized
complexity at least can do the following.
(i) It can provide a very useful paradigm in algorithm de-
sign, particularly in practical applications of theoretical
computer science.
(ii) It is an exceptionally applicable tool for systematically
confronting computational intractability, and is one thatis
rather more easily applied and analyzed than many of the
current coping strategies. In particular, it allows for an ex-
tended dialog with the problem systematically searching for
tractability.
(iii) It focuses our attention onhow the data is presented to
us, andwhat kindsof data will berelevant to instances of
the problem that we are actually interested in.
(iv) It is absolutely still in its infancy with a host of impor-
tant open questions some of which might even be solvable,
as distinct from many issues in structural complexity.
(v) It can provide very significant insight into things classi-
cal. Thus, even if you are a skeptic and are perhaps wedded
to PCP, approximability, etc, then I would like to convince
you that parametric complexity could add to your tool kit in
a very useful way.
(vi) It is not actually that hard, nor that foreign, once you
have a little paradigm shift.
(vii) It can provide an almost limitless supply of thesis top-
ics.

1.3 What is parameterized complexity, and what
motivates it?

Anybody working in software engineering will know
that it is important to design tools specific to the type of
problem at hand. Suppose that you are concerned with re-
lational databases. Typically the database is huge, and the
queries are relatively small. Moreover, “real life” queries
are queriespeopleactually ask. Hence, such queries tend
to be also of low logical complexity. Themain ideaof pa-
rameterized complexity is to design a paradigm that will ad-
dress complexity issues in the situation where we know in
advance that certain parameters will be likely bounded and
this might significantly affect the complexity. Thus in the
database example, an algorithm that works very efficiently
for small formulas with low logical depth might well be per-
fectly acceptable in practice.

Thus, parameterized complexity is a refined complexity
analysis, driven by the idea that in real life data is often
given to us naturally with an underlying structure which we
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might profitably exploit. The idea is not to replace PTIME
as theunderlyingparadigm of feasibility, but to provide a
set of tools that refine this concept, allowing some expo-
nential aspect in the running times by allowing us either to
use the given structure of the input to arrive at feasibility,
or to show that the kind of structure is not useful for this
approach. For example, in the PTAS’s above, all the algo-
rithms are living in PTIME. It is how they live there that
counts.

This simple idea is pretty obvious once you think about
it. For example, when we teach a first course in automata
theory we show the students that regular language accep-
tance is in linear time. But this is really not quite true: it is
only trueif the language is presented to us as, say, a regu-
lar expression, whereas it could be a language presented as
the output of a Turing machine, in which case acceptance
is undecidable.Thepoint is that we only really care about
regular languages when they are given to us in a structured
way, namely via regular expressions.

Parameterized complexity seems widely applicable in
both algorithm design and, we believe, it gives insight into
structural complexity. This is a subject close to the author’s
heart. Sadly, however, there remain groups for whom the
main ideas are still unknown.

Complexity theory evolved as a theory attempting to un-
derstand the resources needed for computational problems.
I would argue that parameterized complexity can be a more
suitable complexity theory for addressing the computational
concerns arising from a number of important areas of com-
putational problems. The main idea of parameterized com-
plexity is that problems often come given with parameters to
exploit, implicit or explicit underlying structure. Database
theory is one such area. Computational biology is full of
similar parameters to exploit. As we will see in section 2,
there are also many situation withhiddenparameters to ex-
ploit.

2 The Main Idea

In this section, I will look at our standard examples, and
in the next section, we look at a couple of case studies drawn
from the literature. When Mike Fellows and I were formu-
lating this theory, we were really driven by our attempts
to understand three examples: VERTEX COVER, DOMI-
NATING SET,INDEPENDENTSET. The reader should recall
that for a graphG a vertex cover is where vertices cover
edges: that isC = fv1; : : : ; vkg is a vertex cover iff for
eache 2 E(G), there is avi 2 C such thatvi 2 e: They
should recall that a dominating set is where vertices cover
vertices:D = fv1; : : : ; vkg is a dominating set iff for allv 2 V (G), eitherv 2 D or there is ane 2 E(G) such thate = hvi; vi for somevi 2 D. Finally an independent set
is a collection of vertices no pair of which are connected.

n = 50 n = 100 n = 150k = 2 625 2,500 5,625k = 3 15,625 125,000 421,875k = 5 390,625 6,250,000 31,640,625k = 10 1:9� 1012 9:8� 1014 3:7� 1016k = 20 1:8� 1026 9:5� 1031 2:1� 1035
Table 2. The Ratio nk+12kn for Various Values ofn and k.

Of course, these are some of the basicNP -complete prob-
lems identified in Garey and Johnson [GJ79], so are likely
intractable.

Now we are analyzing data arising as, for instance, the
conflict graph of some problem in, say, computational biol-
ogy. Because of the nature of the data we know that it is
likely the conflicts are at most about 50 or so, but the data
set is large, maybe108 points. We wish to eliminate the
conflicts, by identifying those 50 or fewer points. Let’s ex-
amine the problem depending on whether the identification
turns out to be a dominating set problem or a vertex cover
problem. (The role of INDEPENDENTSET comes later.)
DOMINATING SET. Essentially the only known algorithm
for this problem is to try all possibilities. Since we are look-
ing at subsets of size50 or less then we will need to examine
all (108)50 many possibilities. Of course this is completely
impossible.
VERTEX COVER There is now an algorithm running in timeO(1:286k + kn) ([CKJ01]) for determining if anG has a
vertex cover of sizek. This has been implemented and is
practical forn of unlimited size andk up to around 400
[St00, DRST01].

The issue in a nutshell, isthe manner by which the run-
ning time for a fixedk depends on thek. Critically, is k in
the exponent of the size of the problem, or independent from
that? Consider the situation of a running time of
(nk) vs2kn, as exhibited by Table 2 taken from Downey and Fel-
lows [DF99a].

In classical complexity a decision problem is specified
by two items of information:
(1) The input to the problem.
(2) The question to be answered.

In parameterized complexity there are three parts of a
problem specification:
(1) The input to the problem.
(2) The aspects of the input that constitute the parameter.
(3) The question.

Thusoneparameterized version of VERTEX COVER is
the following:
VERTEX COVER

Instance:A graphG = (V;E).
Parameter:A positive integerk.
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Question: DoesG have a vertex cover of size� k?
One new aspect of the parametric approach for someone

thinking in classical terms is that the objects under discus-
sion are “two dimensional”. Normally we would think of in-
stances of the problems as being divided in increasing size.
Now the idea is that we keep this on the horizontal axis,
but we explicitly have the second coordinate, as coordina-
tizing the problem on the vertical axis. Each row might be
in some class like PTIME, but the question is, how?. In the
illustrative examples, as we go from slicek to slicek + 1
we remain in linear time for VERTEX COVER, with only
the constant varying, and move from
(nk) to
(nk+1) for
DOMINATING SET.

A formal working definition3 runs along the following
lines:

A parameterized languageis L � �� � �� where we
refer to the second coordinate as theparameter.It does no
harm to think ofL � �� � N:
Definition 2.1. A parameterized languageL is (strongly)
fixed parameter tractable(FPT ), iff there is a computable
functionf , a constant
, and a (deterministic) algorithmM
such that for allx; k,hx; ki 2 L iff M(x; k) accepts;
and the running time ofM(x; k) is � f(k)jxj
:

The thing to keep in mind is that an FPT language is inP
“by the slice”,and more: eachk-slice is in thesamepoly-
nomial time class via thesamemachine. Flum and Grohe
built on the advice view of Cai, Chen, Downey and Fellows
[CCDF97], to formalize this intuition by recasting this def-
inition as follows: LetLk denote thek-th slice ofL andL(>m)k denotefhx; ki : jxj > mg, the part ofLk from m
onwards. Then Flum and Grohe [FG02a] observed thatL
is FPT iff there is an algorithmM , a constant
, and a com-
putable functiong such thatM witnesses thatL(>g(k))k 2 DTIME(n
):
The illustrative example is our parameterized VERTEX

COVER wherek � VERTEX COVER 2 DTIME(n);
from some point onwards withg(k) about2k.

Naturally we can do this with other classical notions
such as eventually LOGSPACE by the slice. See [CCDF97,
FG02a], and Section 8.

Whenever this definition is introduced to unfamiliar au-
diences, there are several questions that arise.

3There are a number of different definitions we can use depending on
the level of uniformity desired. We will choose the one of most relevance
to practical considerations.

(i) Question.That’s pretty weird. How can you have this
arbitraryf in the definition ofparametric feasibility
when it could be Ackermann’s function or worse?

Answer.When it was introduced, polynomial time as
a central paradigm for analyzing computational feasi-
bility was somewhat controversial. Edmonds makes a
special point of discussing this in [Ed65]. The reader
of course knows the usual criticisms: what about
ridiculously large exponents, what about ridiculously
large constants etc. The answer is kind of pragmatic.
First PTIME has very nice closure properties that make
it mathematically sound. Second, at least until the last
10 years, “real” problems that are in P have feasible
solutions, by and large.

We would argue that the same is true of our mathemat-
ical idealization, FPT. There are a number of truly ap-
plied FPT algorithms, and they are reasonable. How-
ever, there are also some general techniques which give
theoretical feasibility but for which there are no known
really feasible algorithms, nor proofs that no such al-
gorithms exist subject to any reasonable assumption
even.

(ii) Question.How do you know which parameter to use?
Is there a canonical choice?

Answer.Often there is no canonical parameter. Some-
times there is at least one obvious one. However, the
beauty is, as we will see, we can often look at the type
of data we are provided with and seek a parameter that
makes the problem tractable. It isgood that a prob-
lem can havemanyparameterizations. This is the idea
behind using this technique as a systematic way to ad-
dress feasibility.

3 Parametric Intractability

3.1 The basic class

Before we look at examples, and case studies, I would
like to mention the basic hardness classes since that is the
other key part of the theory. We know what the good is,
what is the bad?

The keystone for the theory of NP completeness is the
following:
NONDETERMINISTIC TURING MACHINE ACCEPTANCE

Input: A nondeterministic Turing MachineM and a num-
bere.
Question: DoesM have an accepting computation in�jM je steps?

Cook’s argument is that a Turing machine is such an
opaque object that it seems that there would be no way to
decide ifM accepts, without essentially trying the paths. If
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we accept this thesis, then we probably should accept that
the following problem is notO(jM j
) for any fixed
 and is
probably
(jM jk) since again our intuition would be that
all paths would need to be tried:
SHORT NONDETERMINISTIC TURING MACHINE ACCEP-
TANCE

Input: A nondeterministic Turing MachineM
Parameter:A numberk.
Question:DoesM have an accepting computation in� k
steps?

3.2 Reductions

Thus the idea would be to show that DOMINATING SET

is likely not FPT by demonstrating thatif we could solve
this in timeO(n
) by the slice, then we could have aO(n
)
for SHORT NONDETERMINISTIC TURING MACHINE AC-
CEPTANCE. To do this, we need reductions that work in
FPT time and take parameters to parameters. The principal
workingdefinition for this is that of a parametric connection
or transformation.

Definition 3.1. LetL;L0 be two parameterized languages.
We say thatL �fpt L0 iff there is an algorithmM , a com-
putable functionf and a constant
, such thatM : hG; ki 7! hG0; k0i;
so that
(i) M(hG; ki) runs in time� g(k)jGj
.
(ii) k0 � f(k):
(iii) hG; ki 2 L iff hG0; k0i 2 L0.

For simplicity, the reader can think ofk0 as f(k); for
some computablef . A simple example of a paramet-
ric reduction is fromk-CLIQUE to k-INDEPENDENTSET,
where the standard reduction is parametric (a situation not
common). The following is a consequence of Cai, Chen,
Downey and Fellows [CCDF96], and Downey and Fellows
[DF95b].

Theorem 3.2. The following are hard forSHORT NONDE-
TERMINISTIC TURING MACHINE ACCEPTANCE: INDE-
PENDENTSET, DOMINATING SET.

The proof is involved, and is omitted. The reader might
think that, as per the theory of NP completeness, that all
of these problems are reducible to one another. In fact we
can show that SHORT NONDETERMINISTIC TURING MA-
CHINE ACCEPTANCE�fpt INDEPENDENTSET. However,
we do not think that DOMINATING SET�fpt INDEPEN-
DENT SET.

Why might this be? The following might be instruc-
tive as an example of a distinctly non-parametric reduction.
Suppose we are given a boolean formulaF , in variables

x1 : : : ; xn. Then theweightof an assignment is the num-
ber of variables made true by the assignment. Consider the
following problem.
WEIGHTED CNF SAT

Input: A CNF formulaX .
Parameter:A numberk.
Question:DoesX have a true assignment of weightk?

Similarly, we can define WEIGHTED 3 CNF SAT where
the clauses have only 3 variables. Classically, using a
padding argument, we know that CNF SAT�Pm3 CNF SAT.
Recall that to do this for a clause of the formfq1; : : : ; qkg
we add extra variableszj and turn the clause into several as
per:fq1; q2; z1g, fz1; q3; z2g, etc.

Now this is definitelynot a parametric reduction from
WEIGHTED CNF SAT to WEIGHTED 3 CNF SAT because
a weightk assignment could go to any other weight assign-
ment for the corresponding clause 3 version.

In fact Downey and Fellows conjecture that there
is no reduction at all from WEIGHTED CNF SAT to
WEIGHTED 3 CNF SAT. We can prove that DOMINAT-
ING SET�fptWEIGHTED CNF SAT. Extending this rea-
soning further, we can view WEIGHTED CNF SAT as a
formula that is a product of sums. We can similarly de-
fine WEIGHTED t-POS SAT as the weighted satisfiability
problem for a formulaX in product of sums of product of
sums... witht alternations. And we can define WEIGHTED

SAT if we have no restriction on the formula. Downey
and Fellows [DF95a] called the collection of parameterized
languages fpt-equivalent to WEIGHTED 3 CNF SAT W [1℄,
the collection of languages fpt-equivalent to WEIGHTED

CNF SAT W [2℄, the collection of languages fpt-equivalent
to WEIGHTED t-POS SAT W [t℄, and the collection of lan-
guages fpt-equivalent to WEIGHTED SAT W [SAT ℄. There
are some other classesW [P ℄, the weighted circuit satisfia-
bility class, andXP which has as its defining problem the
class whosek-th slice is complete forDTIME(nk); this
being provably distinct from FPT and akin to exponential
time. This gave theW -hierarchy belowW [1℄ �W [2℄ �W [3℄ : : :W [SAT ℄ �W [P ℄ � XP:

Each of these classes contains concrete problems.
For instance,XP has k-CAT AND MOUSE GAME and
some other games ([DF99a]),W [P ℄ has LINEAR IN-
EQUALITIES, SHORT SATISFIABILITY , WEIGHTED CIR-
CUIT SATISFIABILITY ([ADF95]) and MINIMUM AX-
IOM SET([DFKHW94]). Then there are a number
of quite important problems from combinatorial pattern
matching which areW [t℄ hard for all t: LONGEST

COMMON SUBSEQUENCE (k = number of seqs.,j�j-
two parameters) ([BDFHW95]), FEASIBLE REGISTER

ASSIGNMENT, TRIANGULATING COLORED GRAPHS,
BANDWIDTH , PROPER INTERVAL GRAPH COMPLE-
TION ([BFH94]), DOMINO TREEWIDTH ([BE97]) and
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BOUNDED PERSISTENCEPATHWIDTH ([McC03]). Some
concrete problems complete forW [2℄ include WEIGHTEDf0; 1g INTEGER PROGRAMMING, DOMINATING SET

([DF95a]), TOURNAMENT DOMINATING SET ([DF95c])
UNIT LENGTH PRECEDENCECONSTRAINED SCHEDUL-
ING (hard) ([BF95]), SHORTEST COMMON SUPERSE-
QUENCE (k)(hard) ([FHK95]), MAXIMUM L IKELIHOOD

DECODING (hard), WEIGHT DISTRIBUTION IN L INEAR

CODES (hard), NEAREST VECTOR IN INTEGER LAT-
TICES(hard) ([DFVW99]), SHORT PERMUTATION GROUP

FACTORIZATION (hard). Finally complete forW [1℄ we
have a collection includingk-STEP DERIVATION FOR

CONTEXT SENSITIVE GRAMMARS, SHORT NTM COM-
PUTATION, SHORT POST CORRESPONDENCE, SQUARE

TILING ([CCDF96]), WEIGHTED q–CNF SATISFIABIL -
ITY ([DF95b]), VAPNIK–CHERVONENKIS DIMENSION

([DEF93]) LONGEST COMMON SUBSEQUENCE(k, m =
LENGTH OF COMMON SUBSEQ.) ([BDFW95]), CLIQUE,
INDEPENDENT SET ([DF95b]), and MONOTONE DATA

COMPLEXITY FOR RELATIONAL DATABASES ([DFT96]).
This list is definitely not complete, and new arenas of appli-
cation are being found all the time.

4 Some natural arenas of application

One thing that we did not expect when we began our
studies in this area was the applicability of the ideas to
many areas particularly as a common generalization of nat-
ural heuristics people were using anyway. Perhaps this is
why a number of groups working in algorithms and applied
computer science have taken up the ideas. I give a small
sample in the subsections to follow.

4.1 Databases

As we alluded to in the introduction, databases pro-
vide a very natural arena for the applications of the the-
ory. There have been some very attractive applications in
this area such as Downey, Fellows, Taylor [DFT96], Pa-
padimitriou and Yannakakis [PY97], and especially Grohe
[Gr01a, Gr01b, Gr02]. Readers especially interested in this
area are urged to read the entertaining introduction Grohe
[Gr02]. There Grohe gives an introduction to the area as “A
database theorist’s nightmare.”

Chandra and Merlin [CM77] introduced the study of the
complexity of query languages in the study of database the-
ory. Vardi [Va82] noted that what was important in the study
of relational databases was the complexity of the evaluation
of a query when the size of the query was fixed as a func-
tion of the size of the database, and since then this has been
seen as a relevant measure for the study of the complexity
of databases.

The point is that, again, the general problem of check-
ing that a relational database satisfies some formula in some
reasonable language is PSPACE complete. However, all of
the problems for a fixedsizeof input formula are again in
PTIME. Thus the standard kind of problem we might look
at would be of the form.
Input: A boolean query' and a database instanceI .
Parameter:Some parameter of', such as the size of'.
Problem:Evaluate' in I .

The first suggestion that parameterized complexity
would be a suitable way to address the issues in database
query evaluation was in Yannakakis [Ya95].

In [DFT96], and [PY97], it is shown that there are rela-
tively easy reductions to demonstrate even more bad news.
The problems areW [1℄ hard, and hence likely have no feasi-
ble algorithms. Papadimitriou and Yannakakis [PY97] sys-
tematically also looked at other parameters such as bound-
ing the number of variables following ideas of Vardi [Va95].
They looked at positive queries, conjunctive queries, first
order theories and datalog ones and found them to be allW [1℄ hard and at various levels of theW -hierarchy. Other
analyses look at other parametric aspects and give even
more bad news. (e.g. Demri, Laroussinie and Schnoebe-
len [DLS02].)

You might well ask now, with “good” news like this pro-
vided by parameterized complexity, what use is it? You
could argue that once we knew these problems were NP-
hard and likely PSPACE complete. Now we know that even
when you bound the obvious parameters then they arestill
hard!

One interpretation is that we should learn to live with this
by searching for new coping strategies.

The parametric point of view is to try to cope by finding
new, and maybe more appropriate parameters. This is the
point of view pursued by Grohe [Gr01a, Gr01b, Gr02]. In
the next section, we will look at various graph width met-
rics, and see that they can be used as a systematic way to
parametrically address intractability. TheGaifman graph
of a relational database is the graph whose vertices are the
elements of the active domain of the database instanceI ,
with an edge between the vertices if they lie on the same
row of some table forI . (More details can be found in the
references below.)

Theorem 4.1 (Frick and Grohe [FrG02], Flum and
Grohe [FG02a]). LetC be a class of relational database
instances such that underlying graph of instances inC
are any of the following forms: bounded degree, bounded
treewidth, bounded local treewidth, planar or have an ex-
cluded minor. Then the query evaluation problem for the
relational calculus onC is FPT.

The reader unfamiliar with the graph theoretical terms
above is referred to Section 4.2 for more details.
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Frick and Grohe [FrG02] have looked beyond relational
databases. For instance,XML-documents can be viewed
as colored trees, with the color representing theXML-tag.
It is also known that the core of standardXML query lan-
guages is contained in monadic second order logic. (See
Section 4.2 for details on monadic second order logic.)

Theorem 4.2 (attributed in [FrG02] to folklore). The
query evaluation problem for monadic second order logic
on the class of colored trees isFPT .

As we will see in Section 5, Theorem 4.2 has rather lim-
ited applicability. More on this later, when we see how para-
metric complexity connects to classical complexity.

Finally, as Grohe [Gr02] observed, there are also nice
known parametric results for temporal logics. Temporal
logics such as LTL and CTL� are used for specification
languages for automated verification. Gottlob and Koch
[GK02] have that the core of XPATH can be viewed as a
fragment of CTL�. The following algorithm is practical.

Theorem 4.3 (Lichtenstein and Pneuli [LP85], Emerson
and Lei [EL87]). The evaluation problems for LTL and
CTL� on the class of Kripke structures are FPT in timeO(2kn) wherek is the size of the query, andn is the size of
the input instance.

Given that the material has only been investigated by
only a few authors, and the area is definitely important, it
is clearly one that would merit further attention, particu-
larly how to make Theorem 4.1 practical. (But see Frick
and Grohe [FrG02] for parameter dependence as in Section
8.)

4.2 Graph width metrics

Anyone who has done any course in algorithms has seen
various algorithms for planar this and bounded degree, di-
mension, pathwidth, bandwidth, etc that. Clearly, what is
going on is some kind of quest to try to map the boundary
of intractability, and using some kind of regularity in the
data to get tractability.

Planarity is natural since a road map of a city is more
or less planar subject to a few exceptions. One could view
the number of exceptions as a parameter, or simply view the
every increasing genus as the relevant parameter. Similarly
degree. How does the running time vary for the problem at
hand as the degree varies.

Two sweeping generalizations of the notions of width
metrics are found through treewidth and local treewidth.
Treewidth is part of the change fromad hocgraph theory to
structural, topological graph theory which has revolution-
ized the area in the last decade or so. If you have not seen
this before here is the definition.
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Figure 1. Example of Tree Decomposition of
Width 2

Definition 4.4 (Robertson and Seymour [RS86a]). (a)
A tree-decompositionof a graphG = (V;E) is a
treeT together with a collection of subsetsTx (called
bags) of V labeled by the verticesx of T such that[x2T Tx = V and (i) and (ii) below hold:

(i) For every edgeuv of G there is somex such thatfu; vg � Tx.
(ii) (Interpolation Property) If y is a vertex on the
unique path inT fromx to z thenTx \ Tz � Ty.

(b) The width of a tree decomposition is the maximum
value ofjTxj � 1 taken over all the verticesx of the
treeT of the decomposition.

(c) The treewidth of a graphG is the minimum treewidth
of all tree decompositions ofG.

The point of the notion is that it is a measure of how tree-
like the graph is. One can similarly definepath decomposi-
tion where the treeT must be a path. A tree decomposition
provides a road map as to how to build a graph from small
pieces by gluing them together. Figure 1 gives an example
of a tree decomposition of width 2.

Authors often discovered that intractable problems be-
came tractable if the problems were restricted to say, “out-
erplanar” graphs. As we have seen, such restriction is not
purely an academic exercise since, in many practical situa-
tions, the graphs that arise do not in fact demonstrate the full
pathology of the class of all graphs. Families of graph that
have been studied which turn out to have bounded treewidth
include Almost Trees(k) (widthk+1), Bandwidthk (widthk), Cutwidthk (widthk), Planar of Radiusk (width3k), Se-
ries Parallel (width 2), Outerplanar (width 2), Halin (width
3) k-Outerplanar (width3k � 1), Chordal with Maximum
Clique Sizek (width k � 1), and many others.

There is now a large industry devoted to treewidth, and
it must be a basic tool now for someone working in algo-
rithms. The principal reason for this is that, using dynamic
programming, or automata, many problems which are oth-
erwise intractable become tractable when restricted to the
parameterized class of graphs of bounded treewidth. A high
level version of this phenomenon is the following.
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A standard version ofMonadic Second Orderlogic of
graphs is a two sorted logic with vertex variables, edge vari-
ables (denoted by lower case letters) and variables for sets
of vertices and sets of edges (upper case) with incidence
relationsv 2 V , v 2 e, and quantification over these vari-
ables. This is a powerful language, where many standard
properties of graphs such as Hamiltonicity etc are express-
ible. For instance,G is 3-colorable would be expressed as9V19V29V3(8v[^i 6=j(v 62 Vi _ v 62 Vj) ^ (_i2f1;2;3g(v 2Vi)℄^8e(8v1; v2(v1 6= v2^v1 2 e^v2 2 e! (^i 6=j(v1 62Vi _ v2 62 Vj)))):
Theorem 4.5 (Courcelle [Co87]).Suppose that' is any
sentence in monadic second order logic, andCk is the class
of graphs of bounded treewidthk. Then there is a linear
time algorithm deciding if a given graph inCk satisfies'.
That is, the problem is FPT.

Sometimes the application of this result is hidden. A re-
cent example is Grohe’s [Gr01c] proof thatk-CROSSING

NUMBER is quadratic FPT. This filters through proofs of
Robertson and Seymour [RS86b, RS95] which says that ei-
ther a graphG has bounded treewidth orG contains a big
grid as a topological minor. In fact this can be achieved
in linear time, by Bodlaender’s algorithm (Theorem 4.7 be-
low). Thus the proof runs as follows. Grohe proves that
there is a linear time algorithm that either gives a certificate
that the crossing number is too big, or find aflat embedding
of a big grid into the graph, or demonstrates that the graph
has low treewidth. If the graph has bounded treewidth, in
which case we can apply Courcelle’s theorem. If not, and
the crossing number is� k then Grohe argues that we can
not only find a grid but remove part of the grid and apply
the process recursively.

Interestingly, it is in some sense hard to find properties of
graphs that correspond to NP complete problems which are
not MSO. One example isBandwidthwhich isW [t℄-hard
for all t even for trees [BFH94]. Also in terms of MSO,
bounded treewidth is the boundary of tractability.

Theorem 4.6 (Seese [Se91]).Suppose thatC is any fam-
ily of graphs with adecidablemonadic second order (MS2)
theory. Then there is a numbern such that for allG 2 F ,
the treewidth ofG is less thann.

Finally treewdith is of interest to us also because its
recognition, despite being NP-complete, is FPT. The fol-
lowing is the best deterministic algorithm for treewdith, at
least theoretically, improving earlier work beginning with
Robertson and Seymour’s original algorithm.

Theorem 4.7 (Bodlaender [Bod93, Bod96]).There is a
linear time FPT algorithm deciding if a graph has treewidthk.

The algorithms and results above need to be taken with
a grain of salt, and we will take up this issue when we

look at implementations and heuristics in Section 6. The
notion of treewidth and the related notion of branchwidth
have been generalized to matroids by Geelen and Whittle
such as [GW03]. Here the idea is that a representable ma-
troid represented by[v1; : : : ; vn℄ is of low branch width if
the intersections of the subspaces generated by subsets of
the columns has relatively low dimension. That is we thing
of the dimension as being like the cardinality of a separa-
tion. Additionally, things like implementable algorithmsfor
matroids have been developed and things like Courcelle’s
theorem proven such as Hlineny [Hl02a, Hl03].

Frick and Grohe [FG02a] identified a property of graphs
like treewidth which makesfirst orderproperties tractable.
Thed-neighborhoodof a graph vertexv in a graphG is the
induced subgraph of distanced from v. We denote this bydG(v).
Definition 4.8 (Frick and Grohe [FrG02]). A class of
graphsC is said to have bounded local treewidth iff there
is a functionf such that for allG 2 C, and allv 2 G, and
all d, the treewidth ofdG(v) is bounded byf(d).

Classes of graphs with bounded local treewidth include
bounded genus (e.g. planar), bounded degree, and those that
exclude a minor. The following again generalizes a whole
suite ofad hocresults.

Theorem 4.9 (Frick and Grohe [FrG02]). If C is a class
of graphs of bounded local treewidth, and' is a first order
sentence, then for allk � 1, there is aO(n1+ 1k ) timeFPT
algorithm to decide' for members ofC.

An example of a NP complete property which is first or-
der when parameterized is INDEPENDENTSET.

4.3 Phylogeny

4.3.1 General Phylogenics

One area where the methods of practical parametric
complexity have penetrated to the extent they are re-
garded as relative mainstream is the area of combinato-
rial computational biology, particularly the area of phy-
logenic trees. I will look atone example, but there
are many, particularly from Hallett’s group at McGill,
Mike Steel’s work, and the group at ETH. This exam-
ple is drawn from recent material, concerning histori-
cal linguistics, presented by Tandy Warnow at the annual
NZMRI meeting in New Plymouth in New Zealand. (See
www.mcs.vuw.ac.nz/ m̃athmeet ). I thank Tandy and
Luay Nakhleh for making their slides available, since I think
that this material should be more widely advertised, partic-
ularly to groups such as this.

The underlying problem is similar to one encountered in
biology. ThePerfect Phylogeny Problemis to determine
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Figure 2. Perfect Phylogeny

whether a given setS � Zk of n “taxa” (classifications of
objects, which arecharactersin certain states) has a treeT
with the following properties:
(C1)T is leaf-labeled byS, and
(C2) Each internal nodev of T can be labeled by a vector
in Zk such that for everyi, 1 � i � k, and everyj 2 Z, the
set of allu 2 V (T ) such thatui = j induces a subtree ofT .

The treeT , if it exists, is called aperfect phylogeny(PP)
for S and the set of charactersC is said to becompatible.

Figure 2 below gives an example.
An example of taxa that give a yes instance would

be S = f(3; 2; 1); (1; 2; 2); (1; 1; 3); (2; 1; 1)g which are
compatible as leaves if you label in the given order.
The internal nodes would be labeled(1; 2; 1) above(3; 2; 1); (1; 2; 2) and(1; 1; 1) above(1; 1; 3); (2; 1; 1) with
the root labeled(1; 1; 1): On the other hand, the setT =f(0; 1); (0; 0); (1; 1); (1; 0)g has no compatible leaf order.
See Figures 2 and 3.

Recall that a graph is ischordalor triangulatedif it con-
tains no induced cycles of length four or more. The rele-
vance of this concept to our studies is the old fact thatEvery
triangulated graph is the intersection graph of subtrees of
a tree. In fact we are more interested in (properly) colored
graphs. A properly colored graphG = (V;E) with coloring
 : V ! Z can be
-triangulatedif there exists a chordal
graphG0 = (V;E0) whereE � E0 and
 is proper onG0.

We can associate a canonical graph with the taxa. Think
of each row as a taxon and each column as a character. Then
we define avertex for each state of each character. For ex-
amplefs1 = (3; 2; 1); s2 = (1; 2; 2); s3 = (1; 1; 3); s4 =(2; 1; 1)g has 3 characters the first having 3 states, the sec-
ond 2, and the third 3, giving a total of 8 states. One can
associate a set of taxa with each state. For instance, if�i;j
represents state i of character (column) j, then the set corre-
sponding to�1; 1 would befs2; s3g: The we form thechar-

s1
s2
s3
s4

3 2 1
1 2 2
1 1 3
2 1 1

‘‘YES’’ instance

can be c−triangulated c−triangulation

Figure 3. Using Bunemann’s Theorem

acter intersection graphby putting an edge between�i;j
and�i0;j0 if the corresponding sets have nonempty inter-
section. The relevance of this is the following fundamental
theorem.

Theorem 4.10 (Buneman’s Theorem).A set of characters
is compatible onn species iff the associated character state
intersection graphG can be
-triangulated.

See Figure 3 for a spirit of the proof. The PP and TRIAN-
GULATED COLORED GRAPH (TCG) problems are equiva-
lent and NP-Complete. (Kannan and Warnow [KW90] and
Steel [St92], also F. McMorris, T. Warnow, and T. Wimer
[McMWW93]). Additionally they are parametrically hard
by Bodlaender, Fellows and Hallett [BFH94].

The 2-character case of the perfect phylogeny problem
is solvable in polynomial time. For triangulating colored
graphs, McMorris, Warnow and Wimer [McMWW93] gave
anO((n +m(k � 2))k+1) algorithm, where the graph hasn vertices,m edges, andk colors. The corresponding algo-
rithm for PP runs inO(rk+1kk+1+nk2) time, wheren taxa
are defined byk characters each havingr states. It is impos-
sible to get rid of thek in the exponent by the W-hardness
result of Bodlaender, Fellows and Hallett [BFH94]. Nev-
ertheless, parametric results are possible, as are heuristics.
For perfect phylogeny, Gusfield gave anO(nk) algorithm
for r = 2, thebinarycharacter case, Dress and Steel devised
anO(nk2) algorithm forr � 3, Kannan and Warnow gave
anO(n2k) algorithm forr � 4. Agarwala and Fernandez-
Baca gave anO(23r(nk3 + k4)) algorithm for any fixedr, and finally Kannan and Warnow improved it and gave aO(22rnk2) algorithm. (References available on request.)

As we can see, this is just the tip of the iceberg. I have not
even mentioned other combinatorial problems related to, for
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instance, breakpoint phylogenies (see Blanchette, Bourque
and Sankoff [BBS97], Costeret al. [CJMRWWW00], B.
Moret et al. [MWBWY01], and Fellows [Fe03]), or com-
binatorial sequence alignment (see, e.g. Bodlaenderet al.
[BDFHW95]). An excellent recent “real” FPT analysis
for breakpoints can be found in Gramm and Niedermeier
[GN02]. There are myriads of natural parameters in com-
putational biology.

4.3.2 Applications to Historical Linguistics

We finish this section with a study in historical linguis-
tics which is work of Ringe, Nakhleh, Taylor and Warnow.
Some of this can be found in Nakhleh, Ringe, and Warnow
[NRW03] and Warnow, Ringe and Taylor [WRT95]. Phylo-
genies of languages have as their leaves living (and maybe
dead) languages such as English, German, French, etc. The
“holy grail” of this area is to attempt to figure out the evo-
lution of the languages, perhaps from an original source
“proto-Indo-European”. The language is represented, for
instance, as a huge vector of many words and characters.
The characters might be phonological (sound based), lexi-
cal (word based), or morphological (grammatical features).
Historical linguists have made huge catalogs of such data,
based on many techniques in the area. It is not important for
our purposes here, save to say that they also provide many
sanity checks for the results.

This study looks at the evolution of words through sound
changes. A key concept in this area is the notion of a cog-
nate class. Two wordsw1 andw2 are in the same cog-
nate class if they evolved from the same word through
sound changes. For example, French “champ” and Ital-
ian “champo” are both descendants of Latin “campus”: the
two words belong to the same cognate class whereas Span-
ish “mucho” and English “much” are not in the same cog-
nate class. Again a lot is known about this through the
work of historical linguists. Borrowing ideas from biol-
ogy, the Ringe-Warnow Model (1993) of language evolu-
tion has a phylogenic tree as its paradigm. The nodes of
the tree which contain elements of the same cognate class
should form a rooted connected subgraph of the true tree.
Hence the model is known as the CHARACTER COMPATI-
BILITY or another form of PERFECT PHYLOGENY. Ringe
and Warnow postulated that all properly encoded characters
for the Indo-European languages should be compatible on
the true tree, if such a tree existed, would be a perfect phy-
logeny.

The dataset consisted of 24 languages. (Anatolian: Hit-
tite (HI), Luvian (LU), Lycian (LY),Tocharian: Tocharian
A (TA), Tocharian B (TB),Celtic: Old Irish (OI), Welsh
(WE), Italic: Latin (LA), Oscan (OS), Umbrian (UM),Ger-
manic: Gothic (GO), Old Norse (ON), Old English (OE),
Old High German (OG),Albanian, Armenian, Greek, Indo-
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Figure 4. The Indo-European Tree

Iranian: Vedic Sanskrit (VE), Avestan (AV), Old Persian
(PE),Balto-Slavic: Old Church Slavonic (OC), Old Prus-
sian (PR), Lithuanian (LI), Latvian (LT)) The analysis used
22 phonological characters, 15 morphological characters,
and 333 lexical characters, and the total number of work-
ing characters was 390. The tree in Figure 4 was obtained
by heuristic methods for solving the MAXIMUM COMPAT-
IBILITY problem on the described data.

The problem is Germanic. With Germanic: 372 char-
acters are compatible on the tree and 18 are incompatible
Without Germanic: 384 characters are compatible on the
tree and 6 are incompatible. The conclusion was thatanal-
ysis of the IE dataset revealed that no perfect phylogeny for
that dataset existed. Thus, whilst the the basic approach
was good, new ideas were needed.Again we can look to-
wards biology for inspiration. We know so-called horizon-
tal gene transfer happen. This is even easier to see with lin-
guistics: Neighboring countries will affect each other and
continue to interact.

Nakhlehet al. [NRW03] suggest that the tree model be
replaced byPhylogenetic Networks. A phylogenetic net-
work on a setL of languages is a rooted directed graph, or
“digraph”,N = (V;E) with the following properties:V = L [ I , whereI denotes added nodes which represent
ancestral languages andE = ET [ EN , whereET are the
edges of the treeT = (V;ET ), whereL � V are the leaves
of T , andEN are the “non-tree” edges.
The edges inET are oriented from parent to child, and
henceT is a rooted directed tree.
The edges inEN are bidirectionalN is “weakly acyclic”,
i.e., ifN contains directed cycles, then those cycles contain
only edges inEN . (More details can be found in Nakhleh
et al. [NRW03].

Figure 5 is a simple Phylogenic Network. Naturally,
a phylogenetic network gives rise to a collection of trees
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Figure 6. The Indo-European Network

that represent the evolutionary histories of the various char-
acters. A character is compatible on a network N if it
is compatible on at least one of the trees induced by N.
Then is a short step to define PERFECTPHYLOGENIC NET-
WORK(PPN) in place of PP. We can test the compatibility of
a character
 on a treeT with n leaves inO(n) time, and
hence inO(n3B) on a network with B non-tree edges. The
idea is to useB as a parameter. There are a number of
results on the complexity of these analyses and the reader
should turn to the papers of Ringe, Warnow, Nakhleh etc,
for more on this topic. The authors use the heuristic Mini-
mum Increment to PPN (MIPPN) First they obtained a treeT on L (e.g., using Maximum Compatibility), then add a
minimum number of non-tree edges toT to obtain a PPN.
They showed a number of parametric complexity results,
including MIPPN is polynomial for a fixed number of non-
tree edges (O(k24Bn2B+1) whereB is the number of non-
tree edges,n = jLj, andk = jCj.).

Using this method, this particular story had a happy end-
ing. A relatively small value forB was all that was nec-
essary in the Indo-European case. Using this method, they
obtained the network represented by Figure 6.

There is clearly a lot of new applications available for
these ideas, and a lot of work still to be done.

4.4 Impractical, sometimes useful, but very at-
tractive

There are some methods available such ashashing(at
least hashing associated with color coding below), andmi-
norswhich are mathematically important, but are presently
wildly impractical, yet remain usefulsince they can be
used, often easily to quickly establish theoretical tractabil-
ity. We’ll look at hashing when we look at the randomized
version, calledcolor codinglater.

In a long series of difficult papers, collectively entitled
“Graph Minors,” almost all appearing inJournal of Com-
binatorial Theory B, Robertson and Seymour have revo-
lutionized graph theory towards topological graph theory.
Treewidth was but one by-product of their work. We say
that a partial ordering� on graphs is awell partial orderiff
given any infinite sequenceG1; G2; : : : of graphs, there is
somei < j such thatGi � Gj .

The partial ordering of relevance to us is theminororder
where we haveG �M H iff G can be gotten fromH by
edge deletions and contractions.

Theorem 4.11 (Robertson and Seymour).Finite graphs
are well partial ordered by the minor relation.

How can this be used algorithmically? Well, Robertson
and Seymour also proved that the minor relation�M is cu-
bic time FPT. Here we parameterize by fixing a graphG
as the parameter. For a fixedG, we ask isG �M H?.
For a fixedG, this question isO(jH j3): The constants are
astronomical with iterated stacks of powers of 2 in the ex-
ponent. There seems some evidence that this is necessary.
But the point is that this means thatanyminor closed class
has a theoretical cubic time recognition algorithm. For ex-
ample, consider the question of whether a graph has genusk? Clearly genusk graphs are closed under the minor re-
lation. This means that there are a finite number of graphs,
called anobstruction setG1; : : : ; Gd such thatH has genusk iff for all 1 � i � d, Gi 6�M H . (In the planar case
this is Kuratowski’s Theorem, and the graphs areK5 andK3;3.) Testing for genusk amounts tod minor tests, which
makes itO(jH j3): We remark that the algorithm has been
improved to linear time by Mohar [Mo99]. Fellows [Fe89]
has a survey of old applications of this type. Many recent
applications also apply to classes thatexclude a particular
graph, which has deep consequences. For instance, Robert-
son and Seymour [?, RS95] that excluding a planar graph,
or even a grid makes the class have bounded treewidth and
hence have a linear time recognition algorithm. We remark
that the Robertson Seymour methods are inherently non-
constructive since there is no algorithm to generate the ob-
struction set in general. But again this situation is akin to
that of regular languages where the data is presented in such
a way to be useful. Some progress has been done towards
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understanding what information is needed for such effec-
tive generation of the obstruction sets. See, for example,
[CDDFL00, CDF97].

5 Connections with Classical Complexity

5.1 PTAS’s

In the first section, we were introduced to some rather
impractical PTAS’s. They were from STOC, SODA etc.
They are in fact only a small sample of such. Here area
couple of others. The PTAS for the UNBOUNDED BATCH

SCHEDULING problem due to Deng, Feng, Zhang and
Zhu [DFZZ01] has a running time ofO(n5 log1+�(1+(1=�)))
which for a 20% error we have anO(n50) polynomial-time
algorithm. Wuet al. [WLBCRT98] gave aO(n2d 2� e�2)
PTAS for MINIMUM COST ROUTING SPANNING TREE

giving an algorithm running in timeO(n8) for a 20% error.
Similarly, the PTAS for TWO-VEHICLE SCHEDULING ON

A PATH due to Karuno and Nagamochi [KN01] has a run-
ning time ofO(n8(1+(2=�))); thusO(n88) for a 20% error.
Finally, the PTAS for the CLASS-CONSTRAINED PACKING

PROBLEM due to Shachnai and Tamir [ST00] has a running
time (for 3 colors) ofO(n64=�+(log(1=�)=�8)); thus for a 20%
error (for 3 colors) we have a running time ofO(n1021570).

As we have observed, the problem is mainly with the1�
in the exponent. We have the following.

Definition 5.1. An optimization problem� has anefficientP -time approximation scheme e(EPTAS) if it can be ap-
proximated to a goodness of(1 + �) of optimal in timef(k)n
 where
 is a constant t andk = 1=�.

Arora gave an EPTAS for the EUCLIDEAN TSP [Ar97],
but for all of the other PTAS’s mentioned above, the possi-
bility of such an improvement remains open.

But we have a strategy: Prove the problem isW [1℄-hard
parameterized byk = 1� and you prove that the problem has
no EPTAS, assuming thatW [1℄ 6= FPT:.

There are a number of nice case studies which support
the thesis that this methodology might well bear fruit. Many
can be gotten by applying a nice result connecting EPTAS
andW [1℄ first articulated by Bazgan:

Theorem 5.2 (Bazgan [Baz95], also Cai and Chen
[CC97]). Suppose that�opt is an optimization problem,
and that�param is the corresponding parameterized prob-
lem, where the parameter is the value of an optimal solu-
tion. Then�param is fixed-parameter tractable if�opt has
an EPTAS.

(There is also other nice related work by Cesati and Tre-
visan [CT97].) Here is one recent application of Bazgan’s
Theorem taken from Fellows, Cai, Juedes and Rosamond

[CFJR01]. In a well-known paper, Khanna and Motwani
introduced three planar logic problems towards an expla-
nation of PTAS-approximability. Their suggestion is that
“hidden planar structure” in the logic of an optimization
problem is what allows PTASs to be developed [KM96].
One of their core problems was the following.
PLANAR TMIN

Input: A collection of Boolean formulas in sum-of-products
form, with all literals positive, where the associated bipar-
tite graph is planar (this graph has a vertex for each formula
and a vertex for each variable, and an edge between two
such vertices if the variable occurs in the formula).
Output:A truth assignment of minimum weight (i.e., a min-
imum number of variables set totrue) that satisfies all the
formulas.

Theorem 5.3 (Fellows, Cai, Juedes and Rosamond
[CFJR01]). PLANAR TMIN is hard forW [1℄ and therefore
does not have an EPTAS unlessFPT =W [1℄.

The method of proof is to show that CLIQUE is parame-
terized reducible to PLANAR TMIN with the parameter be-
ing the weight of a truth assignment. Since CLIQUE is
W[1]-complete, it will follow that the parameterized form
of PLANAR TMIN is W[1]-hard. This is a relatively straight-
forward reduction, the details being found in [CFJR01] and
Fellows [Fe03]. Fellowset al. [CFJR01] also show that the
other two core problems of Khanna and Motwani [KM96]
are alsoW [1℄ hard and hence have no EPTAS’s. It seems to
us that there is a pretty major project waiting here to under-
stand when problems such as those in [ACGKMP99], can
have real EPTAS’s rather than just PTAS’s which have un-
realistic running times.

5.2 Other Connections

The reader might well ask whether one can see theW -hierarchy to say something else about classical notions
aside from PTAS’s. Parameterized complexity can also be
used to address the probablepractical intractability of other
problems which are likely not NP complete. One such ex-
ample was VAPNIK CHERVONENKIS DIMENSION which
was shown to be in the time class DTIME(nlogn) by Pa-
padimitriou and Yannakakis [PY93], and hence likely not
NP complete unless NP�DTIME(nlogn). another classic
example is UNIT LENGTH PRECEDENCECONSTRAINED

SCHEDULING which was shownW [1℄-hard in [BF95], and
whose unparameterized case is still OPEN. But this means
that the general case almost certainly not in P. One might
be able to apply this method to show important open prob-
lems are likely not in P such as GRAPH ISOMORPHISM, or
COMPOSITENUMBER by parameterizing (e.g.) the first by
valence or treewidth.

A final application of this sort was given by Alehknovich
and Razborov [AR01]. They were looking at proof systems
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studying the basic question of what can be achieved in a
give proof system. In particular the studied proof systemsP called in [BPR01]axiomatizablemeaning that there is a
deterministic algorithmA which, when give a tautology�
returns its shortest proof in time polynomial in the size of
the shortestP -proof of �: It is known that it is unlikely that
tree-like resolution can be proved not axiomatizable using
the assumption thatP 6= NP , because such a proof would
imply quasi-polynomial time algorithms forNP . Again
we want a complexity theoretical hypothesis sensitive to the
needs of PTIME.

Theorem 5.4 (Alekhnovich and Razborov [AR01]).Nei-
ther resolution not tree-like resolution is axiomatizableun-
lessW [P ℄ is randomized FPT by a randomized algorithm
with one-sided error.

Alekhnovich and Razborov remark that they were able
to use these techniques to relate approximate solution to
MONOTONE CIRCUIT SATISFIABILITY to an exact solu-
tion without going viaPCP .

The reader might also ask doesFPT = W [1℄ imply
anything classical? This was explored somewhat by Abra-
hamson, Downey, and Fellows [ADF95], and discussed in
[DF99a]. Here is a sample result. We define the class
SUBEXPTIME(f(n)) to be the set of languagesL for
which there is a polynomialp(n) such thatL is accepted
in DTIME(p(n)2g(n)) for some functiong in o(f(n)).
Theorem 5.5 (Abrahamson, Downey, Fellows [ADF95]).
Let NP [a℄ denoteNP where at mosta nondeterminis-
tic moves are allowed. ThenW [P ℄ = FPT iff for ev-
ery P -time functionf with f(n) � logn, there is a re-
cursive functionh such that for everyL 2 NP [f(n)℄h(L) computes machineM which witnesses thatL 2SUBEXPTIME(f(n)).

One idea introduced by (the somewhat flawed) Cai and
Juedes [CJ01] was to see what kinds of exponents FPT al-
gorithms might have. An illustration of this is the following
recent results.

Theorem 5.6 (Dehne, Fellows, and Rosamond [DFR03]).
There is aO(n4+2O(k)n2:5) algorithm forSET SPLITTING

parameterized by the number of sets to be split. However,
there can be no FPT algorithm running in time2o(k)n
 un-
less the satisfiability ofn variable 3SAT is solvable in time2o(n)

Another one is due to Cai and Jeudes (see their home-
page) for PLANAR DOMINATING SET matching the upper
bound of
pk from Alber et al. [ABFKN02]. There are
some other relationships, but we explore some of these in
the next sections.

Perhaps one of the most important paper concerning
lower bounds here is the somewhat neglected paper of Im-
pagliazzo, Paturi and Zane [IPZ01].

6 Implementations, Heuristics, and Reality

As we mentioned in the introduction, the methodol-
ogy of parametric complexity has found its home in the
heuristic and applied community to some extent. In a
short survey like this, we cannot hope to give more than
a sample like the Warnow material above, and really must
refer the reader to recent surveys aimed in this direc-
tion for more details. These would especially include
[Ra97, Nie98, DF99b, DFS99] and we’d strongly recom-
mend that the reader get a copy of Rolf Niedermeier’s Habi-
latationschrift called “An Invitation to Fixed-parameterAl-
gorithms.” There have also been a number of implementa-
tions and attempts at implementations of this material in-
cluding [KBFvH03, McC03, Fo03, St00, AGN01].

Later in this section we will address the implementabil-
ity of the general methods mentioned in earlier sections.
We begin by looking at the kinds of techniques that have
worked in practice. Generally, for exact algorithms, most
of the general methods such as treewidth, local treewidth
etc are currently useless; but more on this later.

Downey and Fellows (e.g. [DF99a]) pointed out two
simple methods of obtaining FPT algorithms that often
yield practical algorithms. One is called the method of
bounded search trees. The simplest example of this is ap-
plied tok-VERTEX COVER. Given a graphG then start at
any edgee = v1v2. Then any vertex cover must include one
of v1 or v2. Then begin a tree of depthk branching atv1 orv2, and at each branch consider the subgraph ofG not cov-
ered byvi; then repeat. This gives a simpleO(2kjGj) algo-
rithm. The other technique is very powerful and simple, and
is calledKernelization. Here is an example by Sam Buss
again fork-VERTEX COVER. TakeG. If G has a vertex of
degree> k it must be in anyk-vertex cover. Delete such a
vertex. Apply this to the resulting graph. If there are more
thank such high degree vertices then reject. Otherwise take
the small degree graph that results, and if it has more thank2
vertices reject since we can show that a large graph of only
small degree vertices cannot have ak-vertex cover. Finally
one could use complete search for thek2 vertices, or even
bounded search trees for the small kernel graph giving aO(n+2kk2) algorithm. (A better kernelization for VERTEX

COVER is given by a result of Nemhauser and Trotter (size
2k kernel)- see Chen, Kanj and Jia [CKJ01].). More intri-
cate versions of this method use repeated alternation of the
techniques, more complicated trees branching on higher de-
gree vertices etc. This is how the current “champion” algo-
rithm was found. This methodology is clearly applicable in
any number of applications. These include the work such as
[FMcRS01, KR00, AFN01, AFN02, AGN01, Ar00, BR99,
CJMRWWW00, CKJ01, CS97, PSta, EL87, GN00]. Even
for W [1℄ hard problems kernelization can be very powerful
in practice. See, for example, Weihe [Wei00].
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There are many others. One notable example is the one
we met earlier CHORDAL GRAPH COMPLETION. Give a
graphG can one add� k vertices to get a triangulated
graph. Yannakakis proved that the general problem is NP-
complete. Kaplan, Shamir and Tarjan [KST94] used Ker-
nelization to show that there is aO((k5jV jjEj + f(k)) al-
gorithm for suitably chosen computablef . Leizhen Cai
[LeC96] also used the Kernelization method to give aO((4k((k+1)�3=2)[jE(G)jjV (G)j+ jV (G)j2℄) algorithm.
Time might be appropriate to re-examine these for improve-
ments.

Actually in [LeC96], Cai studied a class of problems for
which this technique works in general. If� is a property
of graphs, we say that a property� is ahereditary property
is given any� graphG (i.e. graph satisfying�), if H is
an induced subgraph ofG thenH is a� graph. The liter-
ature is filled with manygraph modificationproblems. As
Leizhen Cai [LeC96] remarks, in general these problems
can be placed in the categories below.
1. Theedge deletion problem: Find a set of edges of mini-
mum cardinality whose removal results in a� graph.
2. Thevertex deletion problem: Find a set of vertices of
minimum cardinality whose removal results in a� graph.
3. Theedge/vertex deletion problem: 1. and 2. combined.
4. Theedge addition problem: find a set of new edges of
minimum cardinality whose addition results in a� graph.

It is known that 1, 2 and 3 areNP -hard for any nontrivial
hereditary property. In [LeC96], Leizhen Cai considered the
following general problem:�i;j;k GRAPH MODIFICATION PROBLEM.
Input : A graphG.
Parameters :Nonnegative integersi; j; k:
Question :Can we delete at mosti vertices,j edges, and
add at mostk edges and get a� graph?

We will say that a property� has a (finite)forbidden
set characterizationiff there exist a (finite) setF of graphs
such thatG is a� graph iffG does not contain a member
of F as an induced subgraph.

Clearly if F is a finite set of sizeN characterizing�
then there is a a more or less trivialO(jGji+2j+2k+N )-time
recognition algorithm for the�i;j;k GRAPH MODIFICA-
TION PROBLEM, for any fixedi; j; k. However, Cai used
essentially the problem kernel method to prove the follow-
ing.

Theorem 6.1 (Leizhen Cai [LeC96]). Suppose that� is
any property with a finite forbidden set characterization.
Then the�i;j;k GRAPH MODIFICATION PROBLEM isFPT
in timeO(N i+2j+2k jGjN+1) whereN denotes the maxi-
mum size of the vertex set of any graph in the forbidden setF .

We remark that the parameterized complexity of the bi-
partization problem (delete edges or vertices to make a

graph bipartite) is an extremely ‘important open problem
(see, e.g., [MR99]), with applications in computational bi-
ology.

Now we turn to issues of practicality of thegeneraltheo-
rems on tractability we have seen in previous sections. Let’s
begin with the methods based on treewidth.

There are two issues. Thefirst is running things like au-
tomata on tree decompositions to apply things like Cour-
celle’s Theorem. The good news is thatin practice this is
not too bad. But in theory it is very bad indeed. The general
setting is to look at model checking for monadic second or-
der logic: given aL-sentence and a classC seeing whether
the sentence holds in a given structure inC: Similarly for
first order logic.

Theorem 6.2 (Frick and Grohe [FrG02]). (i) If NP 6=P , then the model checking problem for finite trees (in fact
words) is not solvable in timef(k)p(n), wheren is the size
of the word andk the sentence, for any polynomialp and
elementarycomputable functionf .(ii) If W [1℄ 6= FPT , then the model checking for first order
logic on structures of degree 2 and bounded degreed � 3 is

not solvable in time22o(k)p(n) (degree 2) and222o(k) p(n)
for any polynomialp unless.

Thesecondissue ishowto get the tree decomposition in
the first place. Now one point if view is to look at graphs
that are naturally given to us with fairly small treewidth. For
instance, think of a train network in a country. It is surely
fairly treelike as it is given to you. The other point of view
concerns what can be done with graphs given in some more
or less random fashion and we want to apply something like
Bodlaender’s Theorem. Unfortunately, for a fixedk, Bod-
laender’s Theorem actually runs in timeO(232k2 jGj). Even
worse, the recursive structure of the algorithm means that
not only is it theoretically bad but it falls over for any at-
tempted implementation4 This has lead to some attempts
at heuristics for treewidth. One example of such compu-
tational experiments is in Fouhy [Fo03] and Kosteret al.
[KBFvH03]. For graphs of size less than 140 results seem
to be encouraging.

There are other natural candidates for possible general
techniques for FPT algorithms. One such is relevant toran-
domizedFPT algorithms. This is thecolor codingtechnique
of Alon, Yuster and Zwick [AYZ94]. To the author’s knowl-
edge this technique has not been implemented. Here is a

4There is an issue here. Algorithms can run in practice much faster
than they “should”. Sometimes the reason is the parametric nature, such
as the number of “lets” in some structured program. Sometimes there are
other reasons, a really nice example being Abdulla and Nylen’s methods
(e.g. [AN00]) using methods such as well-quasi-ordering and Better-quasi-
ordering theory to verify infinite-state systems. Such methodsshouldin-
volve constants like Ackermann’s function, and so give riseto running
times like the life of the universe, but work well in practice, running in
microseconds.
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brief description of how the method works. We will apply
the problem tok-PATH which seeks to find a (simple) path
of k vertices inG. What we do is torandomlycolor the
whole graph withk colors, and look for acolorful solution,
namely one withk vertices of one of each color.

The two keys to this idea are
(i) we can check for colorful paths quickly.
(ii) if there is a simple path then the probability that it will
havek colors for a random coloring isk!kk which is bounded
by e�k:

Then, given (i) and (ii), we only need repeat process
enough to fast probabilistic algorithm. We prove (i) by us-
ing dynamic programming: simply add a vertexv0 with
color 0, connect to those of color 1, then generate the color-
ful paths of lengthi starting fromv0 inductively, rather like
Dijkstra’s algorithm, the running time beingO(k2kjEj).
Theorem 6.3 (Alon, Yuster and Zwick [AYZ94]). k-
PATH can be solved in expected time2O(k)jEj:

Alon, Yuster and Zwick demonstrated that this technique
could be applied to a number of problems of the form asking
“is G0 a subgraph ofG?” Note that the method does not al-
low for things likek-CLIQUE to be shown randomized FPT
because (i) abovefails. The important part of the dynamic
programming method was that a path was represented by
its beginningv0 and some vertexvi, and to extend the path
only neededlocal knowledge; namely the colors used so far
andvi. This fails for CLIQUE, and would need

�ni� at stepi
in the clique case.

Color coding would also seem to have a lot of unex-
plored uses, perhaps in relation to randomized treewidth
algorithms. I think there is huge potential here. Certainly
there is no general theory of randomized FPT, and this waits
for development.

Finally we should mention that we can get at least the-
oretical FPT algorithms by derandomizing color coding al-
gorithms. Ak-perfect family of hash functionsis a fam-
ily F of functions (colorings) taking[n℄ = f1; : : : ng onto[k℄, such that for allS � [n℄ of sizek there is af 2 F
whose restriction to is bijective (colorful). It is known thatk-perfect families of2O(k) logn linear time hash functions.
This gives a deterministic2O(k)jEj log jV j algorithm fork-
PATH . More such applications can be found in Downey and
Fellows [DF99a]. TheO(k) in the exponent hides evil, and
the derandomization method at present seems far from prac-
tical.

One final technique we have not discussed in [DF99a],
is the use of INTEGERPROGRAMMING in the design of FP
algorithms. This is discussed in Niedermeier [Nie02].

Theorem 6.4 (Lenstra [Le83]). The integer programming
feasibility problem can be solved withO(p 9p2 L) arithmeti-
cal operations inZ of O(p2pL) bits in size, wherep is the
number of variables, andL the number of bits of the input.

Niedermeier [Nie02] gave one example of the use of this
method for establishing parametric tractability. He showed
that the following problem is FPT.
CLOSESTSTRING (parameterized by the number of strings
and length)
Input: k stringss1; : : : sk over an alphabet� each having
lengthL, and a nonnegative integerd.
Parameter:k; L; d.
Question:is there a strings of distance� d from si for alli?

We remark that the method’s practicality is far from ex-
plored. We also refer the reader to Gramm, Niedermeier
and Rossmanith [GNR01].

7 Other areas of application

There are a host of new arenas of applications of these
ideas waiting. Here is one :Online Algorithms. An on-
line structure such as a graph is given vertex by vertex,fv1; v2; : : : g so that whenvi is given we are told thevj
for j < i incident withvi. There are many variations, but
an online algorithm for a graph property�, takes the online
presentation of the graph and produces a�-set in stepi for
vertexi, so that the algorithm is a suitably chosen functionf acting on vertices presented one at a time. For instance,
online coloring must color the graph vertex by vertex. Thus
we must color the object quickly with only local informa-
tion. This is an important area of algorithmics and is a really
good candiate for parametric analysis.

The point here is that in an online algorithm, we cannot
wait till we see the whole structure to assign a color. For ex-
ample, it is easy to show that there is an online presentation
of ak-colorable graph such that any online algorithm needs
(2k) colors. Indeed there is a family of planar graphs
needing arbitarily large numbers of colors to color online.
The online community is very concerned with scheduling,
etc, and look at what is calledperformance ratioswhere
we look at the non-online value vs the online one. One of
the basic online algorithms isfirst fit which greedily assigns
colors as best it can.

We are interested in how presentations might affect the
performance of online algorithms. Irani [Ir94] looked at
what are calledk-inductivegraphs.G = (V;E) is k in-
ductive iff there issomeorderingv1; v2; : : : of the vertices
such thatjfvj : j > i ^ vivj 2 Egj � k. For instance, any
planar graph has a vertex of degree 5, and hence all planar
graphs are 5-inductive. Similarly any bounded degree graph
is d-inductive for somed. It is a nice exercise to show that
any graph of bounded treewidth isd-inductive for somed.

Theorem 7.1 (Irani [Ir94]). First fit online colors any on-
line presentation of ad-inductive graph in at mostd logn
colors. This bound is sharp.
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The notion ofk-inductive is interesting in its own right.
It might well have parametric applications elsewhere. For
instance, Martin Grohe asks if the work on first order model
checking can be extended tok-inductive graphs. What
about online model checking etc? It would seem rather
fruitful to pursure this area with an eye towards topological
graph theory. Downey, Fouhy and McCartin [DFMcC03]
have some recent work on this, and especially looking at
how the presentation of the data affects the performance of
the algorithms. For instance a pathwidthk graph presented
by its path decomposition can be online colored withk + 1
colors. However, this bound fails if the graphs is presented
in some random fashion. If a graph of pathwidthk is pre-
sented in any fashion it can still be colored by3k+1 colors
by some online algorithm and by 25.72(k+1) colors using
first-fit. (Kierstead and Qin see [KQ95]). Slusarek [Sl93]
has proven a 4.4(k+1) lower bound for first-fit. Computa-
tional experiments suggest that2k + 2 is a typical bound
which we would expect. There seems little work concern-
ing the effect of differing types of presentations.

Another more or less unexplored isnk crypto using rea-
sonable “no-ftp” security guarantees. While the cryptosys-
tems might be in PTIME,W [1℄ 6= FPT would be a reason-
able working guarantee. The only work I am aware of here
is Fellows and Koblitz [FK93].

8 Structural Issues

Aside from understanding the issues relating paramet-
ric complexity with classical complexity there are many
poorly understood aspects of parametric complexity, wait-
ing for eager graduate students. We can easily form analogs
of many of the classical complexity notions. For instance,
Flum and Grohe [FG02a], and Cai, Chen, Downey, and Fel-
lows [CCDF96] have looked at parameterized LOGSPACE,
where VERTEX COVER turns out to be in parameterized
LOGSPACE, and as Flum and Grohe observed a wide class
of problems for graphs of bounded degree also belong to
this class. Another area looked at is parametric counting
by Flum and Grohe [FG02b], Arvind [Ar00], and McCartin
[McC02], who looked at#W [t℄ for instance, proving basic
results. For instance, as Ventakesh Raman observed count-
ing k-vertex covers is FPT. Similarly, counting in bounded
treewidth is also FPT. Grohe showed that the the parame-
terized problem of countingk-cycles in a graph is#W [1℄
complete, an analog of Valiant’s Theorem. The methods
are quite different. Abrahamson, Downey, and Fellows
[ADF95], and Chen, Flum and Grohe [CFG03, FG02a]
have also looked at alternation, with two distinct hierarchies
theA[t℄ hierarchy and theAW [t℄ hierarchy.

Lots of analog questions are wide open. What about
a PCP theorem? What about Toda’s Theorem? Can the
switching lemma be applied? What about parameterized

average case complexity?
The basic parameterized theory itself generates struc-

tural questions of independent interest. For instance, it is
conjectured thatW [t℄ 6= W [t + 1℄, but it is not known
if e.g. W [1℄ = FPT implies anything about the rest
of theW -hierarchy. Oracle results have been explored in
[DF93, DF99a], but they are somewhat unsatisfactory. Even
an analog of Ladner’s theorem (that the polynomial time
degrees are dense, or that there are intermediate problems
if P 6= NP ) is not fully answered (see [DF99a]). The
parameterized reducibilities are much more complex than
the standard ones. There are a lot of questions like “does
BANDWIDTH 2W [1℄ imply anything?”

One recent interesting development has been to chal-
lenge the classW [1℄ as the basic “infeasible” class. In
Downeyet al. [DEFPR03], the authors introduced a new
idea. That is they asked that we parameterize the size of the
input, rather than the aspect of the output we are interested
in. This forms what they call the “mini-classes”. For ex-
ample MINI -VERTEX COVER is the problem that takes as
input a graph of sizek logn, and asks what is the minimum
vertex cover of the graph. The basic hardness kernel is the
problem MINI -CIRCUIT SATISFIABILITY . The gives a new
intermediate classFPT �M [1℄ �W [1℄:
The mini-classes includeMini-Vertex Cover, M INI -
DOMINATING SET, M INI -3SAT, M INI -SET SPLITTING,
M INI -NOT ALL EQUAL 3SAT, M INI -INDEPENDENTSET,
etc. The beauty of the mini-classes is that the reductions
look more like “regular” ones, provided that they preservek log’s. The non-optimization theorem, Theorem 5.6, for
SET COVER of Dehne, Fellows and Rosamond follows
from material related to this.

Theorem 8.1 (Downey, Estivill-Castro, Fellows, Pri-
eto-Rodriguez and Rosamond [DEFPR03]).FPT =M [1℄ iff n-variable3SAT can be solved in time2o(n):

The method of proof was inspired by Cai and Juedes
[CJ01]. Can the hierarchy be extended? Where does MINI -
TURING MACHINE ACCEPTANCEfall in all of this? There
are many questions of this form. A final result of this ilk is
the following.

Theorem 8.2 (Chor, Fellows, Juedes [Fe]).If FPT =M [1℄ thenk-INDEPENDENTSET andk-DOMINATING SET

are inDTIME(2o(k)):
One could well viewW [1℄ hardness as simply meaning

that some form ofk must stay in the exponent, and does
not rule outnk log log n or something. These last results say
something like if you believe then variable SAT not in2o(n)
thenW [1℄ hardness is serious bad news. By the way, we
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don’t have much evidence thatM [1℄ 6=W [1℄, but any proof
would need something clever. One can show thatM [1℄ =W [1℄ iff the parameterized problem asking if a graph has
vertex cover of sizedk logn isW [1℄ hard.
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