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Abstract traditional STOC/FOCS/STACS/CCC mould that this the-
ory might offer some hope towards resolving, since it has
The goal of this article is to provide a tourist guide, with proven useful in such circumstances before.
an eye towards structural issues, to what | consider some of A lot of effort has gone into trying to combat intractabil-
the major highlights of parameterized complexity. ity. As per Garey and Johnson [GJ79], polynomial time
approximation schemes (PTAS’s) are one of the main tradi-
tional methods. Many ingenious polynomial time approxi-
1 Introduction mation schemes have been invented for this reason. Often
the wonderful PCP theorem of Aroet al. [ALMSS92]
L . shows that no such approximation exists. But sometimes
Anyone working in the area of parameterized complex- they do. Let's look at some recent examples, taken from

ity gets rather schizophrenicWe submit papers that get some recent major conferences such as STOC, FOCS and
reviews saying that parameterized complexity is now well SODA, etc.

known so why are you including this introductory stuff, to

the other extreme where reviewers say that they have neverT » Arora [Ar96] gave aO(

heard aboutit. . e Chekuri and Khanna [CK0O] gave @(n'2(10s(1/6)/<))
It is fair to say that the groups that have picked up the PTAS for MULTIPLE K NAPSACK

material the best are those in rather applied areas where L

it is perceived as a method of systematic algorithm de- ® Shamir and Tsur [ST98] gave @(n” ~")) PTAS for

sign : in computational biology, linguistics and the like. MAXIMUM SUBFOREST oy

It is also why we have seen a number of recent surveys® Chenand Miranda [CM99] gave@(n*™™) ") PTAS

aimed at the heuristic/applied computing community, such for GENERAL MULTIPROCESSORJOB SCHEDULING

as [Ra97, Nie98, DF99b, DFS99, AGNOL, Gr02]. On the * Erlebachet al. [EJSO01] gave a0(n ™ (F+1) (= +2)%)

other hand the area has a lot of manageable and importanP TAS for MAXIMUM INDEPENDENT SET for geometric

problems of great significance to the COMPLEXITY com- graphs.
munity, and this is perhaps not widely known. Table 1 below calculates some running times for these

PTAS'’s with a 20% error.

<) PTAS for EUCLIDEAN

|>—-

1.1 Introduction for the Totally Dubious or

“what's in this for me?” Reference| Running Time for a

20% Error
_ , Arora [Ar96] O(nt°000)
You are someone who is barely aware of t_h|s theory, and Chekuri and Khanna [CKOO O (n?-375000)
perhaps even slightly hostile, believing that it does nat ad Shamir and Tsur [ST98 O (n 75267 397
dress any of the central concerns of traditional complexity _ ' 5o
Thus | wish to being pointing out a classical problem in the Chen and Miranda [CM99 >0n ™)
(4 Processors
*Partially supported by the Marsden Fund of New Zealand. Ksam Erlebachet al. [EJSOl] O(n523,804)

Mike Fellows for helpful comment. Thanks also to Martin Geplrolf

Niedermeier, and Detlef Seese who supplied correctiomallizithanks to . .
Tandy Warnow and Luay Nakhleh for allowing me access to thiaes Table 1. The Running Times for Some Recent

from which | based Section 4.3.2. PTAS's with 20% Error.
1Some of us are already known as manic.



Now, by anyone’s measure, a running timend°-°% is time re-tooling. Perhaps you are mainly concerned with the
bad and?:000-900 js even worse. The optimist would argue deepest questions of complexity theory:
that these examples are important in that they prove thate will you find a decent thesis topic?
PTAS’s exist, and are but a first foray. The optimist would e will you get tenure?
also argue that with more effort and better combinatorics, e how can you renew your grant? etc
we will be able to come up with somelog n PTAS for the Whilst | certainly don’t expect a mass migration into the
problems. For example, Arora [Ar97] also came up with area, my plan is to try to convince you that parameterized
another PTAS for ECLIDEAN TSP, but this time it was  complexity at least can do the following.
nearly linear and practical. (i) It can provide a very useful paradigm in algorithm de-
But this situation is akin to P vs NP. Why not argue that sign, particularly in practical applications of theoratic
some exponential algorithm is but a first one and with more computer science.
effort and better combinatorics we will find a feasible algo- (ii) It is an exceptionally applicable tool for systematiga
rithm for SATISFIABILITY . What if a lot of effort is spent  confronting computational intractability, and is one tigat
in trying to find a practical PTAS’s without success? As rather more easily applied and analyzed than many of the
with P vs NP what is desired, is either afficientPTAS current coping strategies. In particular, it allows for an e
(EPTAS), or a proof that no such PTAS exists. A primary tended dialog with the problem systematically searchimg fo
use of NP completeness is to give compelling evidence thattractability.
many problems are unlikely to have better than exponen-(jii) It focuses our attention ohowthe data is presented to
tial algorithms generated by complete search. The troubleus, andwhat kindsof data will berelevant to instances of
is, these examples are in polynomial time. Lower bounds the problem that we are actually interested in.
are hard to come by there. Here’'s where you might make (iv) It is absolutely still in its infancy with a host of imper
parameterized complexity your friend. Parameterized com-tant open questions some of which might even be solvable,
plexity will allow you in certain circumstances to show that as distinct from many issues in structural complexity.
the polynomial time algorithm with the horrible exponent (v) It can provide very significant insight into things class
probably has néeasiblealgorithm. cal. Thus, even if you are a skeptic and are perhaps wedded
If the reader studies the examples above, they will realizeto PCP, approximability, etc, then | would like to convince
that a source of the appalling running times is thim the you that parametric complexity could add to your tool kit in
exponent. One method that has worked in such examples is very useful way.
to parameterize the problem by takihg= % astherelevant  (vi) It is not actually that hard, nor that foreign, once you
parameter. As will be shown in Section 5.1, if the underly- have a little paradigm shift.
ing assumption of parameterized complexity is correct, a (vii) It can provide an almost limitless supply of thesis top
kind of miniaturized Cook’s theorem, it is often possible to ics.
provethat the]; cannot be removed and hence no EPTAS
exists.In the same way that the underlying assumption for 1 3 \what is parameterized complexity, and what
NP # P is that there is no way to efficiently decide if motivates it?
a nondeterministic Turing Machine accepts on some path,
the underlying assumption in parametric complexity is that
there is no way to decide if a nondeterministic Turing ma-
chine acceptin < k stepssave than by essentially trying
them. We will look at this in section 3.
We will also point out a number of other interesting con-
nections with classical complexity classes that might wel
be of use to yoti

Anybody working in software engineering will know
that it is important to design tools specific to the type of
problem at hand. Suppose that you are concerned with re-
lational databases. Typically the database is huge, and the
| queries are relatively small. Moreover, “real life” querie

are queriepeopleactually ask. Hence, such queries tend
to be also of low logical complexity. Thmain ideaof pa-
. i rameterized complexity is to design a paradigm that will ad-
1.2 Introduction for the somewhat less dubious dress complexity issues in the situation where we know in
advance that certain parameters will be likely bounded and

You are a classically trained complexity theorist, and this might significantly affect the complexity. Thus in the
pretty skeptical about the whole thing: here’s yet another database example, an algorithm that works very efficiently
article with an introduction saying that the authors have for small formulas with low logical depth might well be per-
invented fire. You are not at all keen on spending a long fectly acceptable in practice.

2For instance, under a parametric assumption a little wethlear the Thu_s, paramete”ZEd F:omplexﬂy ISa reTInEd Complexny
one above, (see Section 8) one can show MAEBIDEPENDENTSET, and analysis, driven by the idea that in real life data is often
k-DOMINATING SET cannot be solved iDT 7 M E(20(%)). given to us naturally with an underlying structure which we




might profitably exploit. The idea is not to replace PTIME n = 50 n = 100 n = 150
as theunderlyingparadigm of feasibility, but to provide a k=2 625 2,500 5,625
set of tools that refine this concept, allowing some expo-| k=3 15,625 125,000 421,875
nential aspect in the running times by allowing us eitherto| k=15 390,625 | 6,250,000| 31,640,625
use the given structure of the input to arrive at feasibility | k=10 | 1.9 x 10" | 9.8 x 10" | 3.7 x 10'6
or to show that the kind of structure is not useful for this | £ =20 | 1.8 x 102 | 9.5 x 10°T | 2.1 x 10°°

approach. For example, in the PTAS’s above, all the algo-
rithms are living in PTIME. It is how they live there that
counts.

This simple idea is pretty obvious once you think about
it. For example, when we teach a first course in automata

theory we show the students that regular language accep- )
tance is in linear time. But this is really not quite true:sit i g;csilgzﬁii;zzsﬁ] i;zrzorgigf\]tﬁnl;ﬁﬁg\]o;gf lzi)e;r?tl)il-(el
only trueif the language is presented to us as, say, a regu—i tractable y ' y
lar expression, whereas it could be a language presented ad ' . - .

Now we are analyzing data arising as, for instance, the

the output of a Turing machine, in which case acceptanceconﬂict raph of some problem in, say, computational biol-
is undecidableThe pointis that we only really care about ay Begcat?se of the ngture of th’e dZ\’ta wepknow that it is
regular languages when they are given to us in a structured. >”" .

9 guag y g ikely the conflicts are at most about 50 or so, but the data

way, namely via regular expressions. ; . : S
. . : . . set is large, mayb&0® points. We wish to eliminate the
Parameteriz mplexit ms widel licable in X " e .
arameterized complexity seems widely applicable conflicts, by identifying those 50 or fewer points. Let's ex-

th algorithm ign and, wi lieve, it gives insight int . . . .
both algo desg a .d'. e be CVe, It gIVes Insig ° amine the problem depending on whether the identification
structural complexity. This is a subject close to the aushor A

turns out to be a dominating set problem or a vertex cover

heart. Sadly, however, there remain groups for whom theproblem. (The role of\DEPENDENTSET comes later.)

main ideas are still unknown. . .
Complexity theory evolved as a theory attempting to un- DOMINATING SET. Essentially the only known algorithm
for this problemis to try all possibilities. Since we arelteo

derstand the resources needed for computational problems. : : .
| would argue that parameterized complexity can be a more"J at 2”&56& Of Siz&l) or Igss then we wil n.ee.d to examine
suitable complexity theory for addressing the computation gll (10 )'bl many possibilities. Of course this is completely
concerns arising from a number of important areas of com-'\r/npOSSI é' Therei lqorith ingin i
putational problems. The main idea of parameterized com-OERTEXk OVER7NEre IS now an algorithm running in time
plexity is that problems often come given with parameters to (1.286 + kn) (.[CK‘]01].) for determllnlng if artz has a .
exploit, implicit or explicit underlying structure. Databe vertex clover of S'chl.' Th';’ h_as be%r: |mplementec(ij and is
theory is one such area. Computational biology is full of pé?ggcgrjgfr%lof unlimited size and: up to around 400
similar parameters to exploit. As we will see in section 2, [ ’ ]

there are also many situation witiddenparameters to ex- . Th? ISsue in a nutshell, the manner bY Wh'Ch .the run-
ploit. ning time for a fixed: depends on thé. Critically, is & in

the exponent of the size of the problem, or independent from
that? Consider the situation of a running time @fn*) vs
2kn, as exhibited by Table 2 taken from Downey and Fel-
lows [DF99a].

In this section, | will look at our standard examples, and  In classical complexity a decision problem is specified
in the next section, we look at a couple of case studies drawnby two items of information:
from the literature. When Mike Fellows and | were formu- (1) The input to the problem.
lating this theory, we were really driven by our attempts (2) The question to be answered.
to understand three examples:ERTEX COVER, DoOMI- In parameterized complexity there are three parts of a
NATING SET,INDEPENDENTSET. The reader should recall problem specification:
that for a graph? a vertex cover is where vertices cover (1) The input to the problem.
edges: thati" = {v1,...,v} is a vertex cover iff for ~ (2) The aspects of the input that constitute the parameter.
eache € E(G), there is av; € C such thaw; € e. They (3) The question.
should recall that a dominating set is where vertices cover Thusone parameterized version of BRTEX COVER is
vertices: D = {wy,...,u;} is a dominating set iff for all  the following:
v € V(QG), eitherv € D or thereis are € E(G) suchthat ~ VERTEX COVER
e = (v;,v) for somewv; € D. Finally an independent set Instance: A graphG = (V, E).
is a collection of vertices no pair of which are connected. Parameter:A positive integerk.

Table 2. The Ratio “2% for Various Values of
n and k.

2 The Main Idea



Question: DoesG have a vertex cover of sizé k? (i) Question.That's pretty weird. How can you have this
One new aspect of the parametric approach for someone  arbitrary f in the definition ofparametric feasibility
thinking in classical terms is that the objects under discus when it could be Ackermann’s function or worse?
sion are “two dimensional”. Normally we would think of in-
stances of the problems as being divided in increasing size.
Now the idea is that we keep this on the horizontal axis,
but we explicitly have the second coordinate, as coordina-
tizing the problem on the vertical axis. Each row might be
in some class like PTIME, but the question is, how?. In the
illustrative examples, as we go from sligéeto slicek + 1
we remain in linear time for ¥RTEX COVER, with only
the constant varying, and move frddin*) to Q(n**1) for
DOMINATING SET.
A formal working definitiorf runs along the following

Answer. When it was introduced, polynomial time as
a central paradigm for analyzing computational feasi-
bility was somewhat controversial. Edmonds makes a
special point of discussing this in [Ed65]. The reader
of course knows the usual criticisms: what about
ridiculously large exponents, what about ridiculously
large constants etc. The answer is kind of pragmatic.
First PTIME has very nice closure properties that make
it mathematically sound. Second, at least until the last
10 years, “real” problems that are in P have feasible
solutions, by and large.

“nis.parameterized language L C X* x %* where we We would argue that the same is true of our mathemat-
refer to the second coordinate as fregameter.It does no ical idealization, FPT. There are a number of truly ap-
harm to think off, C 3* x N. plied FPT algorithms, and they are reasonable. How-
N ever, there are also some general techniques which give
Definition 2.1. A parameterized languagg is (strongly) theoretical feasibility but for which there are no known
fixed parameter tractablg” PT), iff there is a computable really feasible algorithms, nor proofs that no such al-
functionf, a constant, and a (deterministic) algorithm/ gorithms exist subject to any reasonable assumption
such that for allz, &, even.
(z,k) € Liff M(x,k) accepts (ii) Question.How do you know which parameter to use?

Is there a canonical choice?

and the running time af/ (z, k) is < f(k)|z|". Answer.Often there is no canonical parameter. Some-

The thing to keep in mind is that an FPT language iBin times there is at least one obvious one. However, the
“by the slice”,and more eachk-slice is in thesamepoly- beauty is, as we will see, we can often look at the type
nomial time class via theamemachine. Flum and Grohe of data we are provided with and seek a parameter that
built on the advice view of Cai, Chen, Downey and Fellows makes the problem tractable. Itgwodthat a prob-
[CCDF97], to formalize this intuition by recasting this def lem can havenanyparameterizations. This is the idea
inition as follows: LetL; denote thek-th slice of I and behind using this technique as a systematic way to ad-
L§c>m) denote{(x, k) : |z| > m}, the part ofL; from m dress feasibility.

onwards. Then Flum and Grohe [FG02a] observed that

is FPT iff there is an algorithm/, a constant, and acom- 3 Parametric Intractability
putable functiory such that\ witnesses that

3.1 The basic class

L") ¢ DTIME(n°).
Before we look at examples, and case studies, | would

The illustrative example is our parameterizedRfEX . . . X .
P P like to mention the basic hardness classes since that is the

CovERwhere
other key part of the theory. We know what the good is,
k — VERTEX COVER € DTIM E(n), what is the bad?
The keystone for the theory of NP completeness is the
from some point onwards with(k) about2*. following:

Naturally we can do this with other classical notions NONDETERMINISTIC TURING MACHINE ACCEPTANCE
such as eventually LOGSPACE by the slice. See [CCDF97,Input: A nondeterministic Turing Maching/ and a num-

FGO02a], and Section 8. bere.
Whenever this definition is introduced to unfamiliar au- Question: Does M have an accepting computation
diences, there are several questions that arise. |M|¢ steps?

3There are a number of different definitions we can use depgrati Cook's z_;\rgumen'F is that a Turing machine is such an
the level of uniformity desired. We will choose the one of tadevance Opaque object that it seems that th.ere W01U|d be no way to
to practical considerations. decide if M accepts, without essentially trying the paths. If



we accept this thesis, then we probably should accept thatz; . .

the following problem is no© (| M |¢) for any fixedc and is
probablyQ(|M|*) since again our intuition would be that
all paths would need to be tried:

SHORT NONDETERMINISTIC TURING MACHINE ACCEP
TANCE

Input: A nondeterministic Turing Maching/

Parameter:A numberk.

Question:DoesM have an accepting computation<h &
steps?

3.2 Reductions

Thus the idea would be to show thaDMINATING SET
is likely not FPT by demonstrating thétwe could solve
this in timeO(n°) by the slice, then we could have&Hn°)
for SHORT NONDETERMINISTIC TURING MACHINE AC-
CEPTANCE To do this, we need reductions that work in

.,x,. Then theweightof an assignment is the num-
ber of variables made true by the assignment. Consider the
following problem.
WEIGHTED CNF SAT
Input: A CNF formula.X .
Parameter:A numberk.
Question:DoesX have a true assignment of weigit
Similarly, we can define WIGHTED 3 CNF SAT where
the clauses have only 3 variables. Classically, using a
padding argument, we know thaN€ SAT=! 3 CNF SAT.
Recall that to do this for a clause of the fofm , ..., qx}
we add extra variables and turn the clause into several as
per:{qi,q2, 21}, {Z1, g3, 22}, €tc.
Now this is definitelynot a parametric reduction from
WEIGHTED CNF SAT to WEIGHTED 3 CNF SAT because
a weightk assignment could go to any other weight assign-
ment for the corresponding clause 3 version.
In fact Downey and Fellows conjecture that there

FPT time and take parameters to parameters. The principals no reduction at all from WIGHTED CNF SAT to
workingdefinition for this is that of a parametric connection WEIGHTED 3 CNF SAT. We can prove that DMINAT-

or transformation.

Definition 3.1. Let L, L' be two parameterized languages.
We say thatl <;,, L' iff there is an algorithml/, a com-
putable functionf and a constant, such that

M : (G, k) = (G' k),
so that
(i) M((G, k)) runsin time< g(k)|G|c.
(i) &' < f(k).
(i) (G, k) € Liff (G', k') € L.

For simplicity, the reader can think d@f as f(k), for
some computablegf. A simple example of a paramet-
ric reduction is fromk-CLIQUE to k-INDEPENDENT SET,

ING SET=;,;WEIGHTED CNF SAT. Extending this rea-
soning further, we can view WIGHTED CNF SAT as a
formula that is a product of sums. We can similarly de-
fine WEIGHTED ¢-POS SAT as the weighted satisfiability
problem for a formulaX in product of sums of product of
sums... witht alternations. And we can defineBAGHTED
SAT if we have no restriction on the formula. Downey
and Fellows [DF954] called the collection of parameterized
languages fpt-equivalent to ®VGHTED 3 CNF SAT W[1],

the collection of languages fpt-equivalent toEVHTED
CNF SAT W2], the collection of languages fpt-equivalent
to WEIGHTED ¢-PoS Sat W(t], and the collection of lan-
guages fpt-equivalent to WGHTED SAT W [SAT]. There
are some other class&8[P], the weighted circuit satisfia-
bility class, andX P which has as its defining problem the

where the standard reduction is parametric (a situation notclass whosé-th slice is complete foD7'IM E(n*), this
common). The following is a consequence of Cai, Chen, being provably distinct from FPT and akin to exponential
Downey and Fellows [CCDF96], and Downey and Fellows time. This gave théV-hierarchy below

[DF95D].

Theorem 3.2. The following are hard foSHORT NONDE-
TERMINISTIC TURING MACHINE ACCEPTANCE INDE-
PENDENTSET, DOMINATING SET.

W1 C W[2] C W[3]...W[SAT] C W[P] C XP.

Each of these classes contains concrete problems.
For instance, X P has k-CAT AND MOUSE GAME and
some other games ([DF99a]y¥[P] has LNEAR IN-

The proof is involved, and is omitted. The reader might EQUALITIES, SHORT SATISFIABILITY , WEIGHTED CIR-
think that, as per the theory of NP completeness, that allcuiT SATISFIABILITY ([ADF95]) and MINIMUM AX-

of these problems are reducible to one another. In fact weiom SeT([DFKHW94]).

can show that SORT NONDETERMINISTIC TURING MA-
CHINE ACCEPTANCE=,; INDEPENDENTSET. However,
we do notthink that DOMINATING SET<y,; INDEPEN-
DENT SET.

Why might this be? The following might be instruc-

tive as an example of a distinctly non-parametric reduction BANDWIDTH,

Suppose we are given a boolean formélain variables

Then there are a number
of quite important problems from combinatorial pattern
matching which arelW[¢t] hard for all ¢ LONGEST
COMMON SUBSEQUENCE (¢ = number of seqg4X|-
two parameters) ([BDFHW95]), EASIBLE REGISTER
ASSIGNMENT, TRIANGULATING COLORED GRAPHS
PROPER INTERVAL GRAPH COMPLE-
TION ([BFH94]), DomiNO TREEWIDTH ([BE97]) and



BOUNDED PERSISTENCEPATHWIDTH ([McCO03]). Some
concrete problems complete for[2] include WEIGHTED
{0,1} INTEGER PROGRAMMING, DOMINATING SET
([DF95a]), TOURNAMENT DOMINATING SET ([DF95c])
UNIT LENGTH PRECEDENCECONSTRAINED SCHEDUL-
ING (hard) ([BF95]), $1IORTEST COMMON SUPERSE
QUENCE (k)(hard) ([FHK95]), MAXIMUM LIKELIHOOD
DECODING (hard), WEIGHT DISTRIBUTION IN LINEAR
CoDEs (hard), NEAREST VECTOR IN INTEGER LAT-
TIcEs(hard) ([DFVW99]), $1ORT PERMUTATION GROUP
FAcCTORIZATION (hard). Finally complete fol/[1] we
have a collection includingk-STEP DERIVATION FOR
CONTEXT SENSITIVE GRAMMARS, SHORT NTM Cowm-
PUTATION, SHORT POST CORRESPONDENCE SQUARE
TILING ([CCDF96]), WEIGHTED ¢—CNF SATISFIABIL -
ITY ([DF95b]), VAPNIK—CHERVONENKIS DIMENSION
(IDEF93]) LONGESTCOMMON SUBSEQUENCE(k, m =
LENGTH OF COMMON SUBSEQ) ([BDFW95]), CLIQUE,
INDEPENDENT SET ([DF95b]), and MONOTONE DATA
COMPLEXITY FOR RELATIONAL DATABASES ([DFT96]).
This list is definitely not complete, and new arenas of appli-
cation are being found all the time.

4 Some natural arenas of application

One thing that we did not expect when we began our
studies in this area was the applicability of the ideas to

The point is that, again, the general problem of check-
ing that a relational database satisfies some formula in some
reasonable language is PSPACE complete. However, all of
the problems for a fixedizeof input formula are again in
PTIME. Thus the standard kind of problem we might look
at would be of the form.

Input: A boolean queryy and a database instante
Parameter:Some parameter @f, such as the size qf.
Problem:Evaluatep in 1.

The first suggestion that parameterized complexity
would be a suitable way to address the issues in database
query evaluation was in Yannakakis [Ya95].

In [DFT96], and [PY97], it is shown that there are rela-
tively easy reductions to demonstrate even more bad news.
The problems ar®/[1] hard, and hence likely have no feasi-
ble algorithms. Papadimitriou and Yannakakis [PY97] sys-
tematically also looked at other parameters such as bound-
ing the number of variables following ideas of Vardi [Va95].
They looked at positive queries, conjunctive queries, first
order theories and datalog ones and found them to be all
W[1] hard and at various levels of th&-hierarchy. Other
analyses look at other parametric aspects and give even
more bad news. (e.g. Demri, Laroussinie and Schnoebe-
len [DLS02].)

You might well ask now, with “good” news like this pro-
vided by parameterized complexity, what use is it? You
could argue that once we knew these problems were NP-
hard and likely PSPACE complete. Now we know that even

many areas particularly as a common generalization of nat-when you bound the obvious parameters then thewite
ural heuristics people were using anyway. Perhaps this ishard!

why a number of groups working in algorithms and applied
computer science have taken up the ideas. | give a smal
sample in the subsections to follow.

4.1 Databases

As we alluded to in the introduction, databases pro-
vide a very natural arena for the applications of the the-
ory. There have been some very attractive applications in
this area such as Downey, Fellows, Taylor [DFT96], Pa-
padimitriou and Yannakakis [PY97], and especially Grohe
[GrOla, GrOlb, Gr02]. Readers especially interested & thi

area are urged to read the entertaining introduction Grohe

[Gr02]. There Grohe gives an introduction to the area as “A
database theorist’s nightmare.”
Chandra and Merlin [CM77] introduced the study of the

One interpretation is that we should learn to live with this
by searching for new coping strategies.

The parametric point of view is to try to cope by finding
new, and maybe more appropriate parameters. This is the
point of view pursued by Grohe [GrOla, GrO1b, Gr02]. In
the next section, we will look at various graph width met-
rics, and see that they can be used as a systematic way to
parametrically address intractability. Ti@aifman graph
of a relational database is the graph whose vertices are the
elements of the active domain of the database instdnce
with an edge between the vertices if they lie on the same
row of some table for. (More details can be found in the
references below.)

Theorem 4.1 (Frick and Grohe [FrG02], Flum and
Grohe [FG02a]). Let C be a class of relational database
instances such that underlying graph of instancesCin

complexity of query languages in the study of database the-are any of the following forms: bounded degree, bounded
ory. Vardi[Va82] noted that what was importantin the study treewidth, bounded local treewidth, planar or have an ex-

of relational databases was the complexity of the evaloatio ¢|ded minor. Then the query evaluation problem for the
of a query when the size of the query was fixed as a func- g|ational calculus orC is FPT.

tion of the size of the database, and since then this has been
seen as a relevant measure for the study of the complexity The reader unfamiliar with the graph theoretical terms
of databases. above is referred to Section 4.2 for more details.



Frick and Grohe [FrG02] have looked beyond relational
databases. For instanc¥,M L-documents can be viewed
as colored trees, with the color representingih#/ L-tag. b
It is also known that the core of standakd\/ L query lan-
guages is contained in monadic second order logic. (See °
Section 4.2 for details on monadic second order logic.) i

Theorem 4.2 (attributed in [FrG02] to folklore). The
query evaluation problem for monadic second order logic ~ Figure 1. Example of Tree Decomposition of
on the class of colored trees IBPT'. Width 2

As we will see in Section 5, Theorem 4.2 has rather lim-
ited applicability. More on this later, when we see how para-
metric complexity connects to classical complexity.

Finally, as Grohe [Gr02] observed, there are also nice
known parametric results for temporal logics. Temporal
logics such as LTL and CTiLare used for specification
languages for automated verification. Gottlob and Koch

Definition 4.4 (Robertson and Seymour [RS864]). (a)
A tree-decompositionof a graphG = (V,E) is a
tree 7 together with a collection of subsefs (called
bagg of V' labeled by the vertices of 7 such that
U.e7T, = V and (i) and (ii) below hold:

[GKO2] have that the core of XPATH can be viewed as a (i) For every edgeuv of GG there is somer such that
fragment of CTI*. The following algorithm is practical. {u,v} CT;.

(ii) (Interpolation Property) Ify is a vertex on the
Theorem 4.3 (Lichtenstein and Pneuli [LP85], Emerson unique path in7 fromz to z thenT, N T, C T,,.

and Lei [EL87]). The evaluation problems for LTL and . o _
CTL* on the class of Kripke structures are FPT in time (b) Thewidth of a tree decomposition is the maximum

O(2kn) wherek is the size of the query, andis the size of value of|T;| — 1 taken over all the vertices of the
the input instance. tree 7T of the decomposition.

Given that the material has only been investigated by (€) The treewidth of a grapl¥ is the minimum treewidth
only a few authors, and the area is definitely important, it of all tree decompositions 6f.
is clearly one that would merit further attention, particu-
larly how to make Theorem 4.1 practical. (But see Frick
and Grohe [FrG02] for parameter dependence as in Sectio
8.)

The point of the notion is that it is a measure of how tree-
like the graph is. One can similarly defipath decomposi-
Yion where the tred” must be a path. A tree decomposition
provides a road map as to how to build a graph from small
. . pieces by gluing them together. Figure 1 gives an example
4.2 Graph width metrics of a tree decomposition of width 2.

Authors often discovered that intractable problems be-

Anyone who has done any course in algorithms has seercame tractable if the problems were restricted to say, “out-
various algorithms for planar this and bounded degree, di-erplanar” graphs. As we have seen, such restriction is not
mension, pathwidth, bandwidth, etc that. Clearly, what is purely an academic exercise since, in many practical situa-
going on is some kind of quest to try to map the boundary tions, the graphs that arise do not in fact demonstrate the fu
of intractability, and using some kind of regularity in the pathology of the class of all graphs. Families of graph that
data to get tractability. have been studied which turn out to have bounded treewidth

Planarity is natural since a road map of a city is more include Almost Treeék) (width £+ 1), Bandwidth (width
or less planar subject to a few exceptions. One could viewk), Cutwidthk (width k), Planar of Radiug (width 3%), Se-
the number of exceptions as a parameter, or simply view theries Parallel (width 2), Outerplanar (width 2), Halin (whdt
every increasing genus as the relevant parameter. Siynilarl 3) k-Outerplanar (widt8% — 1), Chordal with Maximum
degree. How does the running time vary for the problem at Clique Sizek (width k& — 1), and many others.
hand as the degree varies. There is now a large industry devoted to treewidth, and

Two sweeping generalizations of the notions of width it must be a basic tool now for someone working in algo-
metrics are found through treewidth and local treewidth. rithms. The principal reason for this is that, using dynamic
Treewidth is part of the change froad hocgraph theoryto ~ programming, or automata, many problems which are oth-
structural, topological graph theory which has revolution erwise intractable become tractable when restricted to the
ized the area in the last decade or so. If you have not seerparameterized class of graphs of bounded treewidth. A high
this before here is the definition. level version of this phenomenon is the following.



A standard version oMonadic Second Ordelogic of look at implementations and heuristics in Section 6. The
graphs is a two sorted logic with vertex variables, edge vari notion of treewidth and the related notion of branchwidth
ables (denoted by lower case letters) and variables for setdiave been generalized to matroids by Geelen and Whittle
of vertices and sets of edges (upper case) with incidencesuch as [GWO03]. Here the idea is that a representable ma-
relationsv € V, v € e, and quantification over these vari- troid represented bl , ..., v,] is of low branch width if
ables. This is a powerful language, where many standardthe intersections of the subspaces generated by subsets of
properties of graphs such as Hamiltonicity etc are express-the columns has relatively low dimension. That is we thing
ible. For instance(7 is 3-colorable would be expressed as of the dimension as being like the cardinality of a separa-
IViIVa3Vs (Vo[Aigi(v € ViV € Vi) A (Vieqi,2,31(v € tion. Additionally, things like implementable algorithrits
Vi)IAVe(Vor,va(v1 # va Avr € eAva € € = (Ajzj(v1 & matroids have been developed and things like Courcelle’s
ViVus € Vj)))). theorem proven such as Hlineny [HI02a, HIO3].

Frick and Grohe [FG02a] identified a property of graphs

Th 4. Il 7)). thap i
eorem 4.5 (Courcelle [Co87]). Suppose thap is any like treewidth which makefirst order properties tractable.

sentence in monadic second order logic, &pds the class ) . .
of graphs of bounded treewidth Then there is a linear Thed-neighborhoodf a graph vertex in a grapt is the

time algorithm deciding if a given graph ify, satisfiesy. i(;\duced subgraph of distanddfrom v. We denote this by
That is, the problem is FPT. a(v).

Sometimes the application of this result is hidden. A re- Definition 4.8 (Frick and Grohe [FrG02]). A class of
cent example is Grohe’s [Gr01c] proof thetCROSSING graphsC is said to have bounded local treewidth iff there
NUMBER is quadratic FPT. This filters through proofs of is a functionf such that for all € C, and allv € G, and
Robertson and Seymour [RS86b, RS95] which says that ei-all d, the treewidth ofi (v) is bounded by (d).
ther a graphG has bounded treewidth @f contains a big
grid as a topological minor. In fact this can be achieved
in linear time, by Bodlaender’s algorithm (Theorem 4.7 be-
low). Thus the proof runs as follows. Grohe proves that
there is a linear time algorithm that either gives a certifica

that the crossing number is too big, or fintla embedding  Theorem 4.9 (Frick and Grohe [FrG02]). If C is a class

of a big grid into the graph, or demonstrates that the graphof graphs of bounded local treewidth, apds a first order
has low treewidth. If the graph has bounded treewidth, in sentence, then for all > 1, there is aO(n!*+ ) time F PT

which case we can apply Courcelle’s theorem. If not, and zjgorithm to decidey for members of.
the crossing number is k then Grohe argues that we can
not only find a grid but remove part of the grid and apply ~ An example of a NP complete property which is first or-
the process recursively. der when parameterized iISDEPENDENTSET.
Interestingly, it is in some sense hard to find properties of
graphs that correspond to NP complete problems which are4.3  Phylogeny
not MSO. One example iBandwidthwhich is W{t]-hard
for all ¢ even for trees [BFH94]. Also in terms of MSO, 4.3.1 General Phylogenics
bounded treewidth is the boundary of tractability.

Classes of graphs with bounded local treewidth include
bounded genus (e.g. planar), bounded degree, and those that
exclude a minor. The following again generalizes a whole
suite ofad hocresults.

. One area where the methods of practical parametric
Theorem 4.6 (Seese [Se91]Buppose tha€ is any fam-  complexity have penetrated to the extent they are re-

ily of graphs with adecidablemonadic second order (M3 garded as relative mainstream is the area of combinato-
theory. Then there is a numbersuch that for all € 7, rja| computational biology, particularly the area of phy-
the treewidth of is less tham. logenic trees. | will look atone example, but there
Finally treewdith is of interest to us also because its are many, particularly from Hallett's group at McGill,
recognition, despite being NP-complete, is FPT. The fol- Mike Steel's work, and the group at ETH. This exam-
lowing is the best deterministic algorithm for treewdith, a ple is drawn from recent material, concerning histori-
least theoretically, improving earlier work beginning wit ~ cal linguistics, presented by Tandy Warnow at the annual
Robertson and Seymour’s original algorithm. NZMRI meeting in New Plymouth in New Zealand. (See

. .mcs.vuw.ac. fathmeet ). | thank T
Theorem 4.7 (Bodlaender [Bod93, Bod96]).There is a www.mcs.vuw.ac.nz/  mathmeet ). | thank Tandy and

. . . e . Luay Nakhleh for making their slides available, since | kin
I]lnear time FPT algorithm deciding if a graph has treewidth that this material should be more widely advertised, partic

ularly to groups such as this.
The algorithms and results above need to be taken with  The underlying problem is similar to one encountered in
a grain of salt, and we will take up this issue when we biology. ThePerfect Phylogeny Probleris to determine
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Figure 2. Perfect Phylogeny

whether a given sef C Z* of n “taxa” (classifications of
objects, which areharactersn certain states) has a trée
with the following properties:

(C1) T is leaf-labeled bys, and

(C2) Each internal node of T' can be labeled by a vector
in Z* such that for every, 1 < i < k, and everyj € Z, the
set of allu € V(T') such thatu; = j induces a subtree of
T.

The treeT’, if it exists, is called gerfect phylogen{PP)
for S and the set of charactefss said to becompatible

Figure 2 below gives an example.

An example of taxa that give a yes instance would
be S {(3,2,1),(1,2,2),(1,1,3),(2,1,1)} which are
compatible as leaves if you label in the given order.
The internal nodes would be labeled,2,1) above
(3,2,1),(1,2,2) and(1,1,1) above(1, 1, 3), (2,1, 1) with
the root labeled1,1,1). On the other hand, the s&t =
{(0,1),(0,0),(1,1),(1,0)} has no compatible leaf order.
See Figures 2 and 3.

Recall that a graph is ishordalor triangulatedif it con-
tains no induced cycles of length four or more. The rele-
vance of this concept to our studies is the old fact Ehadry
triangulated graph is the intersection graph of subtrees of
a tree. In fact we are more interested in (properly) colored
graphs. A properly colored graggh = (V, E) with coloring
¢ : 'V — Z can bec-triangulatedif there exists a chordal
graphG’ = (V, E') whereE C E' andc is proper ond".

“YES” instance

can be c-triangulated

c-triangulation

Figure 3. Using Bunemann'’s Theorem

acter intersection graplby putting an edge between ;
and a; j if the corresponding sets have nonempty inter-
section. The relevance of this is the following fundamental
theorem.

Theorem 4.10 (Buneman'’s Theorem)A set of characters
is compatible om species iff the associated character state
intersection graplG can bec-triangulated.

See Figure 3 for a spirit of the proof. The PP ard AN -
GULATED COLORED GRAPH (TCG) problems are equiva-
lent and NP-Complete. (Kannan and Warnow [KW90] and
Steel [St92], also F. McMorris, T. Warnow, and T. Wimer
[McMWWa93]). Additionally they are parametrically hard
by Bodlaender, Fellows and Hallett [BFH94].

The 2-character case of the perfect phylogeny problem
is solvable in polynomial time. For triangulating colored
graphs, McMorris, Warnow and Wimer [McMWW93] gave
anO((n + m(k — 2))¥*1) algorithm, where the graph has
n vertices,n edges, ané& colors. The corresponding algo-
rithm for PP runs irO (r*+1 kA +1 4 nk?) time, wheren taxa
are defined by characters each havimgtates. Itis impos-
sible to get rid of thek in the exponent by the W-hardness
result of Bodlaender, Fellows and Hallett [BFH94]. Nev-
ertheless, parametric results are possible, as are hestrist

We can associate a canonical graph with the taxa. ThinkFor perfect phylogeny, Gusfield gave él{nk) algorithm
of each row as a taxon and each column as a character. Thefor r = 2, thebinarycharacter case, Dress and Steel devised
we define avertex for each state of each character. For exanO(nk?) algorithm forr < 3, Kannan and Warnow gave

ample{S] = (372:1)752 = (1:272)753 (1:173)754

anO(n%k) algorithm forr < 4. Agarwala and Fernandez-

(2,1,1)} has 3 characters the first having 3 states, the sec-Baca gave ar0(2*" (nk® + k*)) algorithm for any fixed
ond 2, and the third 3, giving a total of 8 states. One canr, and finally Kannan and Warnow improved it and gave a

associate a set of taxa with each state. For instaneg,;if
represents state i of character (column) j, then the se¢€orr
sponding tax1, 1 would be{s,, s3 }. The we form thechar-

0O(22"nk?) algorithm. (References available on request.)
As we can see, this is just the tip of the iceberg. | have not
even mentioned other combinatorial problems related to, fo



instance, breakpoint phylogenies (see Blanchette, Baurqu H000Re

and Sankoff [BBS97], Costeat al. [CIMRWWWOO0], B.

Moretet al. [MWBWYO01], and Fellows [Fe03]), or com-
binatorial sequence alignment (see, e.g. Bodlaeatlat.

[BDFHWO95]). An excellent recent “real” FPT analysis
for breakpoints can be found in Gramm and Niedermeier f\
[GNO2]. There are myriads of natural parameters in com- K Ve
putational biology. / AV
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4.3.2 Applications to Historical Linguistics

oc oG WE 1000AL

We finish this section with a study in historical linguis- /\\

tics which is work of Ringe, Nakhleh, Taylor and Warnow. ~uim ™R AL

Some of this can be found in Nakhleh, Ringe, and Warnow

[NRWO03] and Warnow, Ringe and Taylor [WRT95]. Phylo-

genies of languages have as their leaves living (and maybe

dead) languages such as English, German, French, etc. The

“holy grail” of this area is to attempt to figure out the evo-

lution of the languages, perhaps from an original source Iranian: Vedic Sanskrit (VE), Avestan (AV), Old Persian

“proto-Indo-European”. The language is represented, for (PE), Balto-Slavic: Old Church Slavonic (OC), Old Prus-

instance, as a huge vector of many words and characterssian (PR), Lithuanian (LI), Latvian (LT)) The analysis used

The characters might be phonological (sound based), lexi-22 phonological characters, 15 morphological characters,

cal (word based), or morphological (grammatical features) and 333 lexical characters, and the total number of work-

Historical linguists have made huge catalogs of such data,ing characters was 390. The tree in Figure 4 was obtained

based on many techniques in the area. Itis notimportant forby heuristic methods for solving the Akimum COMPAT-

our purposes here, save to say that they also provide manysiLITY problem on the described data.

sanity checks for the results. The problem is Germanic. With Germanic: 372 char-
This study looks at the evolution of words through sound acters are compatible on the tree and 18 are incompatible

changes. A key concept in this area is the notion of a cog-Without Germanic: 384 characters are compatible on the

nate class. Two words; andws are in the same cog- tree and 6 are incompatible. The conclusion was dnai-

nate class if they evolved from the same word through ysis of the IE dataset revealed that no perfect phylogeny for

sound changes. For example, French “champ” and ltal-that dataset existed. Thus, whilst the the basic approach

ian “champo” are both descendants of Latin “campus”: the was good, new ideas were needédjain we can look to-

two words belong to the same cognate class whereas Sparwards biology for inspiration. We know so-called horizon-

ish “mucho” and English “much” are not in the same cog- tal gene transfer happen. This is even easier to see with lin-

nate class. Again a lot is known about this through the guistics: Neighboring countries will affect each other and

work of historical linguists. Borrowing ideas from biol- continue to interact.

ogy, the Ringe-Warnow Model (1993) of language evolu-  Nakhlehet al. [NRWO03] suggest that the tree model be

tion has a phylogenic tree as its paradigm. The nodes ofreplaced byPhylogenetic Networks A phylogenetic net-

the tree which contain elements of the same cognate classvork on a sefl. of languages is a rooted directed graph, or

should form a rooted connected subgraph of the true tree.“digraph”, N = (V, E) with the following properties:

Hence the model is known as theiERACTER COMPATI- V = L U I, wherel denotes added nodes which represent

BILITY or another form of BRFECTPHYLOGENY. Ringe ancestral languages atl= Er U Ex, whereE are the

and Warnow postulated that all properly encoded charactersedges of the tre€ = (V, E), whereL C V are the leaves

for the Indo-European languages should be compatible onof T', andE are the “non-tree” edges.

the true tree, if such a tree existed, would be a perfect phy-The edges inEr are oriented from parent to child, and

2000AL

Figure 4. The Indo-European Tree

logeny. henceT is a rooted directed tree.
The dataset consisted of 24 languagésatolian: Hit- The edges inE are bidirectionalV is “weakly acyclic”,
tite (HI), Luvian (LU), Lycian (LY), Tocharian: Tocharian i.e., if N contains directed cycles, then those cycles contain

A (TA), Tocharian B (TB),Celtic: Old Irish (Ol), Welsh only edges inEy. (More details can be found in Nakhleh
(WE), Italic: Latin (LA), Oscan (OS), Umbrian (UMGer- et al. [NRWO3].

manic: Gothic (GO), Old Norse (ON), Old English (OE), Figure 5 is a simple Phylogenic Network. Naturally,
Old High German (OG)Albanian Armenian Greek Indo- a phylogenetic network gives rise to a collection of trees

10



4.4 Impractical, sometimes useful, but very at-

tractive

There are some methods available suchhashindat
least hashing associated with color coding below), auid
norswhich are mathematically important, but are presently
wildly impractical, yet remain usefusince they can be
used, often easily to quickly establish theoretical tradta
ity. We'll look at hashing when we look at the randomized
version, calledtolor codinglater.

In a long series of difficult papers, collectively entitled
“Graph Minors,” almost all appearing idournal of Com-
binatorial Theory B Robertson and Seymour have revo-
lutionized graph theory towards topological graph theory.
Treewidth was but one by-product of their work. We say
that a partial orderingt on graphs is avell partial orderiff
given any infinite sequendd,, G-, ... of graphs, there is
somei < j such thaty; < G;.

The partial ordering of relevance to us is thaororder
where we havesy <, H iff G can be gotten fronH by
edge deletions and contractions.

Figure 5. Phylogenic Network
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Theorem 4.11 (Robertson and Seymour)Finite graphs

2000AC are well partial ordered by the minor relation.

How can this be used algorithmically? Well, Robertson
and Seymour also proved that the minor relatiog is cu-
bic time FPT. Here we parameterize by fixing a gr&ph
as the parameter. For a fix€d, we ask isG <y H?.
For a fixed@, this question i)(|H|?). The constants are
astronomical with iterated stacks of powers of 2 in the ex-
ponent. There seems some evidence that this is necessary.
But the point is that this means thaty minor closed class
wORK(PPN) in place of PP. We can test the compatibility of has a theoretical cubic time recognition algorithm. For ex-
a character: on a treel” with n leaves inO(n) time, and ample, consider the question of whether a graph has genus
hence in®(n3”) on a network with B non-tree edges. The £? Clearly genug graphs are closed under the minor re-
idea is to useB as a parameter. There are a number of lation. This means that there are a finite number of graphs,
results on the complexity of these analyses and the readefalled anobstruction setz1, ..., G4 such thatd has genus
should turn to the papers of Ringe, Warnow, Nakhleh etc, & iff forall 1 < i < d, G; £» H. (In the planar case
for more on this topic. The authors use the heuristic Mini- this is Kuratowski’'s Theorem, and the graphs &fe and
mum Increment to PPN (MIPPN) First they obtained a tree £3,3.) Testing for genug amounts tal minor tests, which
T on L (e.g., using Maximum Compatibility), then add a makes itO(|H|*). We remark that the algorithm has been
minimum number of non-tree edgesToto obtain a PPN.  improved to linear time by Mohar [Mo99]. Fellows [Fe89]
They showed a number of parametric complexity results, has a survey of old applications of this type. Many recent

Figure 6. The Indo-European Network

that represent the evolutionary histories of the varioas-ch
acters. A character is compatible on a network N if it
is compatible on at least one of the trees induced by N.
Thenis a short step to definERFECTPHYLOGENIC NET-

including MIPPN is polynomial for a fixed number of non-
tree edges@(k2'#n?P+1) whereB is the number of non-
tree edges; = |L|, andk = |C].).

Using this method, this particular story had a happy end-
ing. A relatively small value forB was all that was nec-
essary in the Indo-European case. Using this method, th
obtained the network represented by Figure 6.

There is clearly a lot of new applications available for
these ideas, and a lot of work still to be done.
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applications also apply to classes teatlude a particular
graph which has deep consequences. For instance, Robert-
son and Seymour?[ RS95] that excluding a planar graph,
or even a grid makes the class have bounded treewidth and
hence have a linear time recognition algorithm. We remark
that the Robertson Seymour methods are inherently non-

®Yconstructive since there is no algorithm to generate the ob-

struction set in general. But again this situation is akin to
that of regular languages where the data is presented in such
a way to be useful. Some progress has been done towards



understanding what information is needed for such effec-

tive generation of the obstruction sets. See, for example,

[CDDFLOO, CDF97].

5 Connections with Classical Complexity
5.1 PTAS’s

In the first section, we were introduced to some rather
impractical PTAS’s. They were from STOC, SODA etc.
They are in fact only a small sample of such. Here area
couple of others. The PTAS for theNBOUNDED BATCH
SCHEDULING problem due to Deng, Feng, Zhang and
Zhu [DFZZ01] has a running time @ (n” 1081+ (1+(1/€))
which for a 20% error we have an(n°°) polynomial-time
algorithm. Wuet al. [WLBCRT98] gave a0(n2?1-2)
PTAS for MINIMUM COST ROUTING SPANNING TREE
giving an algorithm running in timé&(n?) for a 20% error.
Similarly, the PTAS for WoO-VEHICLE SCHEDULING ON
A PATH due to Karuno and Nagamochi [KNO1] has a run-
ning time of O(n®(1+(2/9))); thusO(n®®) for a 20% error.
Finally, the PTAS for the CASS-CONSTRAINED PACKING
PROBLEM due to Shachnai and Tamir [ST0O] has a running
time (for 3 colors) o) (n64/¢+(lea(1/€)/€%)): thus for a 20%
error (for 3 colors) we have a running time @fn!%21579),

As we have observed, the problem is mainly with i;he
in the exponent. We have the following.

Definition 5.1. An optimization problenfl has anefficient

P-time approximation scheme (EPTAS) if it can be ap-
proximated to a goodness ¢f + ¢) of optimal in time

f(k)n® wherecis a constantt and = 1/e.

Arora gave an EPTAS for thelEELIDEAN TSP [Ar97],
but for all of the other PTAS’s mentioned above, the possi-
bility of such an improvement remains open.

But we have a strategy: Prove the problerii$l]-hard
parameterized by = 1 and you prove that the problem has
no EPTAS, assuming th&t'[1] # FPT..

There are a number of nice case studies which suppor

[CFJRO1]. In a well-known paper, Khanna and Motwani
introduced three planar logic problems towards an expla-
nation of PTAS-approximability. Their suggestion is that
“hidden planar structure” in the logic of an optimization
problem is what allows PTASs to be developed [KM96].
One of their core problems was the following.

PLANAR TMIN

Input: A collection of Boolean formulas in sum-of-products
form, with all literals positive, where the associated Ibipa
tite graph is planar (this graph has a vertex for each formula
and a vertex for each variable, and an edge between two
such vertices if the variable occurs in the formula).
Output: A truth assignment of minimum weight (i.e., a min-
imum number of variables set taue) that satisfies all the
formulas.

Theorem 5.3 (Fellows, Cai, Juedes and Rosamond
[CFJRO1]). PLANAR TMIN is hard foriW[1] and therefore
does not have an EPTAS unlgs®T = W1].

The method of proof is to show that QUE is parame-
terized reducible to EANAR TMIN with the parameter be-
ing the weight of a truth assignment. SinceIQUE is
WI[1]-complete, it will follow that the parameterized form
of PLANAR TMIN is W[1]-hard. This s a relatively straight-
forward reduction, the details being found in [CFJR01] and
Fellows [Fe03]. Fellowet al. [CFJR01] also show that the
other two core problems of Khanna and Motwani [KM96]
are alsd¥[1] hard and hence have no EPTAS's. It seems to
us that there is a pretty major project waiting here to under-
stand when problems such as those in [ACGKMP99], can
have real EPTAS’s rather than just PTAS’s which have un-
realistic running times.

5.2 Other Connections

The reader might well ask whether one can see the
W -hierarchy to say something else about classical notions
aside from PTAS’s. Parameterized complexity can also be
used to address the probaplacticalintractability of other

roblems which are likely not NP complete. One such ex-
mple was ¥PNIK CHERVONENKIS DIMENSION which

the thesis that this methodology might well bear fruit. Many was shown to be in the time class DTINIE®&") by Pa-

can be gotten by applying a nice result connecting EPTAS
andW/1] first articulated by Bazgan:

Theorem 5.2 (Bazgan [Baz95], also Cai and Chen
[CC97]). Suppose thail,,; is an optimization problem,
and thatll, .. is the corresponding parameterized prob-
lem, where the parameter is the value of an optimal solu-
tion. Thenll,,,.n is fixed-parameter tractable Ii,,; has

an EPTAS.

(There is also other nice related work by Cesati and Tre-
visan [CT97].) Here is one recent application of Bazgan’s

padimitriou and Yannakakis [PY93], and hence likely not
NP complete unless NEDTIME (n'°8™). another classic
example is WIT LENGTH PRECEDENCECONSTRAINED
SCHEDULING which was show[1]-hard in [BF95], and
whose unparameterized case is still OPEN. But this means
that the general case almost certainly not in P. One might
be able to apply this method to show important open prob-
lems are likely not in P such asRAPH |SOMORPHISM oOr
ComMPOSITENUMBER by parameterizing (e.g.) the first by
valence or treewidth.

A final application of this sort was given by Alehknovich

Theorem taken from Fellows, Cai, Juedes and Rosamondand Razborov [AR01]. They were looking at proof systems

12



studying the basic question of what can be achieved in a6

give proof system. In particular the studied proof systems
P called in [BPRO1Jaxiomatizableneaning that there is a
deterministic algorithmd which, when give a tautology
returns its shortest proof in time polynomial in the size of
the shortesP-proof of . It is known that it is unlikely that
tree-like resolution can be proved not axiomatizable using
the assumption tha? # N P, because such a proof would
imply guasi-polynomial time algorithms fav P. Again

we want a complexity theoretical hypothesis sensitive ¢o th
needs of PTIME.

Theorem 5.4 (Alekhnovich and Razborov [AR01]). Nei-
ther resolution not tree-like resolution is axiomatizable
lessW[P] is randomized FPT by a randomized algorithm
with one-sided error.

Alekhnovich and Razborov remark that they were able

Implementations, Heuristics, and Reality

As we mentioned in the introduction, the methodol-
ogy of parametric complexity has found its home in the
heuristic and applied community to some extent. In a
short survey like this, we cannot hope to give more than
a sample like the Warnow material above, and really must
refer the reader to recent surveys aimed in this direc-
tion for more details. These would especially include
[Ra97, Nie98, DF99b, DFS99] and we'd strongly recom-
mend that the reader get a copy of Rolf Niedermeier’s Habi-
latationschrift called “An Invitation to Fixed-paramet&i
gorithms.” There have also been a number of implementa-
tions and attempts at implementations of this material in-
cluding [KBFVHO3, McCO03, Fo03, St00, AGNO1].

Later in this section we will address the implementabil-

to use these techniques to relate approximate solution tdty Of the general methods mentioned in earlier sections.

MONOTONE CIRCUIT SATISFIABILITY to an exact solu-
tion without going viaPC P.

The reader might also ask doésPT = W[1] imply
anything classical? This was explored somewhat by Abra-
hamson, Downey, and Fellows [ADF95], and discussed in
[DF99a]. Here is a sample result. We define the class
SUBEXPTIME(f(n)) to be the set of languages for
which there is a polynomigl(n) such thatl. is accepted
in DTIME (p(n)29(™) for some functiory in o(f(n)).

Theorem 5.5 (Abrahamson, Downey, Fellows [ADF95]).
Let N P[a] denote NP where at mostz nondeterminis-
tic moves are allowed. TheW|[P] = FPT iff for ev-
ery P-time functionf with f(n) > logn, there is a re-
cursive functionh such that for everyL € NP[f(n)]
h(L) computes machind/ which witnesses thal. ¢
SUBEXPTIME(f(n)).

One idea introduced by (the somewhat flawed) Cai and

We begin by looking at the kinds of techniques that have
worked in practice. Generally, for exact algorithms, most
of the general methods such as treewidth, local treewidth
etc are currently useless; but more on this later.

Downey and Fellows (e.g. [DF99a]) pointed out two
simple methods of obtaining FPT algorithms that often
yield practical algorithms. One is called the method of
bounded search trees. The simplest example of this is ap-
plied to k-VERTEX COVER. Given a graplty then start at
any edges = viv2. Then any vertex cover must include one
of v; orwy. Then begin a tree of depthbranching ab, or
vg, and at each branch consider the subgrap® abt cov-
ered byv;; then repeat. This gives a simpl¥2*|G|) algo-
rithm. The other technique is very powerful and simple, and
is calledKernelization Here is an example by Sam Buss
again fork-VERTEX COVER. TakeG. If G has a vertex of
degree> k it must be in anyk-vertex cover. Delete such a
vertex. Apply this to the resulting graph. If there are more

Juedes [CJO01] was to see what kinds of exponents FPT althank such high degree vertices then reject. Otherwise take

gorithms might have. An illustration of this is the follovgin
recent results.

Theorem 5.6 (Dehne, Fellows, and Rosamond [DFR03]).
There is a0 (n* 4-2°*)n25) algorithm forSET SPLITTING
parameterized by the number of sets to be split. However,
there can be no FPT algorithm running in tirae*)n¢ un-

less the satisfiability of. variable 3SAT is solvable in time
20(71)

the small degree graph that results, and if it has more&han
vertices reject since we can show that a large graph of only
small degree vertices cannot havi-gertex cover. Finally
one could use complete search for fifevertices, or even
bounded search trees for the small kernel graph giving a
O(n+2*k?) algorithm. (A better kernelization for SRTEX
CoVER s given by a result of Nemhauser and Trotter (size
2k kernel)- see Chen, Kanj and Jia [CKJO1].). More intri-
cate versions of this method use repeated alternation of the

Another one is due to Cai and Jeudes (see their home+techniques, more complicated trees branching on higher de-

page) for RANAR DOMINATING SET matching the upper
bound ofcV* from Alber et al. [ABFKNO2]. There are
some other relationships, but we explore some of these in
the next sections.

Perhaps one of the most important paper concerning

gree vertices etc. This is how the current “champion” algo-
rithm was found. This methodology is clearly applicable in
any number of applications. These include the work such as
[FMcRS01, KROO, AFNO1, AFN02, AGNO1, Ar00, BR99,
CIMRWWWO00, CKJO01, CS97, PSta, EL87, GNOQ]. Even

lower bounds here is the somewhat neglected paper of Im-for W|[1] hard problems kernelization can be very powerful

pagliazzo, Paturi and Zane [IPZ01].

13

in practice. See, for example, Weihe [Wei00].



There are many others. One notable example is the onegraph bipartite) is an extremely ‘important open problem
we met earlier @ORDAL GRAPH COMPLETION. Give a (see, e.g., [MR99]), with applications in computational bi
graphG can one adK k vertices to get a triangulated ology.
graph. Yannakakis proved that the general problem is NP-  Now we turn to issues of practicality of tigeneraltheo-
complete. Kaplan, Shamir and Tarjan [KST94] used Ker- rems on tractability we have seen in previous sectionssLet’
nelization to show that there is@((k*|V||E| + f(k)) al- begin with the methods based on treewidth.
gorithm for suitably chosen computabfe Leizhen Cai There are two issues. Tliest is running things like au-
[LeC96] also used the Kernelization method to give a tomata on tree decompositions to apply things like Cour-
O((4* ((k+ 1)) [|E(@)||V(G)| + |V (G)|?]) algorithm.  celle’s Theorem. The good news is thatpracticethis is
Time might be appropriate to re-examine these forimprove- not too bad. But in theory itis very bad indeed. The general
ments. setting is to look at model checking for monadic second or-

Actually in [LeC96], Cai studied a class of problems for der logic: given al.-sentence and a claSsseeing whether
which this technique works in general. TIf is a property  the sentence holds in a given structureCinSimilarly for
of graphs, we say that a propeffyis ahereditary property first order logic.
is given anyll graphG (i.e. graph satisfyindl), if H is .
an induced subgraph ¢f thenH is all graph. The liter- ~ Theorem 6.2 (Frick and Grohe [FrG02]). (i) If NP #
ature is filled with manygraph modificatiorproblems. As P, then_ the model che_ckmg problem for f|n|te.trees (!n fact
Leizhen Cai [LeC96] remarks, in general these problemsWords) is not solvable in timg(k)p(n), wheren is the size

can be placed in the categories below. of the word andk the sentence, for any polynomjaland

1. Theedge deletion problemFind a set of edges of mini- ~ €lementaryomputable functiorf. _ .

mum cardinality whose removal results ifilegraph. (i) IFW1] # FPT, then the model checking for first order
2. Thevertex deletion problem Find a set of vertices of ~ l0gic on structures of d?gree 2 and bounded deggei% is
minimum cardinality whose removal results iflagraph. not solvable in time2" ")p(n) (degree 2) an@?” p(n)

3. Theedge/vertex deletion probleni. and 2. combined. for any polynomiap unless.

4. Theedge addition problem find a set of new edges of . o

minimum cardinality whose addition results ifilagraph. Thesecondssue ishowto get the tree decomposition in
Itis known that 1, 2 and 3 ai¥ P-hard for any nontrivial  the first place. Now one point if view is to look at graphs

hereditary property. In [LeC96], Leizhen Cai considerexi th thatare naturally given to us with fairly small treewidttorF

following general problem: in'stance, .think o'f a trgin network in a country. 'It is sulrely
1I; ; , GRAPH MODIFICATION PROBLEM. fairly treelike as it is given to you. The other point of view
Input : A graphG. concerns what can t_)e done with graphs given in some more
Parameters Nonnegative integers j, k. or less random fashion and we want to apply spmethmg like
Question : Can we delete at mostvertices,j edges, and ~ Bodlaender's Theorem. Unfortunately, for a fixedBod-

add at most edges and getH graph? laender’s Theorem actually runs in tird§232%” |G|). Even

We will say that a propertyT has a (finite)forbidden ~ Worse, the recursive structure of the algorithm means that

set characterizatioiff there exist a (finite) sef of graphs not only i's it theoretigally bad but it falls over for any at-
such thai is all graph iff G does not contain a member tempted implementatidnThis has lead to some attempts

of F as an induced subgraph. at heuristics for treewidth. One example of such compu-
Clearly if F is a finite set of sizeV characterizingl tational experiments is in Fouhy [Fo03] and Kosétral.

then there is a a more or less trivial|G|i+2+2k+N )time [KBFVHO3]. For graphs of size less than 140 results seem

recognition algorithm for thdl; ; , GRAPH MODIFICA- to be encouraging. _ _

TION PROBLEM, for any fixedi, j, k. However, Cai used There are other natural candidates for possible general

essentially the problem kernel method to prove the follow- téchniques for FPT algorithms. One such is relevanato

ing. domized=PT algorithms. This is theolor codingtechnique

of Alon, Yuster and Zwick [AYZ94]. To the author’s knowl-
Theorem 6.1 (Leizhen Cai [LeC96]). Suppose thall is edge this technique has not been implemented. Here is a
any property with a finite forbidden set characterization. 4There is an issue here. Algorithms can run in practice mustefa
Thenthdl; ; . GRAPH MODIFICATION PROBLEMis F'PT than they “should”. Sometimes the reason is the paramedticre, such
in time O(N+2/+2k|G|N+1) where N denotes the maxi-  as the number of “lets” in some structured program. Sometithere are

mum size of the vertex set of any graph in the forbidden setother reasons, a really nice example being Abdulla and Nyleethods

F (e.g. [ANOO]) using methods such as well-quasi-orderind Better-quasi-
’ ordering theory to verify infinite-state systems. Such rod#shouldin-

. . . volve constants like Ackermann’s function, and so give tiseunning

We remark that the parameterized complexity of the bi- jmes jike the life of the universe, but work well in practiaeinning in

partization problem (delete edges or vertices to make amicroseconds.
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brief description of how the method works. We will apply Niedermeier [Nie02] gave one example of the use of this
the problem tck-PaTH which seeks to find a (simple) path method for establishing parametric tractability. He shdwe
of k vertices inG. What we do is taandomlycolor the that the following problem is FPT.

whole graph withk colors, and look for @olorful solution, CLOSESTSTRING (parameterized by the number of strings
namely one witht vertices of one of each color. and length)

The two keys to this idea are Input: & stringss, . .. s over an alphabet each having
(i) we can check for colorful paths quickly. lengthZ, and a nonnegative integér

(ii) if there is a simple path then the probability that it wil  Parameter:k, L, d.
havek colors for a random coloring |§T' which is bounded  Question:is there a string of distance< d from s; for all
by e~ *. i?

Then, given (i) and (ii), we only need repeat process We remark that the method’s practicality is far from ex-
enough to fast probabilistic algorithm. We prove (i) by us- plored. We also refer the reader to Gramm, Niedermeier
ing dynamic programming: simply add a vertex with and Rossmanith [GNRO1].
color 0, connect to those of color 1, then generate the color-

ful paths of length starting fromwg inductively, rather like 7 her ar f lication
Dijkstra’s algorithm, the running time beir@(k2*|E|). Other areas of applicatio

Theorem 6.3 (Alon, Yuster and ZWi,fk [AYZ94]). k- There are a host of new arenas of applications of these
PATH can be solved in expected 8" | E|. ideas waiting. Here is one Online Algorithms An on-

Alon, Yuster and Zwick demonstrated that this technique line structure such as a graph is given vertex by vertex,
could be applied to a number of problems of the form asking {v1,v2, - - } S0 that whery; is given we are told the;
“is G' a subgraph o7?” Note that the method does not al- for j < ¢ incident withw;. There are many variations, but
low for things likek-CLIQUE to be shown randomized FPT ~ @n online algorithm for a graph propeiy takes the online
because (i) aboviails. The important part of the dynamic ~ Presentation of the graph and producds$-get in step for
programming method was that a path was represented b)yertexi, so that the algorithm is a suitably chosen function
its beginnings, and some vertex;, and to extend the path f apting on_vertices presented one at a time. For instance,
only neededocal knowledgenamely the colors used so far online coloring must cplor thg graph vertex by vertex. Thus
andw;. This fails for Q.IQuUE, and would neetﬁ’?) at stepi we must color the object quickly with only local informa-
in the clique case. ! tion. This is an important area of algorithmics and is a yeall
Color coding would also seem to have a lot of unex- 900d candiate for parametric analysis.
plored uses, perhaps in relation to randomized treewidth ~ The point here is that in an online algorithm, we cannot
algorithms. | think there is huge potential here. Certainly Waittill we see the whole structure to assign a color. For ex-
there is no general theory of randomized FPT, and this waits@MPple, it is easy to show that there is an online presentation
for development. of ak-colorable graph such that any online algorithm needs
Finally we should mention that we can get at least the- 2(2") colors. Indeed there is a family of planar graphs
oretical FPT algorithms by derandomizing color coding al- Needing arbitarily large numbers of colors to color online.
gorithms. Ak-perfect family of hash functioris a fam- The online community is very concerned with scheduling,
[k], such that for allS C [n] of sizek there is af € F we look at the non-online value vs the online one. One of
whose restriction to is bijective (colorful). Itis knownah  the basic online algorithms fast fit which greedily assigns
k-perfect families 02°(%) log n linear time hash functions. ~ colors as bestitcan. - . _
This gives a deterministiz®(*)| E| log |V| algorithm fork- We are interested in how presentations might affect the
PaTH. More such applications can be found in Downey and Performance of online algorithms. lIrani [Ir94] looked at
Fellows [DF99a]. The)(k) in the exponent hides evil, and What are called:-inductivegraphs. G = (V, E) is k in-
the derandomization method at present seems far from pracductive iff there issome orderingv; , v, . . . 01_‘ the vertices
tical. such that{v; : j > i Av;v; € E}| < k. For instance, any
One final technique we have not discussed in [DF99a], Planar graph has a vertex of degree 5, and hence all planar

is the use of N\TEGER PROGRAMMING in the design of FP graphs are 5-inductive. Similarly any bounded degree graph
algorithms. This is discussed in Niedermeier [Nie02]. is d-inductive for somel. It is a nice exercise to show that

) ) any graph of bounded treewidthdsinductive for somel.
Theorem 6.4 (Lenstra [Le83]). The integer programming

feasibility problem can be solved Witﬂ(pg?p L) arithmeti- Theorem 7.1 (Irani [Ir94]). First fit online colors any on-
cal operations irZ of O(p?P L) bits in size, where is the line presentation of al-inductive graph in at mosflogn
number of variables, andl the number of bits of the input.  colors. This bound is sharp.
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The notion ofk-inductive is interesting in its own right.  average case complexity?
It might well have parametric applications elsewhere. For  The basic parameterized theory itself generates struc-
instance, Martin Grohe asks if the work on first order model tural questions of independent interest. For instances, it i
checking can be extended feinductive graphs. What conjectured thatV[¢] # W]t + 1], but it is not known
about online model checking etc? It would seem ratherif e.g. W[1] = FPT implies anythingabout the rest
fruitful to pursure this area with an eye towards topolobica of the W -hierarchy. Oracle results have been explored in
graph theory. Downey, Fouhy and McCartin [DFMcC03] [DF93, DF99a], but they are somewhat unsatisfactory. Even
have some recent work on this, and especially looking atan analog of Ladner’s theorem (that the polynomial time
how the presentation of the data affects the performance ofdegrees are dense, or that there are intermediate problems
the algorithms. For instance a pathwidtlgraph presented if P # NP) is not fully answered (see [DF99a]). The

by its path decomposition can be online colored vkith 1 parameterized reducibilities are much more complex than
colors. However, this bound fails if the graphs is presentedthe standard ones. There are a lot of questions like “does
in some random fashion. If a graph of pathwidtlis pre- BANDWIDTH € W[1] imply anything”

sented in any fashion it can still be colored3®y+ 1 colors One recent interesting development has been to chal-

by some online algorithm and by 25.72(k+1) colors using lenge the clas$V[1] as the basic “infeasible” class. In
first-fit. (Kierstead and Qin see [KQ95]). Slusarek [SI93] Downeyet al. [DEFPRO03], the authors introduced a new
has proven a 4.4(k+1) lower bound for first-fit. Computa- idea. That is they asked that we parameterize the size of the
tional experiments suggest th2k + 2 is a typical bound  input, rather than the aspect of the output we are interested
which we would expect. There seems little work concern- in. This forms what they call the “mini-classes”. For ex-
ing the effect of differing types of presentations. ample MNI-VERTEX COVER is the problem that takes as

Another more or less unexploredii§ crypto using rea-  input a graph of sizé log n, and asks what is the minimum
sonable “no-ftp” security guarantees. While the cryptesys vertex cover of the graph. The basic hardness kernel is the
tems might be in PTIMEWV[1] # F PT would be areason-  problem MNiI-CIRCUIT SATISFIABILITY . The gives a new
able working guarantee. The only work | am aware of here intermediate class

is Fellows and Koblitz [FK93].
FPT C M[1] C W[1].

8 Structural Issues The mini-classes includeMini-Vertex Cover MiNI-
DOMINATING SET, MINI-3SAT, MINI-SET SPLITTING,

Aside from understanding the issues relating paramet-Mni-NoT ALL EQUAL 3SAT, MINI-INDEPENDENTSET,
ric complexity with classical complexity there are many etc. The beauty of the mini-classes is that the reductions
poorly understood aspects of parametric complexity, wait- Jook more like “regular” ones, provided that they preserve
ing for eager graduate students. We can easily form analogg; 1og’s. The non-optimization theorem, Theorem 5.6, for

of many of the classical complexity notions. For instance, SeT Cover of Dehne, Fellows and Rosamond follows
Flum and Grohe [FGO02a], and Cai, Chen, Downey, and Fel-from material related to this.

lows [CCDF96] have looked at parameterized LOGSPACE,

where VERTEX COVER turns out to be in parameterized Theorem 8.1 (Downey, Estivill-Castro, Fellows, Pri-
LOGSPACE, and as Flum and Grohe observed a wide clas$to-Rodriguez and Rosamond [DEFPRO3]).FPT =

of problems for graphs of bounded degree also belong toM[1] iff n-variable3S AT can be solved in timg*(™).

this class. Another area looked at is parametric counting
by Flum and Grohe [FG02b], Arvind [Ar00], and McCartin
[McCO02], who looked at# W [t] for instance, proving basic . .
results. For instance, as Ve[n]takesh Raman observed count-rUR'NG MACH”.\‘E ACCEF.)TANCEfa” n all of this? The're .
ing k-vertex covers is FPT. Similarly, counting in bounded are many questions of this form. A final result of this ilk is

treewidth is also FPT. Grohe showed that the the parame-IN€ following.

terized problem of counting-cycles in a graph gt/ [1] Theorem 8.2 (Chor, Fellows, Juedes [Fe])lf FPT =

complete, an analog of Valiant's Theorem. The methods M{[1] thenk-INDEPENDENTSET andk-DOMINATING SET
are quite different. Abrahamson, Downey, and Fellows areinDTIME(Qn(k))

[ADF95], and Chen, Flum and Grohe [CFG03, FG02a]

have also looked at alternation, with two distinct hierésh One could well viewi¥'[1] hardness as simply meaning

the A[t] hierarchy and thelV[¢] hierarchy. that some form of must stay in the exponent, and does
Lots of analog questions are wide open. What about not rule outn*!°8!°e ™ or something. These last results say

a PCP theorem? What about Toda’s Theorem? Can thesomething like if you believe the variable ST notin2°("”)

switching lemma be applied? What about parameterizedthen W [1] hardness is serious bad news. By the way, we

The method of proof was inspired by Cai and Juedes
[CJO1]. Can the hierarchy be extended? Where does M
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don’t have much evidence thaf[1] # TW[1], but any proof Foundations of ComputingFOCS’'97), IEEE Press

would need something clever. One can show fhdl] = (1997), 554-563.
W(1] iff the parameterized problem asking if a graph has )

M. Szegedy, “Proof Verification and Intractability of
Approximation Algorithms,’Proceedings of the IEEE
Symposium on the Foundations of Computer Science
(1992).
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