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ABSTRACT
Motivation: The development of drug resistance is a major obstacle 
to successful treatment of HIV infection. The extraordinary replica-
tion dynamics of HIV facilitates its escape from selective pressure 
exerted by the human immune system and by combination drug 
therapy. We have developed several computational methods whose 
combined use can support the design of optimal antiretroviral thera-
pies based on viral genomic data.

1 INTRODUCTION 
Persons infected with human immunodeficiency virus type 1 (HIV-
1) are highly susceptible to develop the acquired immunodefi-
ciency syndrome (AIDS), a major global threat to human health. 
HIV-1 is a retrovirus with a 9.2kbp genome coding for 15 viral 
proteins. Currently, 19 drugs targeting three distinct steps in the 
viral replication cycle are available for antiretroviral therapy. 
These drugs can be grouped into four different classes, according 
to their target and mechanism of action. Nucleoside and nucleotide 
analogues act as chain terminators in reverse transcription of RNA 
to DNA. Non-nucleoside reverse transcriptase inhibitors bind to 
and inhibit reverse transcriptase (RT), a viral enzyme that catalyzes 
reverse transcription. Protease inhibitors target the HIV protease, 
which is involved in maturation of released viral particles by cleav-
ing precursor proteins. Finally, entry inhibitors block the penetra-
tion of HIV virions into their target cells. 

Cell entry is a complex process mediated by sequential interac-
tions of the viral proteins gp120 (envelope) and gp41 (transmem-
brane) with the cellular CD4 receptor and a coreceptor, usually 
CCR5 or CXCR4, depending on the individual virion. Conse-
quently, different types of entry inhibitors have been proposed: 
Fusion inhibitors prevent merging of viral and host cell membranes
by binding to the transmembrane protein gp41. In contrast, core-
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ceptor antagonists bind to the host protein prior to membrane fu-
sion.

The available antiretroviral agents are applied in combination 
therapies—so called highly active antiretroviral therapy (HAART), 
typically comprising two nucleoside analogues and either a prote-
ase inhibitor or a non-nucleoside RT inhibitor. However, therapeu-
tic success, even of HAART, is limited. Antiretroviral therapy is 
not able to eradicate HIV, and durable suppression of virus replica-
tion below detectable limits is achieved in only a fraction of pa-
tients. Drug resistance can be the cause of treatment failure and is 
almost always a consequence of it (Clavel et al., 2004, DeGruttola 
et al., 2000).

1.1 Drug resistance
The intra-patient virus population is a highly dynamic system, 
characterized by high virus production and turnover rates and a 
high mutation rate. These evolutionary dynamics are the basis for a 
large and diversified virus population that predisposes or quickly 
generates resistance mutations. In a replicating population escape 
mutants with a selective advantage under therapy become domi-
nant and lead to increased virus production and eventually to ther-
apy failure. A number of mutations in protease, RT, and gp41 have 
been associated with resistance to different antiviral agents (Shafer 
et al., 2000). Each drug has its own characteristic resistance profile 
reflecting its chemical properties and mechanism of action. Never-
theless, cross-resistance (i.e. resistance against an unused drug) is 
common between drugs from the same class. Therefore, HAART 
advocates the use of two different drug classes in order to reduce 
the likelihood of a mutant to resist all drugs in the combination and 
to suppress viral replication more effectively (Jordan et al., 2004).

After treatment failure, the shifted population may be hit with a 
new drug combination, but finding such a potent regimen is chal-
lenging. Cross-resistance severely limits the remaining treatment 
options and the success of subsequent regimens is further impaired. 
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The interplay between development of drug resistance and insuffi-
cient suppression of virus replication can eventually lead to situa-
tions in which the currently available drugs can no longer control 
replication at all. In the United States, as many as 50% of patients 
receiving HAART carry a virus that is resistant to at least one of 
the approved drugs (Richman et al., 2004). Furthermore, transmis-
sion of drug resistant viruses is estimated to occur in about 15% of 
persons newly diagnosed with HIV infection in the US (Bennett et 
al., 2005).

Because cross-resistance is frequent, treatment changes cannot
be based on the assumption that the virus will remain susceptible 
to the unused drugs. Therefore, resistance testing has become an 
important diagnostic tool in the management of HIV-infections 
(Perrin et al., 1998). Resistance testing can be performed either by 
measuring viral activity in the presence and absence of a drug 
(phenotypic resistance testing), or by sequencing the viral genes 
coding for the drug targets (genotypic resistance testing). Geno-
typic assays are much faster and cheaper, but sequence data pro-
vide only indirect evidence of resistance. 

The Arevir project is a collaborative effort between clinicians, 
virologists, and computational biologists to exploit genotype data 
from genotypic resistance tests for the individual selection of op-
timal drug combinations. We have developed several computa-
tional methods for the analysis of integrated genotypic, phenotypic 
and clinical data. Our goal was to provide tools for supporting 
personalized genotype-driven treatment decisions.

1.2 Challenges
The following questions have been addressed and approaches to 
their solutions will be described in the following sections.

(1) Data integration. A prerequisite for any attempt to use 
genotypic data in a clinical setting is to provide this infor-
mation at the right time and place. Resistance testing is of-
ten performed in specialized virological labs separated 
from the clinical department. Furthermore, most clinical 
data management systems are not prepared to handle se-
quence data. Thus, our first task is to collect, organize, and 
integrate all relevant patient data.  

(2) Phenotype prediction from genotypes. The first step in 
interpreting genotypic data is to understand the effect of 
single mutations and to relate mutational patterns to the in 
vitro phenotype. We have addressed predicting phenotypic 
drug resistance from the viral drug targets as well as pre-
diction of coreceptor usage from gp120. Both models can 
augment the cheaper and faster genotypic test with a pre-
diction of the phenotype, namely the susceptibility to each 
of the drugs and the coreceptor in use, respectively. This 
piece of information is important for the choice of therapy.

(3) Evolution of drug resistance. Understanding the muta-
tional pathways that lead to resistant strains is important 
for two reasons. First, this knowledge allows for estimating 
the distance of a virus population to escape from drug pres-
sure, a quantity referred to as the genetic barrier. Second, 
the prediction of mutational pathways makes it possible to 
design sequences of therapies rather than one regimen at a 

time. We have addressed the problem of estimating evolu-
tionary pathways from sequence data. 

(4) Therapy optimization. Our ultimate goal is to determine 
optimal drug combinations on the basis of genotypic in-
formation. For this task, we need to estimate the in vivo ef-
fect of a drug combination on a given viral genotype and to 
identify the regimen that maximizes clinical response. In 
addressing these problems we make use of both the in vitro
phenotype predictions and the estimated evolutionary 
pathways.

For each of the four challenges we present computational ap-
proaches and indicate the biological or clinical impact. We show
how the developed tools can be linked together in order to support 
the selection of effective therapies against drug resistant HIV 
strains.  

2 DATA MANAGEMENT
In order to meet the data integration and management challenge we 
have developed the Arevir database, a secure electronic platform 
for collaborative research aimed at optimizing anti-HIV therapies. 
This system is designed to facilitate data exchange, improve diag-
nostics, support medical decisions, and to provide the basis for data 
analysis. 

2.1 Database schema
In managing HIV-infected patients a number of different types of 
data arise, including personal patient data, therapy histories, nu-
merous virologic, immunologic and other clinical test results de-
rived from patient samples from different tissues, and sequence 
data, e.g. from genotypic resistance tests. Our database schema 
captures these data types in different modules, consisting of a few 
tables each (Beerenwinkel, 2004a).

There is an important relationship between sequences and thera-
pies via the drug targets. The compounds making up a combination 
therapy target specific viral proteins. DNA segments coding for 
these proteins are sequenced in order to gain information on the 
level of resistance that has been developed by the virus. Thus, 
given the values of clinical markers the data model allows for ask-
ing for outcomes of therapy types versus mutational patterns 
within the drug targets. This is the central question of the Arevir
project. It will be revisited in a later section.

2.2 Implementation
The data model has been implemented in the open source relational 
database management system MySQL. A secured client/server 
architecture allows for remote access to the centralized database. 
Since sensitive patient data are involved, this setting needs to meet 
the security demands imposed by state and national law. In addi-
tion, we have developed a web interface to the database for clini-
cians and virologists. For these users the appropriate view on the 
data is through a single patient or a single patient sample. Thus,
treating physicians as well as lab personnel get access to an inte-
grated view onto all relevant data for one patient. For example, 
they can evaluate a genotypic resistance test result in the context of 
the patient’s medical history and current immunologic status. 
Moreover, applying the developed computational tools yields phe-
notypic interpretations of the genotypes. As of 2005, the Arevir 
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database comprises 5,720 patients, 9,685 therapies, 5,065 DNA 
sequences, and 146,539 laboratory test results from 7 different 
institutions including 3 clinical centers and 2 virological labs.

2.3 Public databases
In addition to our pooled cohort data, public datasets can also pro-
vide valuable information on sequence variation and response to 
therapy. A major resource for clinical trials data is the AIDS Clini-
cal Trials Group (http://aactg.org). The Los Alamos National 
Laboratories maintain databases of annotated HIV sequence data, 
drug resistance mutations, HIV epitopes, and vaccine trials results 
(http://www.hiv.lanl.gov). The Stanford HIV Drug Resistance 
Database contains sequences coding for the drug targets of antiret-
roviral therapy, drug susceptibility data, and therapy histories 
where publicly available (http://hivdb.stanford.edu).

3 FROM GENOTYPE TO PHENOTYPE
Genotype-phenotype relations are much easier to study if the phe-
notype is determined by a well defined lab experiment than for in 
vivo phenotypes that depend on many factors, which can confound 
the analysis. Therefore, predicting in vitro phenotypes from HIV 
genotypes is a good starting point for sequence interpretation. 

3.1 Drug susceptibility
Prediction of phenotypic drug resistance from genotypes is based
on matched genotype-phenotype pairs derived from patients failing 
antiretroviral therapy. For each drug, phenotypic resistance is de-
termined in a recombinant virus assay (Kellam & Larder, 1994; 
Walter et al., 1999). In this experiment the replication capacity of 
the virus is measured as a function of drug concentration. The 
drug-response relationship is summarized by the resistance factor
(or the fold-change in susceptibility), defined as the ratio between 
the amount of drug necessary to inhibit replication of the virus by 
50% and the corresponding value for a standardized wild type 
virus. Coefficients of variation between 10% and 60% have been 
reported for the resistance factor (Walter et al., 1999). On the other 
hand, determination of genotypes by cycle-sequencing is highly 
reproducible, but the common population sequencing strategy de-
tects only those variants that are present in at least 20% of viruses 
in the population. For drug resistance testing, the full protease (99 
amino acids), the 5’ part of the RT (typically the first 250-300 
residues), and possibly parts of gp41 and gp120 are sequenced. To 
predict the resistance phenotype from the genotype means to solve, 
for each drug, the regression problem with predictors being the 
sequence positions of the drug target and response being the resis-
tance factor. Alternatively, we may consider the related binary 
classification problem induced by choosing a drug-specific cutoff 
to define a susceptible and a resistant class of viruses.

A number of machine learning approaches to resistance pheno-
type prediction from genotypes have been proposed including neu-
ral networks (Drăghici et al., 2003; Wang et al., 2003), recursive 
partitioning (Sevin et al., 2000), linear stepwise regression (Wang 
et al., 2004), and more elaborate statistical models (Foulkes et al., 
2002; DiRienzo et al., 2003). We discuss in more detail support 
vector machine (SVM) regression (Beerenwinkel, 2001a) and deci-
sion tree classification (Beerenwinkel, 2002a), which serve as the 
engine for a widely used web-based prediction tool (cf. Section 
5.2).

For SVM regression sequences are mapped into an Euclidean 
vector space by introducing 20 indicator variables for each amino 
acid position of the multiple sequence alignment. The SVM learn-
ing strategy is suitable for this type of high-dimensional noisy data. 
Table 1 summarizes the performance of the regression models on a 
set of 650 genotype-phenotype pairs (Beerenwinkel et al., 2002a).

SVMs are among the best performing machine learning methods 
in terms of prediction accuracy. However, other methods are ad-
vantageous if interpretation of the learned model is intended. We 
have applied decision trees to the classification problem described 
above in order to elucidate the effect of mutational patterns on the 
resistance phenotype. This analysis has revealed concise models 
incorporating only 4 to 7 sequence positions as compared to some 
10 to 20 positions that are associated with resistance (Johnson et 
al., 2004). Moreover, decision trees can model the effect of a muta-
tion in the context of other mutations. In particular, some decision 
trees display resensitization or hypersusceptibility effects. For 
example, zidovudine resistance induced by mutation T215Y in the 
RT may be reverted by mutations L74V/I and M184I/V. The latter 
substitution can also resensitize tenofovir resistant strains (Wolf et 
al., 2003). Likewise, mutation N88S in the protease gene has been 
found to increase susceptibility to amprenavir.

3.2 Coreceptor usage
The effective use of coreceptor antagonists that target a particular 
coreceptor depends on the ability of determining prior to drug ap-
plication the type of coreceptor used by the virus for cell entry. In 
fact, careful monitoring of viral coreceptor usage is mandatory 
during such treatment, because few mutations in the envelope pro-
tein gp120 of HIV are sufficient for switching to another corecep-
tor. In addition, a switch from CCR5 to CXCR4 has been associ-
ated with accelerated progression towards AIDS. Since experimen-
tal determination of coreceptor usage is costly, the availability of 
sequence based methods would be advantageous for routine clini-
cal practice with upcoming CCR5 antagonists. 

We have analyzed this genotype-phenotype relation in 1100 se-
quences of the third hypervariable (V3) region of gp120 for which 
coreceptor usage had been determined experimentally. To accom-
modate for the extraordinary genetic variability within this region, 
sequences were aligned to a fixed reference multiple alignment 
containing representatives of all HIV-1 subtypes. We compared 
decision trees, SVMs (Pillai et al., 2003), neural networks (Resch 
et al., 2001), position-specific scoring matrices (Jensen et al., 
2003), and a classical rule based on charge of amino acids at posi-
tions 11 and 25 in the V3 loop (Fouchier et al., 1995). Using 
ROCR (Sing et al., 2005b), a comprehensive tool for evaluating 
classifier performance, we found SVMs to outperform the other 
methods. In an effort to attain this current gold standard in per-
formance with a model that lends itself more readily for interpreta-
tion, we have suggested mixtures of localized rules (Sing et al., 
2004), a novel weighted voting strategy for rules-based classifiers. 
Rules, describing specific mutational patterns, are localized in the 
sense that their associated weights are modulated in an instance-
dependent manner based on the genetic background in which the 
pattern occurs. This method significantly outperformed classical 
decision tree building, thus representing an alternative for knowl-
edge extraction.

http://hivdb.stanford.edu/
http://www.hiv.lanl.gov/
http://aactg.org/
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4 EVOLUTIONARY PATHWAYS
Under suboptimal therapy the virus population continuously repli-
cates and acquires new resistance mutations. This process occurs in 
a non-uniform, stochastic fashion and gives rise to co-existing 
evolutionary pathways. Understanding this evolutionary process is 
important for estimating the proximity of a virus to escape from 
drug pressure. We use mutagenetic trees, a family of probabilistic 
graphical models, to estimate rate and order of occurrence of resis-
tance-associated mutations in the viral drug targets.

4.1 Mutagenetic trees
We consider a set of n specific amino acid changes (mutations) 
that develop under drug treatment. A mutagenetic tree for these n
mutations is a connected branching on {0, …, n} rooted at 0 (Fig. 
2). Each vertex v ≠ 0 represents the binary random variable Xv that 
indicates the occurrence of mutation v. We associate probability 
parameters θv with the tree edges to obtain a directed acyclic 
graphical model with conditional probability matrices
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where pa(v) denotes the parent of v in the tree. The first row of this 
matrix imposes the constraint that a mutation can occur only if all 
of its ancestor mutations have already occurred. A mutagenetic tree 
defines a probability distribution on the set of all possible muta-
tional patterns. In particular, this model family includes linear path 
models (chains) and the model of complete independence given by 
the star topology. It is possible to characterize the complete family 
of mutagenetic tree models by their algebraic invariants, which 
turn out to have a simple combinatorial structure (Beerenwinkel et 
al., 2005c). Mutagenetic trees can be reconstructed from observed 
cross-sectional data by Edmonds’ maximum weight branching 
algorithm involving only pair-wise probabilities (Desper at al., 
1999).

We have extended the single tree model to mixture models of 
mutagenetic trees that combine several weighted trees (Beeren-
winkel et al., 2005d). The first tree component is a star with uni-
form probabilities that models the spontaneous and independent 
occurrence of mutations. All other components represent depend-
encies between mutations and are estimated from the data. The 
mixture model is learned by an Expectation Maximization Algo-
rithm that iteratively estimates the expected values of the missing 
data (i.e. the association of samples to the trees) and the structure 
and parameters of the trees. For model selection (choosing the 
number of tree components) we either use cross-validation or a 
modified Bayesian Information Criterion that includes an estimate 
of the structural redundancy between tree components (Yin et al., 
2005). Mtreemix, a software package for statistical inference with 
mutagenetic trees and mixtures of these, is described in (Beeren-
winkel et al., 2005a).

Assuming independent Poisson processes for the occurrence of 
mutations and for the observed sampling times (i.e. the time on 
therapy) with rates λv and λS, respectively, we find

Sv

v
v
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λ
θ

+
= .

This relation allows for translating the estimated conditional prob-
abilities between mutations into the expected waiting time for the 
mutation to occur. Furthermore, the probabilities of occurrence of 
any mutational pattern can be computed for any fixed mean wait-
ing time. Hence, using these timed mutagenetic trees we can com-
pare models that have initially been estimated from data sets sam-
pled after different mean waiting times.

Figure 1 shows a mutagenetic tree and the corresponding timed 
mutagenetic tree for the development of drug resistance in the HIV 
RT under therapy with zidovudine, the first anti-HIV drug ap-
proved. The tree has been estimated from 364 genotypes derived 
from previously untreated patients under zidovudine mono-therapy 
(Beerenwinkel et al., 2005b). This dataset is publicly available at 
the Stanford HIV Drug Resistance Database (Rhee et al., 2003). 
The model displays two characteristic pathways, namely the 70-
219 and the 215-41 pathway (cf. Boucher et al., 1992).

4.2 Genetic barrier
Suppose we have estimated a mutagenetic tree model for the de-
velopment of resistance to a certain drug. In particular, this model 
can be used to compute transition probabilities between mutational 
patterns. As described in the previous section we can predict the 
resistance phenotype from the genotype. Using a classifier re-
stricted to the set of n mutations we predict each mutational pattern 
to be either susceptible or resistant. Now, for a given virus we may 
ask what the transition probability to any resistant state is. In fact, 
this question is crucial for minimizing the risk of resistance devel-
opment with the next regimen. We refer to the genetic barrier as 
the probability of not reaching any resistant state after a fixed time 
period under therapy. This quantity can be calculated as the sum of 
the probabilities of all mutational patterns predicted as susceptible. 
Thus, a higher genetic barrier indicates that the virus is less likely 
to become resistant.

For example, Table 2 shows the genetic barriers to both low 
level and high level zidovudine resistance of the wild type virus 
under three different regimens, namely zidovudine mono-therapy, 
double therapy with zidovudine plus lamivudine, and double ther-
apy with zidovudine plus didanosine. The underlying mutagenetic 
tree model is the tree displayed in Figure 1 scaled to a mean sam-
pling time of 96 weeks. As expected, the genetic barrier to zi-
dovudine is always higher under the combination of zidovudine 
plus lamivudine than under zidovudine alone, because these drugs 
do not share any resistance mutations. More surprisingly, we find 
that zidovudine resistance appears to develop faster under zi-
dovudine plus didanosine than under zidovudine mono-therapy. 
This effect may be explained by the stronger selective pressure 
exerted by the double therapy and the cross-resistance profile of 
zidovudine and didanosine (Beerenwinkel et al, 2005b; Brun-
Vezinet et al., 1997). Thus, the genetic barrier is a useful concept 
for designing effective treatment strategies. 

5 THERAPY OPTIMIZATION
The computational task of identifying optimal antiretroviral drug 
combinations with respect to a given viral genotype is a typical 
bioinformatics problem (such as sequence alignment, for example) 
in the sense that the objective function of the optimization problem 
is not known. In fact, we need to know the in vivo effect of any 
drug combination on any mutational pattern in order to find the 
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best regimen. Typical clinical parameters of interest are the virus 
load (the amount of plasma HIV RNA) and the number of CD4+ 
cells (T-lymphocytes). Estimating these response functions is 
much more challenging than actually selecting the optimal drug 
therapy. Indeed, the number of drug combinations is only on the 
order of thousands, and hence they can be enumerated. By con-
trast, HIV’s high genetic diversity induces a much higher number 
of mutational patterns over all drug targets. Furthermore, clinical 
response is influenced by several factors other than resistance, 
including patient adherence, immunological status, and baseline 
virus load. 

One way to estimate the activity of a therapeutic regimen against 
a viral strain is to learn this effect from an observational clinical 
database such as the Arevir database. This is straightforward, if we 
fix a combination therapy or a narrowly defined type of therapy. In 
this case, machine learning approaches similar to those presented 
in a previous section can be used to predict clinical response. 
However, if the drug combination is not fixed, direct learning from 
cohort data is limited by the amount of data necessary to derive 
useful models, because now the complexity of the problem de-
pends on both mutational patterns and drug combinations (DiRi-
enzo et al., 2002). Furthermore, the distribution of drug combina-
tions in clinical databases is heavily skewed, reflecting approval 
times and treatment strategies over time (Beerenwinkel et al., 
2004a). Thus, training on such data sets is likely to result in models 
that capture the features of only a few frequently observed combi-
nations, but are not appropriate to explore the product space of all 
mutational patterns and drug combinations.

5.1 Scoring functions
An alternative approach to general response prediction is to score 
drug combinations on the basis of single drug effects. This implies 
assuming a functional dependency of the effect of a drug combina-
tion on the single drug effects. The simplest way of doing this is to 
use a classifier for resistance phenotype prediction and to count the 
number of active drugs in a combination, i.e. the number of drugs 
for which the virus is predicted susceptible. For example, De Luca 
et al. (2003) have separated 332 patients according to viral geno-
type and therapy. SVM based phenotype predictions were used to 
define one group of patients with 2 or fewer drugs predicted as 
active and another group with 3 or more active drugs. Using a Cox 
proportional hazards model they show that patients in the group 
with at most 2 active drugs are at significantly higher risk of vi-
rological failure (Figure 2). As compared to 11 other interpretation 
systems that are based on expert rules, only this data-driven ap-
proach yielded significant predictions of virological response. 

A natural refinement of this scoring scheme is to sum over the 
real-valued predicted resistance factors instead of the binary resis-
tance predictions. However, the dynamic range of resistance fac-
tors varies by as much as two orders of magnitude between differ-
ent drugs. In order to normalize these values we estimate their 
distribution over a large random sample of 2000 genotypes. Since 
bimodality is a common feature for all drugs, we model this den-
sity by a Gaussian mixture model,

]1,0[),,;()1(),;( 2211 ∈×−+× λσµλσµλ xΝxΝ , 

whose parameters can be estimated by the Expectation Maximiza-
tion Algorithm. This two-state model provides a data-derived defi-

nition of susceptible and resistant. By linearizing the log-
likelihood ratio between these two classes, we obtain the activity 
score, which approximates the conditional probability of member-
ship in the susceptible class given the viral genotype (Beeren-
winkel et al., 2003a). Thus, the activity score provides a normal-
ized and comparable measure of resistance, and we can extend it to 
multi-drug therapies by summing over all drugs in the combina-
tion.

Similarly, we can use the genetic barrier of the virus to resis-
tance to each of the compounds of the regimen (Figure 3). Sum-
ming these values provides an estimate of how easy it is for the 
virus to escape from the selective pressure of the combination ther-
apy. As demonstrated in Section 4.2 this genetic barrier score can 
be different from the genetic barrier of the drug combination. We 
confine ourselves with this approximation, because estimating the 
genetic barrier for all drug combinations would again require, for 
each combination, many samples derived from patients under the 
respective regimen. Despite these simplifications both the activity 
score and the genetic barrier score are predictive of virological 
response. Figure 4 shows their performance of classifying geno-
type-therapy pairs on a special and instructive dataset consisting of 
64 sequences, each paired with one successful and one failing regi-
men. The genotype alone does not provide any useful information 
for classifying these pairs. Similarly, by randomizing the genotype 
data, we see that the therapy data alone do not give rise to a com-
petitive classifier either. The noticeably best performance is ob-
tained on the combined genotype-therapy data. Thus, the learned 
concept is specific for the combined effect of drug combination 
and mutational pattern. The genetic barrier score, which makes use 
of three different types of data sets (Figure 3), performs best.

In a related approach we have estimated the proximity of the vi-
rus to an escape state more conservatively. Applying a heuristic 
greedy search, we explore the mutational neighborhood of the viral 
sequence by successively introducing point mutations and follow-
ing those in silico mutants that reduce the activity of the regimen 
most. The estimated “worst case” activities were used in a regres-
sion model to predict the expected drop in virus load (Beeren-
winkel et al., 2003b). 

5.2 Geno2pheno
We have implemented the web server geno2pheno
(http://www.genafor.org) that provides interpretations of genotypic 
test results in terms of phenotype predictions (Beerenwinkel et al., 
2003a; Sing et al., 2005a). The system predicts coreceptor usage 
from submitted HIV-1 V3 loop sequences as well as phenotypic 
resistance to 17 antiretroviral agents from protease and RT se-
quences. The output also includes activity scores rendering predic-
tions comparable between drugs. An additional software tool, theo,
for selecting and evaluating drug combinations on the basis of the 
different scoring functions discussed above is currently validated 
and tested by virologists and clinicians. Since December 2000, 
geno2pheno has made 35,000 online resistance predictions and 
since June 2004 more than 1,000 coreceptor predictions. The sys-
tem is used world-wide by virologists performing genotypic resis-
tance tests as well as by clinicians seeking effective drug combina-
tions. 
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6 CONCLUSIONS
In order to support clinical decision making on the basis of viral 
genomic data, we have developed and applied several computa-
tional methods and tools. Specifically we have addressed data inte-
gration and management (Arevir database), prediction of drug 
resistance and coreceptor usage from genotypes (geno2pheno), 
modeling of the evolution of drug resistance and the genetic barrier 
by mutagenetic trees (mtreemix), and selection of optimal drug 
combinations (theo). The integration of various types of genomic, 
phenotypic, and clinical data as well as the coupling of different 
computational models yields predictive models of therapy outcome 
that may support the design of combination therapies.

6.1 Future work
Further factors of therapeutic outcome, involving pharmacological, 
viral, and host factors, need to be accounted for in future work. For 
example, pharmacokinetic properties of drugs and their specific 
realization in different patients (pharmacogenomics) are important 
predictors. The amount of drug actually present in infected cells 
may yield more accurate predictions of the development of resis-
tance. Besides resistance, replication capacity (fitness) is another 
viral property currently investigated. It depends on phenotypic 
properties of many viral proteins, such as protease cleavage rate or 
RT error rate. It may be expected that a fitness estimate based on 
integrating these predictions into a model of the viral replication 
cycle will lead to improved predictions. Finally, there is strong 
evidence that viral evolution is, in part, also host-dependent. In 
particular, we have started to study the impact of the host HLA 
genotype on the development of viral escape mutations (Roomp et 
al., 2005).
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TABLES

Table 1. SVM regression models. 

Drug N SV MSE Std error r2

Zidovudine 649 387 0.554 0.040 0.62

Didanosine 649 437 0.101 0.009 0.42

Zalcitabine 534 325 0.122 0.013 0.30

Stavudine 649 401 0.145 0.015 0.33

Lamivudine 648 408 0.332 0.019 0.72

Abacavir 637 405 0.075 0.011 0.60

Tenofovir 321 206 0.091 0.005 0.50

Nevirapine 649 418 0.638 0.056 0.55

Delavirdine 648 403 0.476 0.033 0.55

Efavirenz 634 437 0.354 0.026 0.60

Saquinavir 652 394 0.204 0.022 0.71

Indinavir 652 387 0.197 0.017 0.73

Ritonavir 652 383 0.176 0.017 0.79

Nelfinavir 651 391 0.207 0.011 0.71

Amprenavir 464 303 0.173 0.013 0.65

Lopinavir 307 210 0.169 0.016 0.73

Atazanavir 305 187 0.262 0.034 0.61

Predictive performance was estimated from N samples by 10-fold cross-validation, 
and is reported as the mean squared error (MSE), its standard error (Std error) and the 
squared correlation coefficient (r2) between predicted and observed log10-resistance 
factors. SV denotes the number of support vectors

Table 2. Genetic barriers of the wild type virus to resistance to zidovudine 
(ZDV) under the three regimens zidovudine mono therapy, zidovudine + 
lamivudine (3TC) double therapy, and zidovudine + didanosine (ddI) dou-
ble therapy.

Genetic barrier to ZDV resistance

Therapy 10-fold 100-fold

ZDV 0.51 0.80

ZDV + 3TC 0.66 0.93

ZDV + ddI 0.30 0.72

The genetic barrier was defined as the probability of the virus population not reaching 
any escape mutant, after 96 weeks of therapy, with a fold-change in susceptibility to 
ZDV of 10 (low level resistance) and 100 (high level resistance), respectively.
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FIGURES

A                                        B                      

Figure 1. Mutagenetic tree for the development of zidovudine resistance. Vertices 
denote amino acid changes from the wild type, edges are labeled with conditional 
probabilities (A) and expected waiting times in days (B), respectively.

Figure 2. Risk of virological failure (two consecutive virus load values of more than 
500 cps/ml after 24 weeks of therapy) as a function of the number of weeks on ther-
apy. Two patient groups are distinguished according to whether the number of drugs 
scored as active is smaller than 3 or not. The two groups experience a significantly 
different risk of virological failure. (Data kindly provided by Andrea De Luca, Catho-
lic University, Rome.)

Figure 3. Data flow. White boxes indicate different types of data sets, shaded boxes 
symbolize computational models inferred from the data (implemented tools in italics).

Figure 4. Error rates for different scoring functions on a set of 128 genotype-therapy 
pairs in which each genotype occurs exactly twice, once with a drug combination 
resulting in a successful therapy (defined as undetectable virus load), and once with 
another drug combination resulting in therapy failure (defined as virus load above 
1000 cps/ml). From left to right: activity scores (act), with sequences randomized 
(act_rs), with therapies randomized (act_rt), genetic barrier scores (bar), with se-
quences randomized (bar_rs), with therapies randomized (bar_rt).
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