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Abstract. Problem parameters are ubiquitous. In every area of com-
puter science, we find all kinds of “special aspects” to the problems en-
countered. Hence, the study of parameterized complexity for computa-
tionally hard problems is proving highly fruitful. The purpose of this
article is to stir the reader’s interest in this field by providing a gentle
introduction to the rewarding field of fixed-parameter algorithms.
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1 Introduction

Computationally hard problems are ubiquitous. The systematic study of com-
putational (in)tractability lies at the very heart of computer science. Garey and
Johnson’s [44] monograph on computational intractability surely is a landmark
achievement in this direction, providing an in-depth treatment of the theory of
NP-completeness. With the theory of NP-completeness and the like at hand,
we can prove meaningful statements about the computational complexity of
problems. But what happens after we have succeeded in proving that a prob-
lem is NP-hard (that is, “intractable”) and, nevertheless, the problem has to be
solved in practice? In other words, how does one cope with computational in-
tractability? Several methods to deal with this problem have been developed [60]:
approximation algorithms [12,57,86], average-case analysis [59], randomized al-
gorithms [72], and heuristic methods [71,78]. All of them have their drawbacks,
such as, respectively, the difficulty of approximation, lack of mathematical tools
and results, limited power of the method itself, or the lack of any provable per-
formance guarantees at all.

NP-hardness, in accordance with the state of the art of computational com-
plexity theory, means that we have to take into account algorithms with ex-
ponential running times to solve the corresponding problems exactly.1 Clearly,
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1 Clearly, whenever we obtain a fast enough optimal solution there is no need to search
for approximate solutions. The point is to better understand to what extent we can
afford to do so, that is, how costly the search for optimal solutions in various cases
(parameterizations) is.



however, exponential growth quickly becomes prohibitive when running algo-
rithms in practice. Fixed-parameter algorithmics provides guidance on the feasi-
bility of the “exact algorithm approach” to hard problems by means of a refined,
two-dimensional complexity analysis. The fundamental idea is to strive for bet-
ter insight into a problem’s complexity by exploring (various) problem-specific
parameters and to find out how they influence the problem’s computational com-
plexity. Ideally, we aim for statements such as “if some parameter k is small in
problem X, then X can be solved efficiently.” For instance, in case of the NP-
complete graph problem Vertex Cover we know that if the solution set we
are searching for is “small”, then this set can be found efficiently whatever the
graph looks like and however big it is—the exponential factor in the running
time amounts to approximately 1.29k [22,76], where the parameter k is the size
of the solution set sought. Thus, if we search for little (size of solution), then
we have to pay little (running time). Unfortunately, an analogous behavior is
highly unlikely for the NP-complete graph problem Dominating Set, as the
machinery of parameterized complexity theory makes clear [28].

Parameterized complexity and exact algorithms are the subject of several
surveys [10,27,34,35,36,52,87], indicating the increasing importance of this field.2

The purpose of this incomplete and personally biased expository paper is to stir
the reader’s interest in the field with an emphasis on algorithmic questions and
methods. A distinguishing feature of this survey compared to previous ones will
be its focus on the “art of parameterizing problems.” Altogether, it will be shown
that fixed-parameter complexity is not at all a “small area.” In fact, we believe
that it is destined to become a driving force in modern, algorithmically-oriented
research on computationally hard problems.

2 Satisfiability or Why to Parameterize Problems?

The Satisfiability problem for boolean formulas in conjunctive normal form
may be considered the “drosophila of computational complexity theory.” This
fundamental NP-complete problem has been the subject of research on exact
algorithms for decades [23] and it continues to play a central role in algorithmic
research—the annual “SAT” conference is devoted to theory and applications of
satisfiability testing. We define the problem as follows.

Input: A boolean formula F in conjunctive normal form.
Task: Determine whether or not there exists a truth assignment for the
variables in F such that F evaluates to true.

Numerous applications such as VLSI design and model checking make Satisfi-
ability of real practical interest. Often, however, in concrete applications the

2 Also see the December 2003 special issue of Journal of Computer and System Sci-
ences, volume 67(4), on parameterized complexity and computation, edited by Jianer
Chen and Michael R. Fellows. In addition, there is a newly launched conference IW-
PEC 2004 (International Workshop an Parameterized and Exact Computation), held
in Bergen, Norway, September 2004 (proceedings appear in Springer’s LNCS series).
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corresponding problem instances turn out to be much easier than one might
expect given the fact of Satisfiability’s NP-completeness. For instance, large
Satisfiability instances arising in the validation of automotive product config-
uration data turn out to be efficiently solvable [65,81]. Hence, the question arises
of whether we can learn more about the complexity of Satisfiability by means
of studying various problem parameters. In particular, we are less interested in
empirical results but more so in provable performance bounds related to various
parameterizations of Satisfiability. In this way, we hope to obtain a better
understanding of problem properties that might be of algorithmic use. In the
rest of this section, we discuss several parameterizations of Satisfiability.

Formally, an input of Satisfiability is a conjunction of m clauses where
each clause consists of a disjunction of negated or non-negated boolean variables
(so-called literals).

Parameter “clause size.” The maximum number k of literals in any of the
given clauses is a very natural formula parameter. For k = 3, however, the
problem remains NP-complete whereas it is polynomial-time solvable for
k = 2 [44]. Thus, for coping with the problem’s intractability, this parame-
terization seems of little help in cases where k ≥ 3.

Parameter “number of variables.” The number n of different variables oc-
curring in a formula significantly influences the complexity. Since there are
2n different truth assignments, in essentially3 this number of steps Satisfia-
bility can be solved. When restricting the maximum clause size by some k,
for instance, k = 3, better bounds are known. The current best upper bound
for 3-Satisfiability is 1.324n [62].

Parameter “number of clauses.” If the number of clauses in a formula can
be bounded by k, then Satisfiability can be solved in 1.239k steps [56].

Parameter “formula length.” If the total length of the formula is bounded
by k, then Satisfiability can be solved in 1.074k steps [56].

The above parameterizations will not suffice to explain all the cases of good
behavior of Satisfiability in many practical situations. There are application
scenarios where none of them would lead to an efficient algorithm. Hence, the
following way of parameterizing Satisfiability seems prospective.

Parameters exploiting “formula structure.” Szeider [84] surveys several re-
cent exact algorithms with exponential bounds depending on certain struc-

tural formula parameters. He discusses parameters based on structural graph
decompositions (where “variable interaction graphs” etc. are considered).
Similar, more empirically oriented investigations have been started in [80].

Finally, from the parameterized complexity theory [28] point of view the follow-
ing parameterization is of particular relevance.

Parameter “weight of assignment.” Here it is asked whether a formula has
a satisfying assignment with exactly (!) k variables being set true. Although

3 We neglect polynomial-time factors in the running time throughout the paper when-
ever they play a minor role in our considerations.
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the parameterization with this “weight parameter” seems rather artificial,
it plays a major role in characterizing parameterized intractability [28]. It
serves as a building block in the parameterized hardness program similar to
the role Satisfiability plays in classical NP-completeness theory.

To summarize, different ways of parameterizing Satisfiability lead to a
better understanding of the problem’s inherent complexity facets. In particular,
it might be hoped that structural parameterizations as discussed and surveyed
by Szeider [84] will yield new insights on tractable cases of Satisfiability. But
there surely is no “best parameterization.” As a rule, the nature of the complex-
ity of hard computational problems will probably almost always require such a
multi-perspective view in order to win better insight into practically relevant,
efficiently solvable special cases. To cope with intractability in a mathematically
sound way, it seems that we have to pay the price by shifting our view from
considering the input just through one pair of glasses (mostly these glasses are
called “complexity measurement relative to input size”) to a multitude of pairs
of glasses, each of them with a different focus (that is, parameter). Note, how-
ever, that the above indicated, and in the rest of this paper further exhibited,
methodology of parameterizing problems still relies on worst-case analysis. Pa-
rameterized complexity theory, as chiefly developed by Downey and Fellows [28],
puts the related issues into a mathematically sound, formal framework.

3 Parameterized Complexity Theory in a Nutshell

Parameterized complexity theory [28] offers a two-dimensional framework for
studying the computational complexity of problems. A parameterized language

(problem) L is a subset L ⊆ Σ∗×Σ∗ for some finite alphabet Σ. For (x, k) ∈ L,
by convention, the second component denotes the parameter. The two dimen-
sions of parameterized complexity analysis are constituted by the input size n,
i.e., n := |(x, k)| and the parameter value k (usually a nonnegative integer). A
parameterized language is fixed-parameter tractable if it can be determined in
f(k) · nO(1) time whether (x, k) ∈ L, where f is a computable function only
depending on k. The corresponding complexity class is called FPT.

A core tool in the development of fixed-parameter algorithms is polynomial-
time preprocessing by data reduction rules, often yielding a reduction to a prob-

lem kernel. Here, the goal is, given any problem instance I with parameter k, to
transform it into a new instance I ′ with parameter k′ such that the size of I ′ is
bounded by some function only depending on k′, k′ ≤ k, and (I, k) has a solution
iff (I ′, k′) has a solution—see [1] for a recent thorough investigation of reduction
to a problem kernel (also called kernelization) for the Vertex Cover problem
(the problem parameter there being the size of the vertex cover set).

Downey and Fellows developed a completeness program as a formal frame-
work to show fixed-parameter intractability [28]. Let L, L′ ⊆ Σ∗ × N be two
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parameterized languages.4 We say that L reduces to L′ by a standard parame-

terized m-reduction if there are functions k 7→ k′ and k 7→ k′′ from N to N and
a function (x, k) 7→ x′ from Σ∗ × N to Σ∗ such that

1. (x, k) 7→ x′ is computable in time k′′|x|c for some constant c and
2. (x, k) ∈ L iff (x′, k′) ∈ L′.

Notably, most reductions from classical complexity turn out not to be parame-
terized ones [28]. The basic complexity class for fixed-parameter intractability,
W[1], can be defined as the class of parameterized languages that are equivalent
to the Short Turing Machine Acceptance problem (also known as the k-
Step Halting problem). Here, we want to determine, for an input consisting
of a nondeterministic Turing machine M (with unbounded nondeterminism and
alphabet size), and a string x, whether or not M has a computation path accept-
ing x in at most k steps. This can trivially be solved in O(nk+1) time (where n
denotes a bound on the total input size) and we would be surprised if this can
be significantly improved. Therefore, this is the parameterized analogue of the
Turing Machine Acceptance problem that is the basic generic NP-complete
problem in classical complexity theory, and the conjecture that FPT 6= W[1]
is very much analogous to the conjecture that P 6= NP. Other problems that
are W[1]-hard (and also W[1]-complete) include the graph problems Clique
and Independent Set, where the parameter is the size of the relevant vertex
set [28]. Also, for constant maximum clause size, the aforementioned parame-
terization of Satisfiability by the weight of an assignment (see Sect. 2) gives
a W[1]-complete problem. W[1]-hardness gives a concrete indication that a pa-
rameterized problem with parameter k is unlikely to allow for a solving algorithm
with f(k) · nO(1) running time, that is, restricting the combinatorial explosion
to the parameter seems illusory.

Since the parameter k represents some aspect(s) of the input or the solution,
there usually are many meaningful ways to parameterize a problem. An impor-
tant issue herein is whether a hard problem is fixed-parameter tractable with
respect to a chosen parameter or not, and, in case of fixed-parameter tractabil-
ity, how small the usually exponential growth of the function f can be kept.
Hence, investigating different parameterizations gives insight into what causes
the computational (in)tractability of a problem and in which qualitative and
quantitative senses this happens and how it can be (potentially) coped with.

4 Fixed-Parameter Tractability—Three Case Studies

How can one design fixed-parameter algorithms? Three core concepts in this
context are

– preprocessing by data reduction rules and problem kernels,

4 Generally, the second component (representing the parameter) is drawn from Σ
∗;

for most cases (particularly, within this paper), assuming the parameter to be a
nonnegative integer (or a tuple of nonnegative integers) is sufficient.
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– bounded search trees, and

– dynamic programming.

Clearly, there would be more to say about further techniques for developing fixed-
parameter tractability results but the above three issues definitely are among
the most important ones. Other algorithmic strategies in the derivation of exact
algorithms are discussed in the surveys [35,36,87]. To illustrate the above three
techniques and, in this way, some central topics in fixed-parameter complexity
analysis, we discuss three important, easy to grasp, graph problems.

4.1 Case Study Multicut in Trees

We start with an optimization problem on graphs that already is NP-complete
when restricted to trees [45]—(the unweighted version of) Multicut in Trees.

Input: An undirected tree T = (V, E), n := |V |, and a collection H of m
pairs of nodes in V , H = {(ui, vi) |ui, vi ∈ V, 1 ≤ i ≤ m}.
Task: Find a minimum size subset E′ of E such that the removal of the
edges in E′ separates each pair of nodes in H.

By trying all possibilities (and using |E| = n − 1) we can solve the problem
in 2n−1 steps. But can we do better if there exists a small solution set E′?
Let us define the parameter k := |E′| and study how k influences the problem
complexity. Note that clearly k < n but in some problem cases k ≪ n seems to be
a reasonable assumption. Here, the following simple algorithm works. Assume
that the given tree is (arbitrarily) rooted. Consider a pair of nodes (u, v) ∈
H such that the uniquely determined path p between u and v has maximum
distance from the root r. Call w the node on p that is closest to r. Then, one
may easily see (using the tree structure) that there is an optimal solution that
contains at least one of the two path edges connected to w. But this implies
that we can build a search tree of depth bounded by k: Simply search for w as
specified above and then branch into the two cases (at least one of them has to
yield an optimal solution) of taking one of the two neighboring path edges of w.
Iterating this process, we obtain a search tree of size bounded by 2k and,5 thus,
Multicut in Trees is fixed-parameter tractable with respect to parameter k.
There are also simple data reduction rules for Multicut in Trees, but to prove
a problem kernel as discussed in the following for Vertex Cover is quite hard
for Multicut in Trees [55]. Hence, we prefer to switch to the simpler problem
Vertex Cover in graphs.6

5 In a straightforward way, by taking both edges, one also obtains a polynomial-time
factor-2 approximation algorithm. Nothing better is known [45].

6
Vertex Cover can be directly reduced to Multicut in Trees restricted to star
graphs (that is, trees of height one) [45]. Thus, approximation and exact algorithms
for Multicut in Trees easily transfer to Vertex Cover.
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4.2 Case Study Vertex Cover

Vertex Cover has been one of the most important problems in fixed-parameter
tractability studies:

Input: An undirected graph G = (V, E).
Task: Find a minimum size subset V ′ of V such that each edge in E has
at least one of its endpoints in V ′.

By way of contrast to Multicut, Vertex Cover is trivial when restricted
to trees. Assuming an arbitrarily rooted tree, in a bottom-up fashion from the
leaves to the root one can determine an optimal solution in linear time by a
straightforward dynamic programming. For general graphs, defining the param-
eter k := |V ′|, one easily obtains a size 2k search tree—one of the two endpoints
of an edge has to be part of a vertex cover. Opposite to Multicut in Trees,
however, the search tree size can easily be shrunk below 2k. We describe a very
simple possibility based on “degree-branching” here:

1. If there is a vertex of degree one, then put its neighbor into V ′.
2. If there is a vertex v of degree two, then either put v into V ′ together with

all neighbors of its neighbors or put both neighbors of v into V ′.7

3. If there is a vertex v of degree three, then either put v or all its neighbors
into V ′.

It is not hard to see that the above search strategy always leads to an optimal
solution. Moreover, in steps 2 and 3 the search branches into two cases each
time. In step 2, each branch puts at least two vertices into V ′ and in step 3 the
first branch puts one vertex into V ′ and the second branch puts at least three
vertices into V ′. This branching process is recursively repeated until an optimal
solution is found. If the solution has size k, the corresponding search tree has
size bounded by 1.47k (which can be determined by solving the corresponding
recurrences using standard mathematical tools; see, for example, [66]). Much
more refined branching strategies (significantly increasing the number of case
distinctions) led to search tree sizes smaller than 1.29k [22,76].

Other than search tree strategies which are inherently exponential, data re-

duction by preprocessing is a polynomial-time methodology to shrink the input
size as much as possible. Ideally, in some rare cases this might even solve the
complete problem. But, if no solution is obtained solely by preprocessing (as the
name already indicates), how do we measure the quality of the data reduction
process besides purely empirical statements? To this end, parameterized com-
plexity offers the concept of problem kernels. A simple preprocessing strategy
for Vertex Cover is based on the following observation. Since we are looking
for a vertex set V ′ of size at most k, for a vertex v of degree greater than k we
have no choice rather than putting v into V ′. Otherwise, no V ′ with |V ′| ≤ k
can exist. In this way, we can get rid of all high-degree vertices. The remain-
ing instance consists of vertices of maximum degree k. But then one vertex can

7 Chen et al. [22] present a “folding trick” that makes it possible to avoid branching
for degree-two vertices.
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cover at most k edges and, thus, there only can exist a vertex cover set of size
at most k if the remaining instance has at most k2 edges. In summary, either we
can decide in this way that there is no solution or the solution has to be found
in a graph of size O(k2)—the problem kernel. The decisive point is that the size
of the problem kernel exclusively depends on the size of the parameter k.

There is one drawback in the just described preprocessing—it assumes that
we know the value of k in advance. By way of contrast, the much more sophis-
ticated data reduction due to Nemhauser and Trotter [73,64] does not require
the value of k in advance and, furthermore, it provides a problem kernel graph
of at most 2k vertices (see [22] for its application to a fixed-parameter algo-
rithm for Vertex Cover). Hence, after this polynomial-time preprocessing the
exponential-time (search tree) algorithm can concentrate on a size-2k graph.
Further data reduction techniques such as “crown reduction rules” [63] (which
can be interpreted as a generalization of the just described “degree-one rule”) and
their benefits in practice are discussed in a new study [1]. Observe that it is worth
keeping an eye on the fact whether or not the problem kernelization rules make
explicit use of the parameter value k. Clearly, “parameter-independence” of data
reduction rules is preferable. So far, this distinction seemingly has been neglected
in formal fixed-parameter complexity studies. Finally, we briefly remark that it
is (provably) beneficial to employ kernelization techniques over and over again,
for example, by interleaving search tree branching with data reduction [75].

4.3 Case Study Dominating Set

Dominating Set is a “parameterized antagonist” of Vertex Cover. Both are
minimization problems but Dominating Set appears to be intractable with
respect to the parameterization “solution size k.” This also reflects in approxi-
mation results. Whereas Vertex Cover has a trivial factor-2 polynomial-time
approximation algorithm, for Dominating Set we only have a factor-Θ(log n)
approximation [33]. Dominating Set is defined as follows.

Input: An undirected graph G = (V, E).
Task: Find a minimum size subset V ′ of V such that for every vertex
v ∈ V either v ∈ V ′ or there is at least one vertex in V ′ that is a neighbor
of v, or both.

With respect to parameter k := |V ′|, Dominating Set is W[2]-complete [28]
(thus, W[1]-hard). For instance, the bounded search tree approach based on
degree-branching (cf. Sect. 4.2) appears to fail: In analogy to Vertex Cover,
one might consider the neighborhood of a vertex v. To dominate v, either v or
one8 of its neighboring vertices has to be in the desired solution set. The point
is that this yields a branching into a potentially unbounded number of cases. For
bounded degree graphs with maximum vertex degree d this yields a search tree
of size upper-bounded by dk. However, there seems to be no way to overcome

8 Compare this with Vertex Cover where we use that either v or all of its neighbors
have to be in an optimal solution.
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the dependence on d and to restrict the combinatorial explosion exclusively to k.
Hence, concerning the parameterization “solution size,” it is reasonable to study
special graph classes.

Besides bounded-degree graphs as indicated above, fixed-parameter tractabil-
ity results are also known for planar graphs9 and slight generalizations thereof.
For instance, here also the bounded search tree works. But things are more com-
plicated than might be expected. Although Euler’s formula tells us that there
always exists a degree at most five vertex in a planar graph, this does not yield
a size 6k search tree by the degree-branching method. The difficulty comes from
the fact that we have to distinguish between three vertex states in the course
of the search tree processing: a vertex can either be “dominating” (that is, it is
in V ′) or “dominated” (that is, at least one of its neighbors is in V ′) or “non-
dominated.” Then, the difficulty is that we cannot delete dominated vertices
because an optimal solution may require that such a vertex is still part of it. An
already dominated vertex, however, is not a suitable candidate for the degree-
branching technique because it is not true that either itself or one of its neighbors
has to be in the dominating set. Thus, using the Euler formula one has to make
sure that the selected vertex is a non-dominated one. With significant technical
expenditure one can show that there always exists a non-dominated degree-seven
vertex, directly giving a size 8k search tree [6]. Notably, comparing the search
tree algorithms for Vertex Cover and Dominating Set (restricted to planar
graphs), in the Vertex Cover case one has a trivial branching (leading to a
size 2k search tree) and the algorithm becomes more and more complicated in
order to shrink the size below 1.29k. By way of contrast, in the Dominating
Set case, the search tree itself is simple (and it is not known how to improve on
that) whereas to prove its correctness (that is, the existence of a non-dominated
degree-seven vertex during the course of the whole search tree algorithm) is
difficult.

A completely different approach to solve Dominating Set on planar and re-
lated graphs is due to the concept of tree decompositions. Intuitively, a graph has
a tree decomposition of small width if it is “tree-like”10 and the smaller this so-
called treewidth is, the better many otherwise hard graph problems can be solved
(see [13,14] for surveys). Note that, similar to Vertex Cover, Dominating
Set is easily linear-time solvable on trees. By a much more complicated dynamic
programming, this can be generalized to graphs of bounded treewidth [85]. Using
the parameter treewidth t together with the corresponding tree decomposition
of the underlying graph, one can show that Dominating Set can be solved in
O(4t ·n) time on n-vertex graphs of treewidth t [4]. Thus, we have a completely
different parameterization that yields fixed-parameter tractability for Dominat-
ing Set—the structural parameterization by treewidth. Note that, in principle,
in this way the size of the solution set does not matter anymore.

9 A graph is planar if it can be drawn in the plane without edge crossings. A planar
graph with n vertices can have at most 3n − 6 edges (Euler formula).

10 A tree has treewidth 1.
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Can the two parameterizations “solution size k” and “treewidth t” be related?
In case of planar graphs, the answer is yes. That is, it was shown that for
Dominating Set—analogous results hold for Vertex Cover and many other
domination-like problems [4]—on planar graphs, assuming that k denotes the
size of an optimal dominating set, it holds that

t = O(
√

k).

This implies that Dominating Set on planar graphs can be solved in 2O(
√

k) ·n
steps [4]. (See [41,42] for improvements in the constants of the O-notation.) We

mention in passing that bounding the exponential growth by a function as 2O(
√

k)

is asymptotically the best what can be hoped for [18]. The involved constants
of the worst-case analysis are fairly large. Recently, further fixed-parameter
tractability results for Dominating Set and related problems were achieved
for generalizations of planar graphs such as, for example, graphs of bounded
genus [31,25]. Moreover, a general study of the relationship between treewidth
and solution size has been undertaken, yielding interesting characterization re-
sults concerning the corresponding graph classes [24].

There is also a second route to 2O(
√

k) · n time algorithms for Dominating
Set and related problems on planar graphs. This is based on Lipton and Tar-
jan’s planar separator theorem [68]. As noted and further discussed in [8,9], the
existence of a linear-size problem kernel (as we already know for Vertex Cover

by the Nemhauser-Trotter theorem, see Sect. 4.2) directly implies 2O(
√

k) ·n time
algorithms for Vertex Cover and Dominating Set on planar graphs. And,
indeed, a size-O(k) problem kernel by polynomial-time preprocessing could also
be proven for Dominating Set [7]. The corresponding data reduction rules,
which are based on “local neighborhood considerations,” are relatively simple
and can be efficiently implemented. (The technically most demanding part is
the proof of the linear-size bound on the problem kernel.) Besides the theo-
retical result itself, these parameter-independent (in the sense as discussed in
Sect. 4.2) preprocessing rules turn out to be of high practical value [3]. Finally,
we remark that the “planar separator theorem approach” seems to be less prac-
tical (due to the high constant factors involved) than the “bounded treewidth
approach” discussed before.

In summary, given the W[2]-completeness of Dominating Set on general
graphs, a reasonable way out of this quandary is to look at special graph classes
and different parameterizations. A promising route of future investigations is to
study graph classes where Dominating Set is polynomial-time solvable or fixed-
parameter tractable and then to introduce useful parameterizations “away from”
these classes [16,53]—one example for that is the above mentioned parameter
genus of a graph that “parameterizes away from planarity.” As also noted by
Leizhen Cai [16], more possibilities are around. On a broader perspective, this
leads to the “art of parameterization” that will be discussed next.
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5 The Art of Parameterization

The direct way to parameterize an optimization problem is to take the size of
the desired solution set as the parameter. This adheres to a “pay for what you
get approach”—the smaller the desired solution is, the smaller the combinatorial
explosion is one has to take into account. It also turns out that this is the param-
eterization to study when considering preprocessing rules to yield a reduction
to problem kernel. By way of contrast, in Sect. 4.3 we additionally considered
the structural parameter treewidth (relating to the structure of the input graph,
that is, more precisely, its “tree-likeness”) that also allowed for efficient solutions
in case of small width values.

As a concrete example for the fruitfulness of different parameterizations, re-
call Multicut in Trees. In the previous section we considered the parameter
“number of edges to delete,” which again measures the solution size. An alter-
native parameterization is to consider the maximum number of paths passing
through a node or an edge of the given tree. This measures an input property
more or less independent of the solution size. Such a parameterization is of par-
ticular interest in case of the (edge-)weighted version of Multicut in Trees:
By means of dynamic programming, it can be shown that Weighted Multicut
in Trees is fixed-parameter tractable with respect to the parameter “maximum
path number” [54] whereas this is open concerning the parameterization “solution
size.”

5.1 Standard Ways of Parameterization

The above discussion shall indicate that parameterizing problems itself is an in-
teresting and important game to play. For instance, Fellows [35] discusses how to
parameterize the Max Leaf Spanning Tree problem in at least five different
ways. Since the leitmotif of parameterized complexity theory is to gain a better
understanding of problem hardness through a refined complexity analysis that
uses a two-dimensional view on problems, the choice of various reasonable prob-
lem parameters deserves special attention. In what follows, we try to illustrate
various facets of problem parameterization and argue that it may become a task
of its own.

First, let us consider the NP-complete Closest String problem.

Input: Strings s1, s2, . . . , sk over alphabet Σ of length L each.
Task: Find a string s of length L that minimizes the maximum Hamming
distance to the k input strings.

Two immediately arising and practically motivated parameterizations are by
the “error measure” Hamming distance d (which should be minimized) and by
the number of input strings k. Two completely different methods show fixed-
parameter tractability with respect to both parameterizations—deep results of
integer linear programming for parameter k and a search tree of size dd for
parameter d [51]. Here, parameterization by solution size as might be measured
by the length of the solution string probably is of less interest. Still, however,
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for constant alphabet size simply enumerating all possible solution candidates
leads to fixed-parameter tractability also with respect to the parameter L.

The situation changes when moving on to generalized (and for applications
in computational biology more relevant) versions of Closest String, namely
Closest Substring and, further on, Distinguishing Substring Selection.
In Closest Substring, the goal string now only needs to be a substring in every
of the given strings, thus increasing the combinatorial complexity of the problem.
And, indeed, with respect to the parameter k, Closest Substring is W[1]-
hard [37] and its parameterized complexity is open with respect to the distance
parameter d. For the still more general Distinguishing Substring Selection,
W[1]-hardness can be shown for both parameterizations [48]. Notably, Closest
String, Closest Substring, and Distinguishing Substring Selection
all possess polynomial-time approximation schemes [67,26]. The parameterized
intractability of Distinguishing Substring Selection with respect to “opti-
mization parameter” d, however, indicates that the corresponding PTAS [26] can-
not be turned into an efficient one (see [48] for more on this, [19] for the concept
of efficient PTAS, and [27,34,36] for general discussions concerning the efficiency
of PTAS’s, connections with parameterized complexity, and some case studies).
For both Closest Substring and Distinguishing Substring Selection,
the only known parameterization that works (for constant-size alphabet) is with
respect to solution string length (simple enumeration of all possibilities); but
this has limited applicability in many cases of practical interest. New param-
eterizations and special cases of practical relevance are sought—the search for
them can be guided by known parameterized complexity results as the above
ones.

We mention in passing that similar parameterized complexity studies have
been undertaken for the Longest Common Subsequence problem—the pa-
rameterized complexity investigations mostly show hardness results [15,28,79].

Summarizing, the above examples should illustrate the great wealth of pos-
sibilities and the strong need for parameterizing problems. So far, we have seen
(also refer to Sect. 4) parameters “solution size” (such as size of the dominating
set), “solution quality” (such as distance parameter in Closest String), “input
partitioning” (such as number of input strings in Closest String), or “input
structure” (such as treewidth of graphs or maximum vertex degree in Dominat-
ing Set or alphabet size in Closest String). In Sect 5.2, we will propose a
further, rich set of possibilities to parameterize problems—parameterization by
“distance from triviality.”

5.2 New Ways of Parameterization

Leizhen Cai [16] recently initiated a study of Graph Coloring (where the
task is to color the graph vertices such that all adjacent vertices have different
colors) as follows. Note that Graph Coloring is already NP-complete for three
colors, so the parameterization by number of colors is of no help.11 For instance,

11 Juedes et al. [63] show that coloring an n-vertex-graph with n − k colors is fixed-
parameter tractable with respect to k.
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considering the class of split graphs (where Graph Coloring is known to be
solvable in polynomial time) he showed that coloring is fixed-parameter tractable
with respect to parameter k on graphs that are formed from split graphs by
adding or deleting at most k edges. By way of contrast, he shows that it is W[1]-
hard when deletion of at most k vertices leads to a split graph. Interestingly, the
problem is much harder in case of (the 2-colorable) bipartite graphs instead of
split graphs: Coloring becomes NP-complete for graphs that origin from bipartite
graphs by adding three edges or if two vertex deletions are needed to make a
graph bipartite [16]. In summary, Cai states that “this new way of parameterizing
problems adds a new dimension to the applicability of parameterized complexity
theory” [16]. The prospective idea brought forward here is that the distance
parameter k measures a distance from a “triviality”: k = 0 represents a special
case that is solvable in polynomial time.

A second example for the parameterization “distance from triviality” is de-
scribed by Hoffmann and Okamoto [58] when studying exact solutions for the
Traveling Salesman problem in the two-dimensional Euclidean plane: Given
a set of n points with pairwise Euclidean distances, determine a shortest round-
trip through all points. Consider a set of n points in the Euclidean plane. Deter-
mine their convex hull. If all points lie on the hull, then this gives the shortest
tour. Otherwise, Hoffmann and Okamoto show that the problem is solvable in
O(k! · k · n) time where k denotes the number of points inside the convex hull.
Thus, the distance from triviality here is the number k of inner points.

Finally, we give an example related to Satisfiability. Assume that a for-
mula in conjunctive normal form has a matching between variables and clauses
that matches all clauses. Then, it is easy to observe that such a formula is
satisfiable. For a formula F , considered as a set of m clauses over n vari-
ables, define the deficiency as δ(F ) := m − n. The maximum deficiency is
δ∗(F ) := maxF ′⊆F δ(F ′). Szeider showed that the satisfiability of a formula F
can be decided in O(2δ

∗(F ) ·n3) time [83]. Note that a formula F with δ∗(F ) = 0
has a matching as described above. Again, δ∗(F ) is a structural parameter mea-
suring the distance from triviality in the described sense.

Further case studies for Clique, Power Dominating Set, Set Cover,
and Longest Common Subsequence exhibiting new distance from triviality
parameterizations can be found in [53].

In conclusion, to parameterize a problem usually can be done in several useful
ways—the discovery and treatment of new parameterizations may require new
ideas and techniques.

A further parameterized view we neglected so far is the “parameterizing above
guaranteed values” approach introduced by Mahajan and Raman [69]. Whereas
Mahajan and Raman study parameterizations of the Maximum Satisfiabil-
ity and Maximum Cut problems, here let us only give a brief example con-
cerning the Independent Set problem—which is the dual problem of Vertex
Cover—on planar graphs. Due to the famous four-color theorem, one can con-
clude that every planar graph with n vertices has an independent set of size at
least ⌈n/4⌉. Thus, the natural task arises to determine whether a planar graph
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has an independent set of size ⌈n/4⌉ + d—the new parameter being d and the
guaranteed value being ⌈n/4⌉. The parameterized complexity with respect to
parameter d is open. Seen from a different view, this again can be interpreted as
distance from triviality; now, however, triviality means a guaranteed parameter
value.

In some cases, moreover, it may be of interest to try to find relationships
among different parameters of one problem—an example is given by the size
of the dominating set in a planar graph and the treewidth of the underlying
graph [4] (see Sect. 4). Clearly, in this way a whole tableau of parameterized

complexity questions comes up for nearly every problem. Note, however, that
often the different parameterizations of a problem are incomparable to each
other and there is no point in discussing what the “best” parameterization is
in general. The nature of complexity (and vice versa) simply seems to bring
along the need for different views (that is, parameterizations) on the considered
problem. Parameterized complexity provides the formal framework and guidance
to do so.

6 Concluding Remarks

Parameterized complexity with fixed-parameter algorithmics is a fast growing
field. This expository paper, oriented more towards algorithms than towards
structural complexity theory, did not even touch several important topics and
results of current research. Our approach to fixed-parameter algorithms is fur-
ther pursued in a forthcoming monograph [74]. Besides the so far sole, more
complexity-theoretic monograph by Downey and Fellows [28], we refer the reader
to the numerous recent surveys [10,27,34,35,36,52,87] to further broaden the per-
spective on the field. Our main focus here laid on questions of parameterization
itself.

Three brief messages we additionally want to communicate are as follows:

– Fixed-parameter algorithms are old—for instance, see Dreyfus and Wag-
ner’s [30] algorithm for the Steiner Tree problem in graphs.

– Fixed-parameter algorithms are beautiful—for instance, see Alon et al.’s [11]
color coding technique to solve the Longest Path problem.

– Fixed-parameter algorithms’ future is promising—for instance, see [2,46] for
two recent examples12 of successful young researchers’ work.

We conclude with five spotlights on other important topics in current param-
eterized complexity research.

Implementation and experiments. Conceptual simplicity is not simply a
virtue of its own but it is of high importance when it comes to implementing
and testing fixed-parameter algorithms. A search tree with numerous case
distinctions probably will not pay off in practice when compared to a search

12 Selection was restricted to the Tübingen area.
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tree algorithm with few case distinctions and slightly worse upper bounds on
the size of the search tree. Moreover, preprocessing by data reduction rules
seems almost obligatory in any practical implementation. Without experi-
ments, it often will be hard to evaluate the concrete virtue of preprocessing,
though. In the context of applications, it is also fruitful to think in “dual
terms.” That is, for example, to solve the W[1]-complete Clique problem
one may use strongly tuned fixed-parameter algorithms for the dual problem
Vertex Cover—an n-vertex graph has a Clique of size k iff its comple-
ment graph has a Vertex Cover of size n−k. In some cases, preprocessing,
kernelization and sophisticated branching combined with branch-and-bound
heuristics yield unexpectedly successful implementations even in cases where
parameter values are not “small.” Concerning Vertex Cover, recent im-
plementation work is described in [1,20]. Several other results for various
problems are described in [3,5,49,50,51]. To better understand and exploit
the links between the design of heuristics and fixed-parameter algorithms,
much remains to be done concerning implementation and experiments.

Automated algorithm development. Many fixed-parameter algorithms with
small bounds on the parameter function f(k) are based on intricate, exten-
sive case distinctions. Recently, a framework for an automated generation
of search tree algorithms was presented [47] that applies to many hard, not
only graph (modification) problems. In some cases, even better upper bounds
than achieved by algorithms designed by humans were achieved. Automated
upper bound proofs for satisfiability problems can also be found in [32,77].
In this way, tedious and error-prone tasks (that is, design of lengthy case
distinctions) can be mechanized, using some few basic concepts and obser-
vations on the underlying problem.

Connections to approximation algorithms. Fully polynomial-time approx-
imation schemes (FPTAS’s) as well as “efficient PTAS’s” directly imply fixed-
parameter tractability with respect to parameterizations by the “optimiza-
tion value” [17,19]. By way of contrast, a proof of W[1]-hardness thus gives
concrete indication for the non-existence of efficient PTAS’s and FPTAS’s,
also see [27,36] for a more thorough discussion. In a broader sense, it is
highly desirable (and it seems likely) to obtain further connections between
approximation algorithm techniques together with inapproximability results
and parameterized complexity.

Lower bounds. If a problem is fixed-parameter tractable measured by a func-
tion f(k), the question arises how small the growth of f can be kept. For
instance, Liming Cai and David Juedes [18] showed that under reasonable

complexity-theoretic assumptions no 2o(
√

k) ·nO(1) time algorithm for Dom-
inating Set on planar graphs exists, asymptotically matching the upper
bounds from [4]. Note that there are close connections to the so-called power
indices of Stearns and Hunt III [82] and the existence of “subexponential”
time algorithms as studied by Impagliazzo et al. [61]. Also see the very re-
cent results of Chen et al. [21] for further studies in this direction. Frick and
Grohe [43] showed that, unless P = NP, there is no algorithm for evaluating
monadic second-order queries on trees in f(k) · nO(1) time for any elemen-
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tary function f , where k denotes the query size and n is the tree size. This
strongly limits the practical usefulness of the corresponding fixed-parameter
tractability results (also see [52] for a more thorough discussion). Finally,
Fernau [38] presents first lower bound results (concerning constant factors)
for linear size problem kernels.

New parameterized complexity classes. We only point to three recent de-
velopments in this context. In an effort to get a deeper understanding of
the border between fixed-parameter tractability and intractability, Downey
et al. [29] introduced the class M[1] seemingly intermediate between FPT
and W[1] (also see [35] for further discussion). Motivated by the above
mentioned lower bounds results by Frick and Grohe [43], Flum et al. [40]
very recently initiated the study of a notion called bounded fixed-parameter
tractability together with corresponding complexity classes. Finally, the pa-
rameterized complexity of counting problems also became subject of recent
research [39,70].
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