Lecture: Spezielle Algorithmen der Sequenzanalyse Summer semester 2006

Exercises

Exercise 1, Discussion: 04/12/2006.

1. Edit distance.
(a) Given two arbitrary finite sequences u and v over a finite alphabet Σ and a cost function for edit operations $\delta:(\Sigma \cup\{\varepsilon\}) \times(\Sigma \cup\{\varepsilon\}) \rightarrow \mathbf{R}_{0}^{+}$, define the edit distance of u and $v, \operatorname{edist}_{\delta}(u, v)$.
(b) Given the two strings $u=$ GTCCA and $v=$ GCCAA. Calculate the dynamic programming matrices for the edit distance algorithm according to the unit cost function δ and visualize the edges of the minimizing path (could be more than one).
Unit cost:

$$
\delta(\alpha \rightarrow \beta)=\left\{\begin{array}{lll}
0 & : & \alpha, \beta \in \Sigma \wedge \alpha=\beta \\
1 & : & \text { otherwise }
\end{array}\right.
$$

(c) Calculate the edit distance of the sequences $u=$ ACCGG and $v=$ ACCGCTGG for unit costs.
(d) Calculate all co-optimal alignments for the sequences u and v given in exercise 1(b).
(e) Show that the edit distance is invariant with respect to string reversal:

$$
\operatorname{edist}_{\delta}(u, v)=\operatorname{edist}_{\delta}\left(u^{-1}, v^{-1}\right)
$$

where w^{-1} is the reverse of string w, i.e. if $w=w_{1} w_{2} \ldots w_{k}$ then $w^{-1}=$ $w_{k} w_{k-1} \ldots w_{1}$.
2. Q-gram distance.
(a) Calculate the q-gram distance for the two sequence $u=$ TACTTTCTAGCTTA und $v=$ ACTAGCTTTCTTAC:
i. for $q=3$,
ii. for $q=5$.
(b) Which of the two values for q can be used better to show that the q-gram distance is not a metric? Provide evidence for your answer.
3. O-notation.

Rank the following functions by order of growth; that is, find an arrangement $g_{1}, g_{2}, \ldots, g_{20}$ of the functions satisfying $g_{1}=\Omega\left(g_{2}\right), g_{2}=\Omega\left(g_{3}\right), \ldots, g_{19}=$ $\Omega\left(g_{20}\right)$.
Partition your list into equivalence classes such that $f(n)$ and $g(n)$ are in the same class if and only if $f(n)=\Theta(g(n))$.
$\log \log n, \sqrt{4}^{\log n}, n^{2}, n!,\left(\frac{3}{2}\right)^{n}, n^{3}, \log ^{2} n, 2^{2^{n}}, n \log n, n \cdot 2^{n}, 2^{\log n}, \log n, \sqrt{n}$, $\log \left(n^{2}\right), \sqrt{n}^{4}, n^{n}, 2^{3} \cdot n^{3}, 4^{n}, 2^{n}, n^{n}$

