Lecture: Spezielle Algorithmen der Sequenzanalyse Summer semester 2006

Exercises

Exercise 2, Discussion: 04/19/2006.

1. Cost functions.

Calculate the alignment cost of the alignments given below:

$$A_1 = \begin{pmatrix} A & A & T & C & A & T & - & - & - & T \\ - & - & T & - & A & C & A & T & G & T \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A & A & T & C & A & T & - & - & - & T \\ - & - & - & T & A & C & A & T & G & T \end{pmatrix}$$

- (a) for unit costs;
- (b) for affine gap costs where the cost function is:

$$\delta(c,c') = \begin{cases} 0 & \text{if } c, \, c' \in \Sigma \text{ and } c = c' \\ 1 & \text{if } c, \, c' \in \Sigma \text{ and } c \neq c' \end{cases}$$

with gapinit = 3 and gapext = 1;

(c) and for general gap costs where δ is as above and the cost function is defined by the table $\frac{1}{g(1)} \frac{1}{2} \frac{2}{2} \frac{3}{1} \frac{4}{3} \frac{5}{3} \frac{6}{2}.$

2. Subadditiv gap costs.

A gap cost function g ist subadditive, if $g(l_1 + l_2) \leq g(l_1) + g(l_2)$ for all possible gap lengths l_1 and l_2 .

Prove or disprove:

- (a) Homogeneous gap costs are subadditive.
- (b) Affine gap costs are subadditive.
- (c) The gap costs

$$g(l) = \left\{ \begin{array}{ll} l & : & 0 = l \mod 3 \\ l + 10 & : & otherwise \end{array} \right.$$

are subadditiv.

- (d) The gap costs $g(l) = l^2$ are subadditiv.
- (e) The gap costs $g(l) = \log l$ are subadditiv.

3. Log-Odds Score.

Given an alignment database over the alphabet $\{A,C,G\}$ with 100,000 total sites in these alignments and 1% mismatches. A occurs 70,000 times and C 40,000 times. We assume that the number of substitutions of A and G is m(A,G)=500. Compute the log-odds score $\sigma^{(1)}(A,G)$.