Lecture: Spezielle Algorithmen der Sequenzanalyse

Summer semester 2006

Exercises

Exercise 7, Discussion: 05/24/2006.

1. Multiple Sequence Alignment.

Given the 4 sequences $s_{1}=A C C A, s_{2}=T C C A, s_{3}=A T C, s_{4}=A T C C C A$. The homogeneous gapcost $=-2$ and the following substitution score function:

σ	A	C	G	T
A	3	-2	-1	-2
C	-2	5	-2	-1
G	-1	-2	3	-2
T	-2	-1	-2	5

(a) Compute the sum of pairs score for the following multiple alignment:

$$
\mathcal{A}=\left(\begin{array}{ccccc}
A & - & C & C & A \\
- & T & C & C & A \\
A & T & C & - & - \\
A & T & C & C & A
\end{array}\right)
$$

(b) Given the tree T below. Compute x and y such that the tree alignment score is maximal and give the maximal score.

2. Tree alignment.

Using the PAM250 similarity matrix during all steps of an alignment along a tree is not recommended. Why?
3. Carrillo-Lipman heuristics.
(a) Characterize sequences for which the Carrillo-Lipman heuristic works good, respectively bad.
(b) How many Carrillo-Lipman bounds $L_{x, y}$ are calculated for k sequences?
(c) Given the three sequences $s_{1}=A G A T C, s_{2}=G A G A T, s_{3}=T A C A T A$ and the multiple alignmentscore 10 for a heuristic alignment of the three sequences. Calculate the matrices $M_{i, j}, 1 \leq i<j \leq 3$ for unit costs. Highlight the regions for which the back-projection into the 3-dimensional edit matrix has not to be computed.

