
Abelian Pattern Matching

The presentation is about finding the abelian patterns in strings. Problem
of Abelian Pattern Matching differs from Classical Pattern Matching in the
sense that in case of classical pattern matching we seek for exact occurrence
of a pattern substring in the given input string and order of characters in
the pattern substring is kept preserved while looking for a match. In case of
abelian pattern matching, however, order of characters in the pattern sub-
string doesn’t matter. Hence ‘abc’ and ‘bac’ would be considered matching
(abelian) patterns. Hence we are not looking for an exact (ordered) occur-
rence of a substring, rather we want to find any permutation of the given
combination of characters that form our pattern substring.

In the presentation I will present two algorithms, each based on a differ-
ent strategy. General idea is that we start with a search window of pattern
size and then slide this window from left to right along the input stream
to look for the pattern. The two algorithms differ in the way the pattern is
matched inside the window. In the first algorithm the characters in the search
window are read from left to right (using a prefix based approach), whereas
in the second algorithm the characters in the search window are read from
right to left(using a suffix based approach), thus giving a possibility of skip-
ping some characters from reading (but also with a danger of a need to read
same characters many times).

Worst case time complexity of first algorithm is O(nX)1, whereas the
worst case time complexity of second algorithm is O(nmX)2 but on average
it’s expected to perform better than first algorithm. In future we intend to
explore the time efficiency of second algorithm on the average and to see that
which of the two algorithms perform better in practice.

1Here n is the length of the string and X is a variable that depends on the datastructure
used for book-keeping

2Here m is the size of pattern substring, and n and X are same as defined in 1

1


