Universität Bielefeld Technische Fakultät, AG Genominformatik WinterSemester 2007/2008

Advanced Algorithmic Techniques for Bioinformatics

Prof. Dr. Ferdinando Cicalese, Dr. Zsuzsanna Lipták Dipl.-Inform. Roland Wittler

Exercise sheet no. 7 (out: 23 Jan. 2008, in: 30 Jan. 2008)

1. Minimal number of coins. (Try!)

Construct an algorithm to compute the minimal number of coins needed for representing a number M. In other words, find the length of a shortest decomposition (c_1, \ldots, c_k) of M (where the length of c is $|c| = \sum_i c_i$). Demonstrate how the algorithm works using the example $a_1 = 3, a_2 = 5, a_3 = 7$, and M = 15 from the lecture.

2. String scrabble. (Do!)

- (a) How many different strings can be built by using all characters of the string BRIGHT exactly once? Compute the actual number, not just a formula. For example, for ABC, there are six such strings: ABC, ACB, BAC, BCA, CAB, and CBA.
- (b) How many different strings can be built by using all characters of the string BUBBLE exactly once? Compute the actual number, not just a formula. For example, for ABA, there are three such strings, AAB, ABA, and BAA.
- (c) Try to find a general formula. Note that for BRIGHT, this number depends solely on the length of the string, while for BUBBLE, also on something else. What?

3. Finding all decompositions. (Don't.)

Find all decompositions of 20 over $\{3, 6, 8, 9\}$. List all calls of the recursive algorithm FAD from the lecture, in the order they appear.

4. Crystal ball gazing. (Do!)

What is the meaning of the values D[m] in the following one-dimensional array of size M + 1? (The values for m < 0 are just defined as 0 for the calculations, but not really put in the array.)

$$D[m] = \begin{cases} (0 & \text{for } m < 0) \\ 1 & \text{for } m = 0 \\ \sum_{i=1}^{k} D[m - a_i] & \text{for } 0 < m \le M \end{cases}$$