
Vol. 22 no. 6 2006, pages 762–764

doi:10.1093/bioinformatics/btk041BIOINFORMATICS APPLICATIONS NOTE

Sequence analysis

GUUGle: a utility for fast exact matching under RNA

complementary rules including G–U base pairing
Wolfgang Gerlach and Robert Giegerich�
Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany

Received on December 21, 2005; revised and accepted on January 4, 2006

Advance Access publication January 10, 2006

Associate Editor: Martin Bishop

ABSTRACT

Motivation: RNA secondary structure analysis often requires search-

ing for potential helices in large sequence data.

Results: We present a utility program GUUGle that efficiently locates

potential helical regions under RNA base pairing rules, which include

Watson–Crick aswell asG–Upairs. It accepts a positive and a negative

set of sequences, and determines all exact matches under RNA rules

between positive and negative sequences that exceed a specified

length. The GUUGle algorithm can also be adapted to use a precom-

puted suffix array of the positive sequence set. We show how this

program can be effectively used as a filter preceding a more computa-

tionally expensive task such as miRNA target prediction.

Availability: GUUGle is available via the Bielefeld Bioinformatics

Server at http://bibiserv.techfak.uni-bielefeld.de/guugle

Contact: robert@TechFak.Uni-Bielefeld.DE

1 MOTIVATION

Exact sequence matching under DNA complementarity rules is

easy, as each sequence has a unique reverse Watson–Crick com-

plement. When it comes to efficient matching on a genomic scale,

indexing methods such as REPuter (Kurtz et al., 2001) and Vmatch

(Abouelhoda et al., 2002) simply compute the suffix tree or suffix

array for the genome plus its reverse complement. Reverse com-

plementary matches can then be read from the index, independent of

the genome size. For example, the approach in Horesh et al. (2003)

computes potential helices from a suffix tree, but ignores G–U pairs.

Matching under RNA base pairing rules is different because of the

presence of G–U and U–G pairs. A sequence like AGUCAAGG not

only matches its (reverse) Watson–Crick complement CCUU-

GACU, but also seven others that include one or more G–U

pairs. It is still straightforward to write a naive program that

finds such matches. When it comes to large data sizes, an efficient

algorithm appears to be missing. The STAN program (Nicolas et al.,
2005) also uses suffix trees to efficienlty match a pattern (of quite

general type) against a target sequence and allows pairing errors that

can be G–U pairs. All-against-all matching of two sequence sets is

not supported.

Here we present an algorithm and a utility program for this task,

both called GUUGle. The algorithm accepts a set of target

sequences and a set of query sequences, and a length threshold

k. It reports all matches (under RNA rules) beween the target

and the reverse of the query sequences that have k or more con-

secutive base pairs. The algorithmic idea of GUUGle can be applied

to a precomputed index (suffix tree or array). To be useful as a stand-

alone utility, our implementation of the GUUGle program starts

from non-indexed sequences and mimicks a partial suffix tree con-

struction in parallel with the matching phase.

The application scenario of this approach is the quick determ-

ination of potential regions of inter- or intramolecular hybridization

to speed up the prediction of secondary structure or complex forma-

tion. To demonstrate the efficacy of GUUGle as a filter, we report on

its combination with the popular miRNA target prediction program

RNAhybrid (Rehmsmeier et al., 2004).

2 ALGORITHM

The idea of GUUGle can be explained as running, in an interleaved

fashion, two copies of the write-only, top-down (WOTD) suffix tree

construction (Giegerich et al., 2003). One copy is the regular WOTD

algorithm applied to the target sequences. This part can be replaced

when using a precomputed index for the target. The other copy is a

modified WOTD applied to the reversed queries. We therefore start

our explanation with a review of the WOTD construction.

2.1 Review of WOTD

WOTD constructs the suffix tree in a top–down fashion. As it does

so by recursive internal sorting of an array of suffixes, it also con-

structs the suffix array.

Let t be a string over the alphabet S and �uu be a node in the suffix

tree of t. Then u denotes the concatenation of all edge labels on the

path from the root to �uu. Each node �uu in a suffix tree represents the set

of all suffixes that have the prefix u in common, i.e. Rð�uuÞ. To

evaluate the children of �uu, one has to divide the set Rð�uuÞ into

four groups according to the first character of each suffix. For

each character c let group ð�uu‚cÞ[fw 2 S
� j cw 2 Rð�uuÞg be the

c-group of Rð�uuÞ. Groups containing only one suffix correspond

to a leaf. The labeling of an edge going from u to child up begins�To whom correspondence should be addressed.

� The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University
Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its
entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

http://bibiserv.techfak.uni-bielefeld.de/guugle


with a c and is evaluated by computing the longest common prefix

(lcp) p of the suffixes contained in the c-groups.

The datastructure used to represent the suffixes is a global array

called suffixes. It contains pointers to all suffixes of t sorted in

increasing suffix length. By performing countingsort and looking

only at the first character of each suffix, the pointers are sorted in

such way, that all suffixes starting with the same character are

grouped together in one interval. By computing the lcp for each

interval of suffixes that start with the same character c 2 S, one

retrieves all c-groups.

To evaluate all nodes, the procedure is recursive: For each

interval from the first phase the algorithm performs countingsort

again. The sort key now is the character after the lcp of the c-group.

This is done recursively, as long as intervals contain more than

one suffix.

Although its average case runtime is O(n log n), WOTD compares

well with O(n) suffix tree algorithms. In Giegerich et al. (2003), it is

shown to perform similar to the McCreight algorithm for sequences

up to length 4 MB. This results from the simplicity and good locality

behaviour on modern cached CPU architectures. Our new algorithm

inherits these attributes.

2.2 GUUGle

Let S¼ {A, G, C, U, #, N} be the alphabet. The elements A, G, C, U
represent the standard RNA bases, arginin, guanin, cytosine and

uracil. N denotes any character. Every unknown character will be

substituted by N. # denotes the separation character between neigh-

bouring sequences. We define the following order on our alphabet:

A < G < C < U < # < N.

The idea is to develop two suffix arrays, target and query, in

parallel. Intervals in the target are only built when the corresponding

complementary interval in query is not empty and vice versa. Those

complementary intervals represent reverse complementary matches

between both the sequences. To account for the ‘reverse’, the offset

chosen for suffixes in the query suffix array is just the negative of the

offset in the target.

In case of an A-interval in the target suffix array, the complentary

interval in query is the U-interval with corresponding negative

offset. In the same way, the C group in the target is matched to

the G group in the query. For G and U it is a bit more complicated,

since both of them have two complementary bases. If the suffix

array was ordered lexicographically, the complementary bases of G,

C and U, would be split into two intervals. For each interval in the

target we would have to keep track of an exploding number of

intervals in the query as we proceed recursively. By choosing

the order A < G < C < U the groups A + G, and C + U are contiguous

intervals and we avoid this splitting.

While the recursion in WOTD can proceed either depth-first or

breadth-first, it is essential for GUUGle to work in depth-first mode

(Fig. 1). All matches derived from the A/U group in phase 1 must be

completely determined before phase 3 is entered. Since each inter-

val is reordered in place, phase 3 shuffles suffixes in the joint C + U
interval, destroying their original separation in C groups and

U groups.

In each recursion step, suffixes with #s or Ns at the actual offset

will no longer be considered, since #s represent the end of a suffix

and matching with Ns would produce too many artefacts. This is

done by sorting these suffixes to the right end of the interval and

excluding them from the next recursion step. The matches are

reported when the offset reaches the threshold k. Then, for each

pair of suffixes the program checks for left- and right-maximality, as

only matches that cannot be extended are reported.

3 EXPERIMENTAL RESULTS

MicroRNAs are known to play an important role in gene-regulation

and cell-differentiation. Many microRNAs are known but some of

their target sites in the genome still have to be discovered. Energy

based folding algorithms [like Stark et al. (2003); Enright et al.
(2003); Rajweski and Socci (2004) and RNAhybrid (Rehmsmeier

et al., 2004)] are a promising way to find such binding sites. It has

been observed that the binding sites are conserved in their 30-site

(target) and form alpha-helices with the microRNA 50-ends, owing

to the exact base-pairing in this region mostly from nucleotide 2 to

nucleotide 7 or 8 (Rehmsmeier et al., 2004). Thus, for some

algorithms such a ‘seed’ of perfect helix is necessary for a pair

of microRNA and possible target site. It has been shown that this

structural constraint increases statistical significance by reducing

the search space (Lewis et al., 2003).

Using this fact, it should be possible to speedup RNAhybrid by

filtering with GUUGle. GUUGle searches for all matches in the

target sequences and reports them, including 20 bases before and

after the match. This output is much smaller than the original

sequence, as it contains only regions with matches. We compared

the time RNAhybrid needed to find microRNA target sites in

GUUGle-output and in the original Fasta file.

The test has been performed under a Sun Fire V20z with 1.8 GHz

AMD Opteron 244-processors and 6 GB RAM. A total of 27 692

human downstream UTRs (�200 MB in total) have been searched

against a 2–8 seed heptamer ‘GAGGUAG’ from the hsa-let-7a

microRNA.

For the original fasta file RNAhybrid took 2860 s. In the second

run, we filtered the data with GUUGle, which took �20 s. For

the filtered data RNAhybrid now took �163 s. This is more than

15 times faster than without filtering.

ACKNOWLEDGEMENTS

The authors thank John Mattick, who first pointed out the lack of

such a program and Marc Rehmsmeier who helped with the

measurements. Funding to pay the Open Access publication charges

was provided by Bielefeld University.

Conflict of Interest: none declared.

4. A G C U # N A

C U # N A G C U # N

G

5. A G C U # N A G C U # N

target query

C U # N

G

U # A G C U # NC1. NA G

3. A

2. A G C U # N A G C U # N

Fig. 1. Development of the suffix arrays target (left) and query (right). The

thick rectangulars denote performing of countingsort and recursion on inter-

vals. Dotted rectangulars denote already sorted intervals.

Matching under RNA base pairing rules

763



REFERENCES

Abouelhoda,M.I., Kurtz,S. and Ohlebusch,E. (2002) The Enhanced Suffix Array and its

Applications to Genome Analysis. In Proceedings of the Second Workshop on

Algorithms in Bioinformatics, LNCS 2452, Springer Verlag, pp. 449–463.

Enright,A.J. et al. (2003) MicroRNA targets in Drosophila. Genome Biol., 5, R1.

Giegerich,R. et al. (2003) Efficient implementation of lazy suffix trees. Software Pract.

Exp., 33, 1035–1049.

Horesh,Y. et al. (2003) A rapid method for detection of putative RNAi target genes in

genomic data. Bioinformatics, 19 (Suppl. 2), II73–II80.

Kurtz,S. et al. (2001) REPuter: the manifold applications of repeat analysis on a

genomic scale. Nucleic Acids Res., 29, 4633–4642.

Lewis,B.P. et al. (2003) Prediction of mammalian microRNA targets. Cell, 115,

787–798.

Nicolas,J. et al. (2005) Suffix-tree analyser (STAN): looking for nucleotidic

and peptidic patterns in chromosomes. Bioinformatics, 21,

4408–4410.

Rajweski,N. and Socci,N.D. (2004) Computational identification of microRNA targets.

Dev. Biol., 267, 529–535.

Rehmsmeier,M. et al. (2004) Fast and effective prediction of microRNA/target

duplexes. RNA, 10, 1507–1517.

Stark,A. et al. (2003) Identification of Drosophila MicroRNA targets. PLoS Biol., 1,

1–60.

W.Gerlach and R.Giegerich

764


