
Centrum voor Wiskunde en Informatica

A cluster algorithm for graphs

S. van Dongen

Information Systems (INS)

INS-R0010 May 31, 2000



Report INS-R0010
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB  Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB  Amsterdam (NL)

Kruislaan 413, 1098 SJ  Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



A Cluster Algorithm for GraphsStijn van DongenCWIP.O. Box 94079, 1090 GB Amsterdam, The NetherlandsABSTRACTA cluster algorithm for graphs called the Markov Cluster algorithm (MCL algorithm) is introduced. Thealgorithm provides basically an interface to an algebraic process de�ned on stochastic matrices, called theMCL process. The graphs may be both weighted (with nonnegative weight) and directed. Let G be sucha graph. The MCL algorithm simulates 
ow in G by �rst identifying G in a canonical way with a Markovgraph G1. Flow is then alternatingly expanded and contracted, leading to a row of Markov Graphs G(i). Flowexpansion corresponds with taking the kth power of a stochastic matrix, where k 2 IN . Flow contractioncorresponds with a parametrized operator �r, r � 0, which maps the set of (column) stochastic matrices ontoitself. The image �rM is obtained by raising each entry in M to the rth power and rescaling each column tohave sum 1 again. The heuristic underlying this approach is the expectation that 
ow between dense regionswhich are sparsely connected will evaporate. The invariant limits of the process are easily derived and in practicethe process converges very fast to such a limit, the structure of which has a generic interpretation as an over-lapping clustering of the graph G. Overlap is limited to cases where the input graph has a symmetric structureinducing it. The contraction and expansion parameters of the MCL process in
uence the granularity of theoutput. The algorithm is space and time e�cient and lends itself to drastic scaling. This report describes theMCL algorithm and process, convergence towards equilibrium states, interpretation of the states as clusterings,and implementation and scalability. The algorithm is introduced by �rst considering several related proposalstowards graph clustering, of both combinatorial and probabilistic nature.2000 Mathematics Subject Classi�cation: 05B20, 15A48, 15A51, 62H30, 68R10, 68T10, 90C35.Keywords and Phrases: Clustering, graph clustering, graph partitioning, random walk, Markov matrix, 
owsimulation.Note: Revised version of the report [8]. A more mathematically oriented account on the MCL process isgiven in [11], establishing that under certain weak conditions the iterands of the MCL process posses structureadmitting a cluster interpretation. Various experiments conducted on a wide range of test{graphs are describedin [10]. The latter report also describes a generic graph clustering performance measure and a distance de�nedon the space of partitions. The work was carried out under project INS{3.2, Concept Building from Key{Phrasesin Scienti�c Documents and Bottom Up Classi�cation Methods in Mathematics.
1. IntroductionIn this report the Markov Cluster (MCL) algorithm is introduced, a cluster algorithm for graphs which isbased on simulation of 
ow expansion and 
ow contraction in graphs. The algorithm is speci�cally suited tosparse graphs, i.e. graphs for which the average node degree is an order of magnitude smaller than the numberof nodes in the graph. The algorithm is motivated by considering how the concept of `cluster' in the setting ofsparse graphs can be formalized to some extent. The report is a revised version of [8], and corresponds withchapters 5, 6, and 11 in the PhD thesis [9].



1. Introduction 2The idea that clustering in the setting of sparse graphs may very well merit from a separate approach, asopposed to viewing this problem as a minor variant of clustering in a more abstract setting, does not seem tobe widespread in the cluster analysis and pattern recognition communities. In graph partitioning clusteringis sometimes used as a preprocessing step, and in this area of research there exist publications that dealspeci�cally with clustering in the setting of graphs | see [6, 7, 15, 24, 43] and the survey article [3].The classic setting in cluster analysis is one where entities are represented by vectors of numerical scores(here termed the vector model). The (dis)similarity between two elements is in this case de�ned in terms ofa measure on the di�erence between the vectors associated with the elements. In the setting of graphs, therelationship between two elements is of the kind `share a property or not' or `one refers to the other' (heretermed the graph model). In graph clustering, the goal is to �nd a clustering of the node set of a graphsuch that there are few edges in between di�erent clusters, and many edges within each cluster on its own.The fundamental di�erence between the graph model and the vector model is that in the latter model the(dis)similarities between elements are immediately available, and that the model inspires geometric notionssuch as convex hull, geometric mean, separating hyperplanes, et cetera. The notion of a cluster is closely relatedto the density of the distribution of the vectors over the vector space. Clusters should induce regions of thevector space where the density is relatively high, and they should generally be separated by regions of thevector space where the density is relatively low. On the other hand, a graph is nothing more than a set ofnodes with a notion of connectivity attached to it. Clusters can not be measured in terms of the location ofthe nodes, they can only be measured in terms of the incidence relation de�ned on the cartesian product ofthe node set.There seem to be few publications linking (graph clustering in the setting of) graph partitioning with clusteranalysis or pattern recognition. Several reasons account for this. Cluster analysis can be seen as a unifyingframework where exploratory techniques are gathered from di�erent application areas such as biology, chem-istry, market research, medicine, and psychology. In this framework the methods are studied in abstracto,separated from application, data, and implementation. The predominant data model in each of these applica-tion areas is the vector model described above. The graph model is relatively young in comparison, and doesnot get much attention in the cluster analysis monographs [4, 12, 13, 16, 22, 23, 25, 29, 34, 38, 42]. Anotheraspect worth mentioning is that classic methods such as the linkage{based methods (c.q. single link and com-plete link clustering) are often formulated in terms of threshold graphs derived from dissimilarity spaces (seeSection 4), and these methods are consequently easy to apply to graphs per se. However, threshold graphs aremerely a means of notation, and this approach does not seem particularly suited for �nding cluster structurein graphs in general. It fails entirely with respect to the basic challenge of �nding cluster structure in simplegraphs. A neighbourhood graph is another type of graph which is sometimes derived from metric dissimilaritydata [22]. This corresponds again with a particular manner of selection and representation, where the trans-formation step is speci�cally motivated by the geometric nature of the original data. The clustering methods(c.q. heuristics) applied to neighbourhood graphs depend critically on properties of this transformation step,so they are not suited for graphs in general.In graph partitioning (i.e. partitioning the node set of a graph into subsets with prescribed sizes such that thetotal weight of the edges between di�erent subsets is minimal) clustering is sometimes used as an intermediateprocessing step [3]. Graph partitioning is a well{de�ned optimization problem due to the fact that thepartition sizes are prescribed. The research in this area is characterized by its cohesive nature, a tradition ofbenchmarking, and demand from industry. There is a set of established (e.g. spectral, move-based, multi-level)techniques, that are continually being re�ned, extended, and combined in novel ways. The application areas(some of which fall under the common denominator of VLSI design, see also [3]) generate problems with sizesobeying some variant of Moore's law (e.g. doubling every three year or so). The contrast with the exploratorynature of classic applications in cluster analysis is quite clear. The issue is discussed in more detail in [9]. Thisreport deals exclusively with clustering in the setting of (sparse) graphs.



2. Introductory description of the MCL algorithm 32. Introductory description of the MCL algorithmThe basic idea underlying the MCL algorithm and process is that dense regions in sparse graphs correspondwith regions in which the number of k{length paths is relatively large, for small k 2 IN . Random walks oflength k thus have higher probability for paths with beginning and ending in the same dense region than forother paths. This is especially true if one looks at the subset of all random walks departing from a speci�cnode. If this node is situated in a dense region, random walks departing from it will in general have a tendencyto stay in the same region. The crucial element in the MCL algorithm is that this e�ect is deliberately boostedby an iterative procedure. First, an input graph G is mapped in a generic way onto a Markov matrix M1.Then the set of transition probabilities is iteratively recomputed via expansion and in
ation. The expansionstep corresponds with normal matrix multiplication (on stochastic matrices), the contraction step correspondswith a parametrized operator �r, called the in
ation operator, which acts column{wise on (column) stochasticmatrices. Henceforth, the term in
ation will be used rather than contraction. Via expansion, nodes are ableto see new neighbours; via in
ation, favoured neighbours are further promoted, and less favoured neighboursare further demoted. For nearly all undirected graphs G, this process triggered by G converges very fast.The structural characteristics of the matrix limit of the process may be very di�erent from the initial Markovmatrix M1. The associated graph of the matrix limit can have a larger number of connected componentsthan the original input graph. This is in fact what makes the algorithm work, since the strongly connectedcomponents of the limit, joined with the respective node{sets that reach them, are interpreted as an overlappingclustering of the original graph. As in the usual Markov process, the `nice' limits are idempotent matrices.An in�nite sequence consisting of repeated alternation of expansion and in
ation constitutes a new algebraicprocess called the Markov Cluster (MCL) process. If the in
ation operator �r is parametrized such that allin
ation steps correspond with the identity operator, a normal Markov process results. Interpretation of thelimit then yields a clustering which corresponds with the set of connected components of the original graph.The in
ation operator does not distribute over the normal matrix product, as � acts on matrices column{wise.For a normal Markov process, the columns of any iterand lie within the convex hull of the columns of anyprevious iterand. This is not true for the MCL process, which is due to � again. However, the MCL processhas remarkable convergence properties. The `nice' equilibrium states of the process are easily derived, and inpractice the algorithm converges nearly always to such a limit. Exceptions to this rule are quite rare. Theonly ones found so far were made by construction, and agree with heuristic considerations.For all testcases described in [10], the correlation between input graph, algorithm parameters, and outputclustering is in line with heuristic considerations. The examples in [10] show surprising strengths of thealgorithm. Most notable among these are separating power and the absence of chaining. All clusterings thatare found have the property that the clusters correspond with regions in which there are relatively many k{length paths within. In this sense, it is impossible to �nd bad clusterings. The number of clusters is in
uencedby the 
ow characteristics of the MCL process. The cluster granularity can be a�ected by varying the 
owparameters, but the number of clusters need not (and can not) be speci�ed explicitly. The parametrizationsof the MCL process which are useful for clustering purposes, generally lead to intermediate matrix iterandsand equilibrium states which are very sparse in a `weighted' sense. That is, a column may have many nonzeroentries, but most of them are very small compared to the largest entries within the column. This gives themeans to scale the algorithm drastically, by applying columnwise pruning.3. OrganizationNotations and de�nitions are covered in Section 4. Section 5 contains a short account of three related proposalstowards graph clustering. They are formulated in terms of path numbers, random walks, and shortest paths.The proposal is made to assemble these notions under the somewhat grandiloquent label graph clusteringparadigm. In Section 6 proposals towards graph clustering that have a combinatorial nature are discussed. Arelaxation of one of them is the subject of Section 7. It is called k-path clustering and uses path numbers todetect cluster structure via single link clustering. This method links the combinatorial cluster notions with



4. Notation and de�nitions 4the MCL algorithm, as the starting point for the MCL algorithm is a localized version of k-path clustering.In Section 8 probabilistic cluster algorithms based on the ideas in Section 5 are brie
y described. Randomwalks on graphs are introduced, corresponding with a localization of the context in which k-path clustering isapplied. The standard way of describing a random walk on a graph associates a particular discrete Markovchain with the graph, and such is also the setup here. An example of (deterministically computed) randomwalks on an undirected graph possessing (weak) cluster structure is given. The initial characteristics of thisstochastic process (c.q. Markov chain) are similar to phenomena observed in applying k-path clustering to thesame graph (Section 7) but in the limit of the process all evidence of cluster structure has withered away. Anew operator called in
ation is inserted into the process, and an example run using the same input graphresults in a limit which induces a cluster interpretation of the input graph in a generic way. TheMCL algorithmand MCL process are formally described at the end of Section 8. The relationship between the MCL processand cluster interpretation of graphs is the subject of Section 9. Section 10 gives mathematical properties ofthe in
ation operator �. In Section 11 the theoretically conceivable equilibrium states of the MCL process arecategorized. Examples are given for each of the introduced classes. A class of symmetric circulant matrices forwhich matrix squaring and in
ation act as each other's inverse is the subject of Section 12. In Section 13 localconvergence properties of the MCL process are studied. The class of nice equilibrium states1 is subdividedinto two categories. It is shown that in the neighbourhood of the equilibrium states in the �rst subclass theMCL process converges quadratically towards equilibrium. Then it is shown that the equilibrium states S inthe second subclass are instable, but that the MCL process converges quadratically at least on a macroscopicscale, once close enough to such an equilibrium state S. That is, it is proven that the structural form of theelements of MCL process converges towards the same block structure as present in S. Roughly speaking, theconclusion is that the phenomenon of cluster overlap is instable in nature, and that otherwise the instabilityof an equilibrium state, c.q. perturbation followed by convergence towards another equilibrium state, does notchange the associated clustering. Section 14 is concerned with complexity and scalability of the algorithm. Itis shown that the algorithm can be scaled drastically for large graphs in which the diameters of the naturalclusters is relatively small.In [11] conditions are given under which iterands of the MCL process have real c.q. nonnegative spectrum,and which imply the presence of generalized cluster structure in the iterands. The basic result is that forsymmetric input matrix M , all iterands of the MCL process are guaranteed to be diagonally similar to asymmetric matrix. If such an iterand (matrix) has in addition nonnegative spectrum, than determinantalinequalities induce an ordering among the diagonal entries of the matrix which generalizes the mapping fromnonnegative idempotent matrices onto overlapping clusterings given here in De�nition 8. This ordering is alsoused in [11] to characterize the working of the in
ation operator on its argument matrix.4. Notation and definitionsThis section introduces the terminology needed for graphs, (dis)similarity spaces, and clusterings. Single linkand complete link clustering are discussed in some greater detail, because these are methods typically appliedto dissimilarity data derived from attribute spaces, and are yet often formulated in graph{theoretical terms.GraphsDe�nition 1 Let V be a �nite collection of elements, enumerated v1; : : : ; vt.i) A weighted graph G on V is a pair (V;w), where w is a function mapping pairs of elements of V to thenonnegative reals: w : V � V ! IR�0.a) G is called undirected if w is symmetric, it is called directed otherwise.1The states correspond with matrices which are idempotent under both expansion and in
ation, the MCL processconverges quadratically around these states, and they allow a generic mapping onto overlapping clusterings.



4. Notation and de�nitions 5b) G is said to be irre
exive if there are no loops in G, that is, w(v; v) = 0; 8v 2 V .ii) A dissimilarity space D = (V; d) is a pair (V; d), where s is a symmetric function mapping V � Vto IR�0, satisfying s(u; v) = 0 () u = v. The function d is called a dissimilarity measure ordissimilarity coe�cient.iii) A similarity space is a pair (V; s), where s is a symmetric function mapping V � V to IR>0 [ f1g,satisfying s(u; v) =1 () u = v. The function s is called a similarity measure or similarity coe�cient.The elements in V are called the nodes of G. The dimension of the graph G is de�ned as the cardinality t ofits node set V .In this thesis, I shall use similarity coe�cients in the exposition of k-path clustering in Section 7.Let G = (V;w) be a weighted directed graph with jV j = t. The associated matrix of G lying in IR�0t�t,denoted MG, is de�ned by setting the entry (MG)pq equal to w(vp; vq). Given a matrix M 2 IR�0N�N , theassociated graph of M is written GM , which is the graph (V;w) with jV j = N and w(vp; vq) =Mpq .An equivalent way of representing a weighted graph G is by identifying G with a triple (V;E;w), wherethe edge set E is a subset of V 2 and where w is a positive weight function de�ned on E only. A graphrepresented by such a triple (V;E;w) is in 1{1 correspondence with a graph representation (V;w0) (accordingto De�nition 1), by setting w0(u; v)=a>0 i� e=(u; v)2E and w(e)=a, and setting w0(u; v)=0 i� e=(u; v)62E.The second representation leads to the generalization of graphs called hypergraph. A weighted hypergraphis a triple (V;E;w) where the hyperedge set E is a subset of the powerset P(V ), and where w is a weightfunction on E as before.Matrices and graphs of dimension N are indexed using indices running from 1 to N . If u; v are nodes for whichw(u; v) > 0, I say that there is an arc going from v to u with weight w(u; v). Then v is called the tail node,and u is called the head node. The reason for this ordering lies in the fact that graphs will be transformedlater on into stochastic matrices, and that I �nd it slightly more convenient to work with column stochasticmatrices than with row stochastic matrices. The degree of a node is the number of arcs originating from it.A graph is called voidfree if every node has degree at least one.A path of length p in G is a sequence of nodes vi1 ; : : : ; vip+1 such that w(vik+1 ; vik) > 0, k = 1; : : : ; p. Thepath is called a circuit if i1 = ip+1, it is called a simple path if all indices ik are distinct, i.e. no circuit iscontained in it. A circuit is called a loop if it has length 1. If the weight function w is symmetric then thearcs (vk; vl) and (vl; vk) are not distinguished, and G is said to have an edge (vl; vk) with weight w(vl; vk). Thetwo nodes vl; vk are then said to be connected and to be incident to the edge. A simple graph is an undirectedgraph in which every nonzero weight equals 1. The simple graph on t nodes in which all node pairs u; v; u 6= v,are connected via an edge (yielding t(t� 1) edges in all) is denoted by Kt, and is called the complete graphon t nodes. A weighted directed graph for which w(u; v) > 0; 8u 6= v, is called a weighted complete graph. Aweighted directed graph for which w(u; v) = 0 for some (or many) pairs (u; v) is called a weighted structuredgraph.Let G = (V;w) be a directed weighted graph. A strongly connected component of G is a maximal subgraph Hsuch that for every ordered pair of nodes x; y in H there is a path from x to y in H. If G is undirected,then the strongly connected components are just called the connected components, and G is called connectedif there is just one connected component (equalling G itself). For G directed, a weakly connected componentsis a maximal subgraph H containing at least one strongly connected component C and all nodes x in Gsuch that there is a path in G going from x to an element of C (and thus to all elements of C). Weaklyconnected components can thus overlap, but they always contain at least one strongly connected componentnot contained in any of the other weakly connected components.



4. Notation and de�nitions 6Let G = (V; w) be a directed weighted graph G = (V;w). In this thesis the interpretation of the weightfunction w is that the value w(u; v) gives the capacity of the arc (path of length 1) going from v to u. Let G bea simple graph, let M = MG be its associated matrix. The capacity interpretation of the weight function wis very natural in view of the fact that the pq entry of the kth power Mk gives exactly the number of paths oflength k between vp and vq. This can be veri�ed by a straightforward computation. The given interpretationof the entries of Mk extends to the class of weighted directed graphs, by replacing the notion `number of pathsbetween two nodes' with the notion `capacity between two nodes'.The graph which is formed by adding all loops to G is denoted by G + I. In general, if � is a nonnegativediagonal matrix, then G +� denotes the graph which results from adding to each node vi in G a loop withweight �ii.Partitions and clusteringsA partition or clustering of V is a collection of pairwise disjoint sets fV1; : : : ; Vdg such that each set Vi is anonempty subset of V and the union [i=1;::: ;dVi is V . A partition P is called ( top respectively bottom2)extreme if respectively P = fV g and P = fsingletons(V )g = ffv1g; : : : ; fvtgg. A hierarchical clustering of Vis a �nite ordered list of partitions Pi; i = 1; : : : ; n of V , such that for all 1 � i < j � n the partition Pjcan be formed from Pi by conjoining elements of Pi, where P1 = fsingletons(V )g = ffv1g; : : : ; fvtgg andPn = fV g. An overlapping clustering of V is a collection of sets fV1; : : : ; Vdg, d 2 N , such that each set Vi isa nonempty subset of V , the union [i=1;::: ;dVi is V , and each subset Vi is not contained in the union of theother subsets Vj ; j 6= i. The latter implies that each subset Vi contains at least one element not contained inany of the other subsets, and this in turn implies the inequality d � t.Let s be a similarity coe�cient de�ned on V = fv1; : : : ; vtg. Let s1; : : : ; sn be the row of di�erent values that sassumes on V �V , in strictly descending order and with the value 0 added. Remember that s(u; u) =1; u 2 V .Thus, 1 = s1 > s2 > � � � > sn = 0. The single link clustering of the pair (V; s) is the nested collection ofpartitions Pi; i = 1; : : : ; n, where each Pi is the partition induced by the transitive closure of the relation inwhich two elements u; v; are related i� s(u; v) � si. According to this de�nition, subsequent partitions may beequal, P1 = fsingletons(V )g, and Pn = fV g. The fact that at each similarity level si the single link clusteringresults from taking the transitive closure implies that the clustering coincides with the connected componentsof the threshold graph of (V; s) at threshold level si. This is simply the graph3 on t nodes where there is anedge between u and v i� s(u; v) � si.The complete link clustering of the pair (V; s), is usually procedurally de�ned as follows. The bottom par-tition P1 is again taken as fsingletons(V )g. Each clustering Pk, k > 1, is subsequently de�ned in termsof Pk�1 by uniting the two clusters Cx and Cy of Pk�1 for which the threshold level s such that [the subgraphon Cx [ Cy in the threshold graph of (V; s) at level s is complete] is maximal. Equivalently, Cx and Cy aresuch that the maximum of the minimal similarity in the restriction of the similarity space (V; s) to CX [ CY ,is assumed for X = x and Y = y. It is not very satisfactory from a mathematical point of view that theclusterings at a given level depend on the previous clusterings. It would be more elegant to de�ne a clusteringat a given threshold level as all maximal cliques in the corresponding threshold graph. The drawback is thatit will in general result in an overlapping clustering with many clusters. Moreover, di�erent clusters mayhave large overlap and small symmetric di�erence. Many variants of this type of complete linkage have beensuggested [19, 23, 31], by �rst forming all maximal cliques at a given threshold level, and subsequently joiningclusters (which are cliques) under the transitive closure of some similarity between clusters, e.g. sharing atleast k neighbours. The computational requirements of such methods are huge, and they are mostly presentedas an exercise in mathematical thought.2The set of all partitions forms a lattice of which these are the top and bottom elements.3Usually threshold graphs are presented in the setting of dissimilarity spaces, using the edge de�ning inequal-ity s(u; v) � si.



5. The graph clustering paradigm 7MiscellaneaNumerical experiments are described in this thesis, which means that the realm of �nite precision arithmeticis entered. Numerical expressions denote 
oating point numbers if and only if a dot is part of the expression.Expressions in which single indices or subscripted or superscripted simple expressions are enclosed in paren-theses denote the object which results from letting the index run over its natural boundaries. E.g. e(i) denotesa vector or a row (the context should leave no doubt which of the two), Tk(i) denotes the kth row of thematrix T , and (T (i))kl denotes the set of kl entries of the powers of T . The fact that each of the entries in arow e(i) equals the same constant c is concisely written as e(i)=c c.5. The graph clustering paradigmWhat are natural groups? This is in general a di�cult problem, but within the framework of graphs there isa single notion which governs many proposals. This notion can be worded in di�erent ways. Let G be a graphpossessing cluster structure, then alternative wordings are the following:a) The number of higher{length paths in G is large for pairs of vertices lying in the same dense cluster, andsmall for pairs of vertices belonging to di�erent clusters.b) A random walk in G that visits a dense cluster will likely not leave the cluster until many of its verticeshave been visited.c) Considering all shortest paths between all pairs of vertices of G, links between di�erent dense clusters arelikely to be in many shortest paths.These three notions are strongly related to each other. The situation can be compared to driving a carin an unfamiliar city in which di�erent districts are connected by only a few roads, with many promisinglooking turns and roads unreachable due to tra�c regulations. Viewing crossings and turns as vertices, andthe accessible road segments between them as edges, the notions given above translate to a) There are manydi�erent ways of driving (not necessarily taking the shortest route) from A to B if A and B are in the samedistrict, and only few if they are in di�erent districts, under the condition that the number of roads segmentsvisited is equal; b) Driving around randomly, but in line with tra�c regulations, will keep you in the samedistrict for a long time; c) If the transportation need of the locals is homogeneously distributed over alldeparture and destination points, then the roads connecting di�erent districts will be congested.The idea now is to measure or sample any of these | higher{length paths, random walks, shortest paths |and deduce the cluster structure from the behaviour of the sampled quantities. The cluster structure willmanifest itself as a peaked distribution of the quantities, and conversely, a lack of cluster structure will resultin a 
at distribution. The distribution should be easy to compute, and a peaked distribution should have astraightforward interpretation as a clustering.I propose to assemble the notions listed above under the denominator of the graph clustering paradigm, beingwell aware of the fact that the paradigm label is somewhat grandiloquent. However, the notions clearly sharea common idea that is simple and elegant in that it gives an abstract and implicit description of clusterstructure (rather than tying it to a particular optimization criterion); in that it is persistent, as it has surfacedat di�erent times and places4; and in that it is powerful, as it can be tied to di�erent graph{theoreticalconcepts, yielding di�erent clustering methods.The idea of using random walks to derive cluster structure is mainly found within the graph partitioningcommunity. The various proposals utilizing it are discussed in Section 8. The following section describes4The number of occurrences is not large in itself, but it is signi�cant considering the small number of publicationsdedicated to graph clustering.



6. Combinatorial cluster notions 8proposals for graph clustering which have a strong combinatorial nature. One of these, the linkage{basedk-path clustering method forms the connection between combinatorial and randomized methods. The singlelinkage paradigm can be seen as the connecting factor. This requires the dismissal of a notion which isseemingly central to single link clustering, namely the global interpretation of the (dis)similarity function. Itis argued that this global interpretation hampers the combinatorial clustering methods introduced below; theintroduction of random walks naturally requires a localized interpretation of graph connectivity properties.6. Combinatorial cluster notionsIn the clustering and pattern recognition communities, proposals have been made to de�ne clusters in graphswhich are more combinatorial in nature. An important contributor in this respect is David Matula, whowrote several articles on the subject. It is noteworthy that Matula's publication record (e.g. [30, 31, 32, 36])indicates that his primary research interests are in graph theory and discrete mathematics. It seems that hispublications in clustering in the setting of (simple) graphs came too early in the sense that at the time ofwriting there was little interest in the clustering community in simple graphs, except as a means of notationfor the description of linkage{based algorithms such as single link and complete link clustering. In fact, Matulapresents several graph cluster concepts in [31] as a series of re�nements splitting the spectrum between singlelink and complete link clustering. The presentation of these �ndings in the setting of general similarity spacesand threshold graphs indicates that the time was not right for clustering in the setting of simple graphs per se.I see several reasons why the combinatorial notions have not caught on, among which the issue of justi�cationin the setting of threshold graphs and the lack of genuine (simple) graph applications and problems. Equallyimportant however are the relative intractability of the proposed notions, and their disposition to produceunbalanced clusterings. Let G = (V;E) be a graph. The following notions each de�ne subgraphs of G.k-bond A maximal subgraph S such that each node in S has at least degree k in S.k-component A maximal subgraph S such that each pair of nodes in S is joined by k edge{disjoint pathsin S.k-block A maximal subgraph S such that each pair of nodes in S is joined by k vertex{disjoint(except for endpoints) paths in S.Each notion de�nes a corresponding hierarchical cluster method by letting k vary and at each level taking ascluster elements all k-objects and all singletons corresponding with nodes which are not in any k-object, whereobject may be any of bond, component, or block. These methods are hierarchical because every k + 1-objectis contained within a k-object. For k = 1 all three k-notions boil down to the connected components of G.Moreover, for �xed k, it is true that every k-block of G is a subgraph of some k-component, which is in turn asubgraph of some k-bond of G. This implies that the corresponding cluster methods are successive re�nements,going from bond to component to block. In the clustering section of the graph partitioning survey article [3]of Alpert and Kahng one method is mentioned which is a re�nement of the k-component method, namelythe (K;L){connectivity method proposed by Garbers et al in [14]. Nodes are (K;L){connected if there existK edge disjoint paths of length at most L between them.Matula �nds that k-components and k-blocks provide better resolution into cohesive groupings than k-bonds.The example given here in Figure 1 is taken from the article [31], and it shows a graph with its k-blocks,yielding the most re�ned clusterings. In this case, the overlapping clustering for k = 3 looks reasonably good,although it is a pity that the �fth point in the leftmost 2-block ends up as a singleton in the 3-block clustering.The lack of balance is even stronger in the graph which is depicted in Figure 2, together with its 3-blockclustering. For this graph, the 2-block clustering yields the whole vertex set as a single cluster and the 3-blockclustering is very unsatisfactory. This evidence is neither incidental nor contrived. Rather, it is inherent tothe k-object methods. They are very sensitive to local variations in node degree. Such sensitivity is unwantedin itself, and in this case leads to unbalanced clusterings. The k-object methods are much too restrictive in
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2Figure 1: Graph with its k-blocks. Figure 2: Graph with its 3-blocks.their de�nition of cohesive structure, especially taking into account the commonly accepted `loose' objectiveof clustering. It is reasonable to demand that a clustering method for simple graphs can recognize disjointunions of complete (simple) graphs of di�erent sizes, or complete graphs which are sparsely connected. Thek-object methods clearly fail to do so, and one reason for this is that local variations in connectivity havesevere impact on the retrieved clusters.Finally, the object methods are highly intractable. Matula [31] and Tomi [40] give time complexitiesO(jV j3=2jEj2)for the retrieval of k-blocks and O(min(jV j8=3jEj; jV jjEj2) for the retrieval of k-components. Among others,the algorithms require the solution of the minimum cut network 
ow problem. Since the number of edges jEjis surely at least jV j for interesting applications, the time complexities are at least cubic in the input size ofthe graph.7. k-Path clusteringOf the existing procedural algorithms, single link clustering has the most appealing mathematical properties.This is precisely because it allows non-procedural interpretations in terms of Minimal Spanning Trees and interms of approximating metrics by ultrametrics (trees). See [17] for an extensive treatment of this subject. Inthis section I shall discuss a variant of single link clustering for graphs which I call k-path clustering. Thisvariant is a further relaxation of the k-block and k-component methods, and its interpretation is related tothe interpretation of the MCL algorithm. The basic observation underlying both methods is the fact that twonodes in some dense region will be connected by many more paths of length k; k > 1, than two nodes forwhich there is no such region. This section is mainly an exposition of ideas, and a few examples are studied.The examples are intended to support the heuristic underlying the MCL algorithm, and they provide fruitfulinsights into the problems and bene�ts associated with re�nements of graph similarities. k-Path clustering isconceptually much simpler than k-block and k-component clustering, but in terms of tractability it is onlyslightly more viable. It su�ers less from a lack of balance in the clusters it produces, but it is still far fromsatisfactory in this respect. k-Block, k-component, and k-path clustering were also proposed by Tamura [39],who was apparently unaware of the work of Matula.For k = 1, the k-path clustering method coincides with generic single link clustering. For k > 1 the methodis a straightforward generalization which re�nes the similarity coe�cient associated with 1-path clustering.Let G = (V;w) be a graph, where V = fv1; : : : ; vtg, let M = MG be the associated matrix of G. For eachinteger k > 0, a similarity coe�cient Zk;G associated with G on the set V is de�ned by setting Zk;G(vi; vj) =1; i = j, andZk;G(vi; vj) = (Mk)ij ; i 6= j (7.1)



7. k-Path clustering 10Note that the values (M i)pp are disregarded. The quantity (Mk)pq has a straightforward interpretation asthe number of paths of length k between vp and vq; this is the exact situation if G is a simple graph. IfG has dense regions separated by sparse boundaries, it is reasonable to conjecture that there will be relativelymany path connections of length k with both ends in the same region, compared with the number of pathconnections having both ends in di�erent dense regions. For weighted graphs, the interpretation is in terms ofpath capacities rather than paths per se, and the formulation is now that the path capacities between di�erentdense regions are small compared with the path capacities within a single dense region. The next example isone in which Zk;G does not yet work as hoped for. It will be seen why and how that can be remedied. Forsake of clear exposition, the examples studied are simple graphs.Odd and evenThe graph G1 in Figure 3 is a tetraeder with 
attened tips. It clearly admits one good non-extreme clustering,namely the one in which each of the 
attened tips, i.e. the four triangles, forms a cluster. The associatedmatrix M =MG1 , and the square M2 are shown in Figure 5.
a

b
c

d

Figure 3: Topped tetraeder G1. Figure 4: Bipartite graph G2.For each of the coe�cients Zk;G1 , single link clustering immediately yields the whole vertex set of G1 as onecluster. How can this be? Somehow, the expectation that there would be relatively more k-length pathswithin the dense regions, in this case triangles, was unjusti�ed. Now, on the one hand this is a peculiarityof this particular graph and especially of the subgraphs of the triangle type. For even k, spoilers are pairslike (a; c), for odd k, these are pairs like (a; d). This clearly has to do with the speci�c structure of G1, wherethe set of paths of odd length leading e.g. from a to b does not pro�t from (a; b) being in a triangle, comparedwith the set of paths leading from a to d. On the other hand the behaviour of any similarity coe�cient Zk;Gis in general very much in
uenced by the parity of k. There is a strong e�ect that odd powers of M obtaintheir mass from simple paths of odd length and that even powers of M obtain their mass from simple pathsof even length. The only exceptions are those paths which include loops of odd length. Note that the onlyrequirement for a loop of even length is the presence of an edge (inducing a loop of length 2).A countermeasure to parity dependenceThe observation in one of the previous paragraphs that paths containing circuits of odd length form anexception brings a solution to the problem of parity dependence. By adding loops to each node in G1, theparity dependence is removed. Just as every edge induces the minimal loop of even length, every node nowinduces the minimal loop of odd length. On the algebra side, adding loops corresponds with adding the identitymatrix to M . The numbers de�ning the new coe�cients Z2;G1+I are found in Figure 5, where the largesto�-diagonal matrix entries (diagonal entries are disregarded) are printed in boldface. Each coe�cient now
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1CCCCCCCCCCCCCCCCAM + I (M + I)2Figure 5: Several matrices associated with G1.yields the best clustering, consisting of the set of four triangles. Adding loops helps in further di�erentiatingthe numbers Zk;G1+I(s; t) for �xed s and varying t.For a less symmetrical example, consider the simple graph G3 depicted in Figure 6, also used on page 9. Itsassociated matrix after adding loops to each node is given next to it in Figure 7. Below are the results ofsingle link clustering at all levels, using the similarity coe�cient Z2;G3+I .Level Clustering1 : : : 6 fsingletons(V )g = f f1g; f2g; f3g; f4g; f5g; f6g; f7g; f8g; f9g; f10g; f11g; f12g g5 f f9; 11g; f1g; f2g; f3g; f4g; f5g; f6g; f7g; f8g; f10g; f12g g4 f f1; 10g; f4; 8; 9; 11g; f2g; f3g; f5g; f6g; f7g; f12g g3 ff1; 6; 7; 10g f2; 3; 5g; f4; 8; 9; 11; 12g g2; 1; 0 fV g = ff1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12ggThe clustering at level 3, which is the �rst in which no singletons remain, is rather pleasing. This clustering alsoresults if the coe�cient is taken to be Z3;G3+I (not given here). The coe�cient Z4;G3+I starts out accordingly,however, before node 6 gets involved, the groups f4; 8; 9; 11; 12g and f2; 3; 5g are joined. This is caused bythe fact that node 6 is located in the sparsest part of G3. The weak spot of single link clustering, namelychaining, surfaces here in the speci�c case of k-path clustering.The last example in this section is a graph G2 for which single link clustering with coe�cient Zk;G2 ; k > 1,initially groups points together which are not connected. The graph G2 in Figure 4 is a small bipartite graph.The upper and lower nodes have three simple paths of length 2 connecting them. Even in the presence ofloops, the number of k-step paths, k > 1, will always be greater for the pair of top and bottom nodes thanfor any other pair. Bipartite graphs form a class of graphs for which it is natural to cluster each of the twonode domains separately5. By adding multiple loops to each node of G2 it can be ensured that the resulting5e.g. Document phrase databases naturally yield bipartite graphs. Clustering the two node domains then yields adocument grouping and a phrase grouping.
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Figure 6: Graph G3.
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1CCCCCCCCCCCCCCCCCAFigure 7: The matrix (N + I)2; N =MG3 .clustering corresponds with connected components only (one in this case), but it is di�cult to formulate asu�cient condition which guarantees this property for graphs in general. I conjecture that a su�cient conditionis for a graph to have nonnegative spectrum. This is a non-trivial conjecture, since spectral properties haveto be related to both the ordinal relationship among entries of a matrix power and the 0=1 structure of thematrix itself.A critical look at k-path clusteringIf k-path clustering were to be applied to large graphs, it would be desirable to work with varying k andthe corresponding coe�cients Zk;G. However, for most application graphs in this research, the matrices Mkand (M+I)k �ll very rapidly due to high connectivity of the graphs. The potential number of nonzero elementsequals 102N for graphs of vertex-size jV j = 10N . For N = 4 this quantity is already huge and for N = 5it is clearly beyond current possibilities. More importantly, it is quadratically related to N . In large scaleapplications, this is known to be a bad thing. It is di�cult to remedy this situation by a regime of removingsmaller elements.A second minus was mentioned in the discussion of the example graph G3 in Figure 6. I remarked that underthe coe�cient Z4;G3+I groups which had formed already started to unite before the last node left its singletonstate. The coe�cients Zk;G do account for the local structure around a node. However, a region which isdenser than another region with which it connected to a certain extent, will tend to swallow the latter up. Thisis the e�ect of chaining in k-path clustering. A third minus is related to the preceding and arises in the caseof weighted graphs. Di�erentiation in the weight function will lead to the same phenomenon of heavy-weightregions swallowing up light-weight regions. It should be noted that this situation is problematic for everycluster method based on single link clustering.On the credit side I �nd that at least in a number of examples the idea of considering higher length paths workswell. The manoeuvre of adding loops to graphs is clearly bene�cial, and the reason for this lies in the factthat parity dependence is removed, leading to a further di�erentiation of the associated similarity coe�cient.The issue of parity dependence has been noted before: Alpert and Kahng criticize the (K;L){connectivitymethod of Garbers et al | which is a variant of k-component clustering | for cutting a four{cycle (which isa bipartite graph) into disjoint paths.8. Random walks and graphsIn this section I brie
y discuss probabilistic cluster algorithms proposed in the graph partitioning communityand the concept of random walks on graphs. In the graph partitioning community, several randomized cluster



8. Random walks and graphs 13algorithms have been proposed. I follow the survey article [3] by Alpert and Kahng which was written in 1995.Karger [24] proposed a heuristic where each vertex starts as a singleton cluster. Edges are iteratively chosen inrandom fashion, and each time the clusters incident to the currently chosen edge are contracted into a singlecluster. A related approach was proposed by Bui et al in [6, 7]. A matching in a graph is a set of edges suchthat no pair of edges has a common vertex. They propose to �nd a random maximal matching and mergeeach pair of vertices into a cluster, resulting in a set of n=2 clusters. Both proposals hinge on the fact thatthere are more edges within clusters than in between di�erent clusters if cluster structure is present. Hagenand Kahng sample random walks for cycles in [15]; the basic setup is that if two nodes co-occur su�cientlyoften in a cycle, then they are joined within a cluster. Finally, Yeh et al [43] propose a method in whichshortest paths between randomly chosen pairs of vertices are computed. Each edge has a cost associated withit, which is adjusted every time the edge is included in a shortest path. In dense clusters, alternative pathsare easily found; this not being the case for vertices in di�erent clusters, edges between them will inevitablyacquire a higher check.The basic idea underlying the MCL algorithm �ts in the same paradigm, but two important distinctions arethat random walks are computed deterministically and simultaneously. The crux of the algorithm is that itincorporates reinforcement of random walks.Random walks on graphsThe standard way to de�ne a random walk on a simple graph is to let a Young Walker take o� on somearbitrary vertex. After that, he successively visits new vertices by selecting arbitrarily one of the outgoingedges.6 This will be the starting point for the MCL algorithm. An excellent survey on random graphs is [26]by Lov�asz. An important observation quoted from this article is the following:A random walk is a �nite Markov chain that is time{reversible (see below). In fact, there is not muchdi�erence between the theory of random walks on graphs and the theory of �nite Markov chains; everyMarkov chain can be viewed as a random walk on a directed graph, if we allow weighted edges.The condition that (the chain generated by) a Markov matrix is time{reversible translates to the conditionthat the matrix is diagonally similar to a symmetric matrix (see below). In order to de�ne random walkson weighted graphs in general, the weight function of a graph has to be changed such that the sum of theweight of all outgoing edges equals one. This is achieved by a generic rescaling step, which amounts to thelocalization of the weight function alluded to before.De�nition 2 Let G be a graph on n nodes, let M = MG be its associated matrix. The Markov matrixassociated with a graph G is denoted by TG and is formally de�ned by letting its qth column be the qth columnof M normalized. To this end, let d denote the diagonal matrix that has diagonal entries the column weightsof M , thus dkk =PiMik, and dij = 0; i 6= j. Then TG is de�ned asTG = MGd�1 (8.1)The Markov matrix TG corresponds with a graph G0, which is called the associated Markov graph of G. Thedirected weight function of G0, which is encoded in the matrix TG, is called the localized interpretation of theweight function of G. 2This de�nition encodes exactly the transformation step used in the theory of random walks on graphs. Givenan undirected graph G, the matrix N = TG is no longer symmetric, but is diagonally similar to a symmetricmatrix. Something can be said about the spectrum of TG in terms of the spectrum of MG if G is undirected.6Basic notions investigated in the theory of random walks are the access time Hij , which is the expected number ofsteps before node i is visited starting from node j, the cover time, which is the expected number of steps to reach everynode, and the mixing rate, which is a measure of how fast the random walk converges to its limiting distribution.



8. Random walks and graphs 14Lemma 1 Let G be undirected and void-free7, let M = MG be its associated matrix, let T = TG be itsassociated Markov matrix. Then the number of positive, negative, and zero eigenvalues are the same for Tand M .Next denote by l and u the minimum respectively maximum column sum, that is, l = minkPiMik, andu = maxkPiMik. Then�k(M)u � �k(T ) � �k(M)l �k(T ) > 0 (8.2)�k(M)l � �k(T ) � �k(M)u �k(T ) < 0 (8.3)Proof. Let d be the diagonal matrix of column lengths as de�ned in De�nition 2. The matrix T = Md�1is similar to the matrix d�1=2Md�1=2, which is congruent to the matrix M . Now the �rst statement ofthe lemma follows from Sylvester's law of inertia ([18], page 223). Because of congruence, the inertia of thematricesM and d�1=2Md�1=2 are the same, and because of similarity, the spectra of the matrices d�1=2Md�1=2and T = Md�1 are the same, which is a stronger property than sharing the same inertia. The fact that thetransition matrix T = d�1 is diagonally similar to the symmetric matrix d�1=2Md�1=2 is in Markov theoryphrased as that T is time{reversible or that T satis�es the detailed balance condition.The second statement follows from Ostrowski's theorem ([18], page 224), which relates the eigenvalues of ahermitian matrix A to the eigenvalues of the matrix SAS� in terms of bounding factors �1(SS�) and �n(SS�).In the lemma, these factors are simply the largest and smallest eigenvalue of the matrix d�1, equalling re-spectively 1=l and 1=u. It should be noted that this result can be re�ned by looking at principal submatricesof M . This is useful if there are a few columns of M of small weight compared with the other columns. Thisre�nement is omitted here since it will not be needed. 2A closer look at random walksGiven a graph G and its associated Markov matrix T = TG, the value Tpq now indicates `how much is thevertex q attracted to the vertex p', and this is meaningful only in the context of the other values found in theqth column. It is still possible to move a node away from all its neighbours by increasing the weight of itsloop. In Figure 8 the matrix M = TG3+I (corresponding with the graph G3 in Figure 6) is given which resultsafter the rescaling procedure, followed by three successive powers and a matrix labelled M1. The matrix Mis column stochastic. The fact that for each of its columns all nonzero values are homogeneously distributedcan be interpreted as `each node is equally attracted to all of its neighbours', or `at each node one moves toeach of its neighbours with equal probability'.All powers of M are column stochastic matrices too. For any Markov matrix N , the powers N (i) have a limit,which is possibly cyclic (i.e. consisting of a sequence of matrices rather than a single matrix). A connectedcomponent C of a graph G, which has the property that the greatest common divisor of the set of lengths of allcircuits in C is 1, is called regular. If for every vertex in C there is a path in C leading to any other vertex in Cit is called ergodic. If the underlying graph of a Markov matrix N consists of ergodic regular components only,then the limit of the row N (i) is non-cyclic. The graph G3 in Figure 6 clearly has this property, and the limitis found in Figure 8, denoted as M1. The columns of M1 each equal the unique eigenvector of M associatedwith eigenvalue 1. This eigenvector e denotes the equilibrium state of the Markov process associated with M .A good review of Markov theory in the larger setting of nonnegative matrices can be found in [5]. Regrettably,the existing theory on Markov matrices is of little use in this thesis, because an essential ingredient of theMCL process is the operator �r which acts on Markov matrices in a non-linear fashion.7All vertices are part of at least one edge.
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1CCCCCCCCCCCCCCCCCAM1Figure 8: Powers of M = TG3+I , the Markov matrix associated with the graph G3 in Figure 6, loops added to G3



8. Random walks and graphs 16Consider Figure 8 again. As is to be expected, the equilibrium state e (each column of M1 equals e) spreadsits mass rather homogeneously among the states or vertices of G3. However, the initial iterandsMk; k = 2; : : : ,exhibit the same behaviour as did the matrices (N+I)k in Figure 7, inducing the similarity coe�cients Zk;G+I .Transition valuesMkpq are relatively high if the vertices p and q are located in the same dense region. There isa correspondence between the numerical distribution of the column Mkp(q), and the distribution of the edgesof G3 over dense regions and sparse boundaries.Boosting the multiplier e�ectThe obvious interpretation of the new weight function is in terms of 
ow or random walks rather than interms of path sets, but the observed behaviour of matrix multiplication is similar. The new interpretation ofthe weight function more or less suggests a speculative move. Flow is easier within dense regions than acrosssparse boundaries, however, in the long run this e�ect disappears. What if the initial e�ect is deliberatelyboosted by adjusting the transition probabilities? A logical model is to transform a Markov matrix T bytransforming each of its columns. For each vertex, the distribution of its preferences (i.e. transition values)will be changed such that prefered neighbours are further favoured and less popular neighbours are demoted.A natural way to achieve this e�ect is to raise all the entries in a given column to a certain power greater thanone (e.g. squaring), and rescaling the column to have sum 1 again. This has the advantage that vectors forwhich the nonzero entries are nearly homogeneously distributed are not so much changed, and that di�erentcolumn positions with nearly identical values will still be close to each other after rescaling. This is explainedby observing that what e�ectively happens is that all ratios Tp1q=Tp2q are raised to the same power. Belowfour vectors and their image after rescaling with power coe�cient 2 are listed. The notation �rv is introducedright after these examples.Vector v: 0BBB@030121CCCA 0BBB@ 01=201=61=31CCCA 0BBB@1=41=41=41=40 1CCCA 0BBB@0:1510:1590:2180:2250:2471CCCA 0BBB@0:0860:0000:1130:8010:0001CCCAImage �2v: 0BBB@ 09=1401=144=141CCCA 0BBB@ 09=1401=144=141CCCA 0BBB@1=41=41=41=40 1CCCA 0BBB@0:1100:1220:2290:2450:2951CCCA 0BBB@0:0110:0000:0190:9700:0001CCCADe�nition 3 Given a matrix M 2 IRk�l, M � 0, and a real nonnegative number r, the matrix resultingfrom rescaling each of the columns of M with power coe�cient r is called �rM , and �r is called the in
ationoperator with power coe�cient r. Formally, the action of �r : IRk�l ! IRk�l is de�ned by(�rM)pq = (Mpq)r� kXi=1(Miq)rIf the subscript is omitted, it is understood that the power coe�cient equals 2. 2There are no restrictions on the matrix dimensions to �t a square matrix, because this allows �r to act onboth matrices and column vectors. There is no restriction that the input matrices be stochastic, since it isnot strictly necessary, and the extended applicability is sometimes useful. The parameter r is assumed ratherthan required to be nonnegative. The reason is that in the setting of the MCL process nonnegative values rhave a sensible interpretation attached to them. Values of r between 0 and 1 increase the homogeneity of the



8. Random walks and graphs 17argument probability vector (matrix), whereas values of r between 1 and 1 increase the inhomogeneity. Inboth cases, the ordering of the probabilities is not disturbed. Negative values of r invert the ordering, whichdoes not seem to be of apparent use.De�nition 4 A nonnegative vector v is called homogeneous if all its nonzero entries are equal. A nonnegativematrix is called column{homogeneous if each of its columns is homogeneous. 2The set of homogeneous probability vectors is precisely the set of vectors which are invariant under �r; r 6= 1.When applied to vectors, the �r operator has a nice mathematical property in terms of majorization. This isdiscussed in the following section, Section 10.Iterating expansion and in
ationFigure 9 gives the result of applying �r to the Markov matrix M2 given in Figure 8. The vital step now is toiterate the process of alternately expanding information 
ow via normal matrix multiplication and contractinginformation 
ow via application of �r. Thus, the matrix �rM2 is squared, and the in
ation operator is appliedto the result. This process is repeated ad libitum. The invariant of the process is that 
ow in dense regionspro�ts from both the expansion and the in
ation step. A priori it is uncertain whether the process converges,or whether convergence will lead to a meaningful limit. However, the heuristic which leads to the formulationof the process suggests that something will happen for graphs possessing sparse boundaries. The transitionvalues corresponding to edges crossing sparse boundaries are given a hard time by the process, and if anything,it is to be expected that they will tend to zero. This is exactly what happens for the example graph. The5rd iterand, the 9th iterand, and the invariant limit8 of this process (provisionally denoted by M1mcl) are givenin Figure 9 as well.The matrix M1mcl clearly is an idempotent under both matrix multiplication and the in
ation operator. Ithas a straightforward interpretation as a clustering. Four nodes can be said to be an attractor, namely thosenodes that have positive return probability. The nodes 9 and 11 are as much attracted to each other asthey are to themselves. The rest of the vertex set of G3 can be completely partitioned according to thenodes to which they are attracted. Sweeping attractors and the elements they attract together, the partitionf4; 8; 9; 11; 12g f1; 6; 7; 10g f2; 3; 5g results, also found earlier with k-path clustering.A certain subset of the equilibrium states only admits an interpretation as a clustering with overlap. Thisis related to the presence of symmetry in the graphs and matrices used. Consider the matrix M depictedin Figure 10, corresponding with a line{graph on 7 nodes, loops added to each node. An MCL run withe(i)=c 2; r(i)=c 2 results in the limit T1mcl. The nodes 2 and 6 are attractors, the node sets f1; 3g, and f5; 7g, arerespectively attracted to them. The vertex 4 is equally attracted to 2 and 6. The formation of two clusters, ordi�erent regions of attraction, is explained by the fact that the nodes at the far ends, i.e. 1; 2; 6; 7 have higherreturn probability after the �rst iterations than the nodes in the middle. Given the symmetry of the graph,it is only natural that node 4 is equally attracted to both regions.Formal description of the MCL algorithmThe basic design of the MCL algorithm is given in Figure 11; it is extremely simple and provides basically aninterface to the MCL process, introduced below. The main skeleton is formed by the alternation of matrixmultiplication and in
ation in a for loop. In the kth iteration of this loop two matrices labelled T2k and T2k+1are computed. The matrix T2k is computed as the previous matrix T2k�1 taken to the power ek. Thematrix T2k+1 is computed as the image of T2k under �rk . The row9 of expansion powers e(i) and the row of8Idempotent under both Exp2 and �2.9The notation e(i) is shorthand for feigi2IN and likewise r(i) for frigi2IN .



8. Random walks and graphs 180BBBBBBBBBBBBBBBBB@
0:380 0:087 0:027 �� 0:077 0:295 0:201 �� �� 0:320 �� ��0:047 0:347 0:210 0:017 0:150 0:019 0:066 0:012 �� 0:012 �� ��0:014 0:210 0:347 0:056 0:150 �� 0:016 0:046 0:009 �� 0:009 ���� 0:027 0:087 0:302 0:062 �� �� 0:184 0:143 �� 0:143 0:0830:058 0:210 0:210 0:056 0:406 �� 0:083 0:046 0:009 0:019 0:009 ��0:142 0:017 �� �� �� 0:295 0:083 �� �� 0:184 �� ��0:113 0:069 0:017 �� 0:062 0:097 0:333 0:012 �� 0:147 �� ���� 0:017 0:069 0:175 0:049 �� 0:016 0:287 0:143 �� 0:143 0:083�� �� 0:017 0:175 0:012 �� �� 0:184 0:288 �� 0:288 0:2780:246 0:017 �� �� 0:019 0:295 0:201 �� �� 0:320 �� ���� �� 0:017 0:175 0:012 �� �� 0:184 0:288 �� 0:288 0:278�� �� �� 0:044 �� �� �� 0:046 0:120 �� 0:120 0:278

1CCCCCCCCCCCCCCCCCA�2M2; M de�ned in Figure 80BBBBBBBBBBBBBBBBB@
0:448 0:080 0:023 �� 0:068 0:426 0:359 �� �� 0:432 �� ��0:018 0:285 0:228 0:007 0:176 0:006 0:033 0:005 �� 0:007 �� ��0:005 0:223 0:290 0:022 0:173 �� 0:010 0:017 0:003 0:001 0:003 0:001�� 0:018 0:059 0:222 0:040 �� 0:001 0:187 0:139 �� 0:139 0:0990:027 0:312 0:314 0:028 0:439 0:005 0:054 0:022 0:003 0:010 0:003 0:0010:116 0:007 0:001 �� 0:004 0:157 0:085 �� �� 0:131 �� ��0:096 0:040 0:013 �� 0:037 0:083 0:197 0:001 �� 0:104 �� ���� 0:012 0:042 0:172 0:029 �� 0:002 0:198 0:133 �� 0:133 0:096�� 0:001 0:015 0:256 0:009 �� �� 0:266 0:326 �� 0:326 0:3460:290 0:021 0:002 �� 0:017 0:323 0:260 �� �� 0:316 �� ���� 0:001 0:015 0:256 0:009 �� �� 0:266 0:326 �� 0:326 0:346�� �� 0:001 0:037 0:001 �� �� 0:039 0:069 �� 0:069 0:112

1CCCCCCCCCCCCCCCCCA�2(�2M2 � �2M2)0BBBBBBBBBBBBBBBBB@
0:807 0:040 0:015 �� 0:034 0:807 0:807 �� �� 0:807 �� ���� 0:090 0:092 �� 0:088 �� �� �� �� �� �� ���� 0:085 0:088 �� 0:084 �� �� �� �� �� �� ���� 0:001 0:001 0:032 0:001 �� �� 0:032 0:031 �� 0:031 0:031�� 0:777 0:798 �� 0:786 �� 0:001 �� �� �� �� ��0:005 �� �� �� �� 0:005 0:005 �� �� 0:005 �� ��0:003 0:001 �� �� 0:001 0:003 0:003 �� �� 0:003 �� ���� �� 0:001 0:024 �� �� �� 0:024 0:024 �� 0:024 0:024�� �� 0:002 0:472 0:001 �� �� 0:472 0:472 �� 0:472 0:4720:185 0:005 0:001 �� 0:004 0:185 0:184 �� �� 0:185 �� ���� �� 0:002 0:472 0:001 �� �� 0:472 0:472 �� 0:472 0:472�� �� �� 0:001 �� �� �� 0:001 0:001 �� 0:001 ��

1CCCCCCCCCCCCCCCCCA(�2 � Squaring) iterated four times on M0BBBBBBBBBBBBBBBBB@
1:000 �� �� �� �� 1:000 1:000 �� �� 1:000 �� ���� �� �� �� �� �� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� �� �� ���� 1:000 1:000 �� 1:000 �� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� �� �� ���� �� �� 0:500 �� �� �� 0:500 0:500 �� 0:500 0:500�� �� �� �� �� �� �� �� �� �� �� ���� �� �� 0:500 �� �� �� 0:500 0:500 �� 0:500 0:500�� �� �� �� �� �� �� �� �� �� �� ��

1CCCCCCCCCCCCCCCCCAM1mclFigure 9: Iteration of (�2 � Squaring) with initial iterand M de�ned in Figure 8.Entries marked `��' are either zero because that is the exact value they assume (this is true for the �rst twomatrices) or because the computed value fell below the machine precision.
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0BBBBBBBB@0:5000 0:3333 �� �� �� �� ��0:5000 0:3333 0:3333 �� �� �� ���� 0:3333 0:3333 0:3333 �� �� ���� �� 0:3333 0:3333 0:3333 �� ���� �� �� 0:3333 0:3333 0:3333 ���� �� �� �� 0:3333 0:3333 0:5000�� �� �� �� �� 0:3333 0:5000

1CCCCCCCCAInitial iterand T1 =M0BBBBBBBB@0:3221 0:2393 0:0493 0:0028 0:0000 �� ��0:6138 0:6120 0:2664 0:0420 0:0021 0:0000 ��0:0606 0:1275 0:4259 0:2165 0:0383 0:0010 0:00000:0035 0:0200 0:2159 0:4662 0:2143 0:0200 0:00340:0000 0:0011 0:0403 0:2259 0:4311 0:1282 0:0607�� 0:0000 0:0022 0:0436 0:2652 0:6116 0:6137�� �� 0:0000 0:0029 0:0490 0:2392 0:3220
1CCCCCCCCAIntermediate iterand T5 (k equals 2)0BBBBBBBB@0:0284 0:0280 0:0191 0:0015 0:0000 0:0000 0:00000:9647 0:9631 0:8226 0:1205 0:0016 0:0000 0:00000:0066 0:0082 0:0768 0:1362 0:0087 0:0000 0:00000:0003 0:0006 0:0686 0:4309 0:0673 0:0006 0:00030:0000 0:0000 0:0109 0:1677 0:0863 0:0088 0:00690:0000 0:0000 0:0020 0:1414 0:8173 0:9627 0:96440:0000 0:0000 0:0000 0:0018 0:0187 0:0280 0:0284
1CCCCCCCCAIntermediate iterand T9 (k equals 4)0BBBBBBBB@ �� �� �� �� �� �� ��1:0000 1:0000 1:0000 0:5000 �� �� ���� �� �� �� �� �� ���� �� �� �� �� �� ���� �� �� �� �� �� ���� �� �� 0:5000 1:0000 1:0000 1:0000�� �� �� �� �� �� ��
1CCCCCCCCALimit T1mcl (idempotent under Exp2 and �2).Figure 10: MCL run on a line{graph on 7 nodes



8. Random walks and graphs 20# G is a voidfree graph.# ei 2 IN; ei > 1; i = 1; : : : .MCL (G;�; e(i); r(i)) f # ri 2 IR; ri > 0; i = 1; : : : .G = G +�; # Possibly add (weighted) loops.T1 = TG; # Create associated Markov graph# according to De�nition 2.for k = 1; : : : ;1 fT2k = Expek(T2k�1);T2k+1 = �rk(T2k);if (T2k+1 is (near{) idempotent) break;gInterpret T2k+1 as clustering according to De�nition 8;g Figure 11: The basic MCL algorithm. Convergence is discussed in Section 9.in
ation powers r(i) in
uence the granularity of the resulting partition. The matrices in Figure 9 correspondwith an MCL session in which e(i)=c 2 and r(i)=c 2. If the current iterand is su�ciently close to an idempotentmatrix the process stops and the last resultant is interpreted according to De�nition 8 and Theorem 1 in thenext section. The theorem provides a mapping from the set of nonnegative column allowable idempotentmatrices to the set of overlapping clusterings. There are exceptional cases in which the iterands cycle arounda periodic limit. These cases, and the issues of convergence and equilibrium states at large, are discussed inSections 12 and 13. It is useful to speak about the algebraic process which is computed by the MCL algorithmin its own right. To this end, the notion of an MCL process is de�ned.De�nition 5 A nonnegative column{homogeneous matrix M which is idempotent under matrix multiplicationis called doubly idempotent. 2De�nition 6 A general MCL process is determined by two rows of exponents e(i), r(i), where ei 2 IN; ei > 1,and ri 2 IR; ri > 0, and is written( � ; e(i); r(i)) (8.4)An MCL process for stochastic matrices of �xed dimension d� d is written( �d�d ; e(i); r(i)) (8.5)An MCL process with input matrix M , where M is a stochastic matrix, is determined by two rows e(i), r(i) asabove, and by M . It is written(M; e(i); r(i)) (8.6)Associated with an MCL process (M; e(i); r(i)) is an in�nite row of matrices T(i) where T1 = M , T2i =Expei(T2i�1), and T2i+1 = �ri(T2i), i = 1; : : : ;1. 2
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Figure 12: MCL Clustering of the graph in Figure 1.In practice, the algorithm iterands converge nearly always to a doubly idempotent matrix. In Section 13 itis shown that the MCL process converges quadratically in the neighbourhood of doubly idempotent matrices.A su�cient property for associating a (possibly overlapping) clustering with a nonnegative column allowablematrix is that the matrix is idempotent under matrix multiplication. In [11] it is shown that the mappingof idempotent matrices onto overlapping clusterings according to De�nition 8 can be generalized towards amapping of time{reversible Markov matrices with nonnegative spectrum onto directed acyclic graphs. Thisis not a generalization in the strict sense, because stochastic idempotent matrices are in general not time{reversible. However the MCL process o�ers a perspective in which idempotent matrices are the extreme pointsof the set of time{reversible Markov matrices with nonnegative spectrum [11]. Figure 12 shows the clusteringresulting from applying the MCL algorithm with standard parameters e(i)=c 2 and r(i)=c 2 to the examplegraph in Figure 1 taken from [31], loops added to the graph.9. Basic MCL theoryThis section is concerned with basic properties of the MCL process. The �rst section gives a generic mappingfrom nonnegative idempotent column allowable matrices onto overlapping clusterings. In Section 10 simpleproperties of the � operator are derived. Exceptional cyclic limits for which expansion and in
ation act as eachother's inverse are the subject of Section 12. The section after that is concerned with convergence towardsequilibrium states and the stability of the MCL process around these states.Mapping nonnegative idempotent matrices onto clusteringsThe following theorem characterizes the structural properties of nonnegative column allowable idempotentmatrices. Using this theorem, De�nition 8 establishes a mapping from the class of nonnegative columnallowable idempotent matrices to the set of overlapping clusterings. Nonnegative doubly idempotent matricesdo not have stronger structural properties than matrices which are idempotent under matrix multiplicationonly. The theorem can easily be derived from the decomposition of nonnegative idempotent (not necessarilycolumn allowable) matrices given in [5]. However, I choose to give a self-contained proof here, which isinspired more by graph{theoretical considerations. The proof of the theorem is easier to follow by �rst lookingat the large matrix on page 23, and realizing that any nonnegative column allowable idempotent matrix mustessentially have a similar 0=1 structure (the matrix is also stochastic and column homogeneous, which is notessential for the theorem below).Theorem 1 Let M be a nonnegative column allowable idempotent matrix of dimension N , let G be itsassociated graph. For s; t, nodes in G, write s ! t if there is an arc in G from s to t. By de�nition,



9. Basic MCL theory 22s! t () Mts 6= 0. Let �; �; 
 be nodes in G. The following implications hold.(�! �) ^ (� ! 
) =) �! 
 (9.1)(�! �) ^ (�! �) =) � ! � (9.2)�! � =) � ! � (9.3)Proof. The �rst statement follows from the fact that M
� = (M2)
� �M
�M�� > 0. Suppose the secondstatement does not hold, then there exist � and � with � ! �, � ! �, and � 6! �. Denote by V� the setof nodes which reach �, denote by V� the set of nodes reachable from �. Then V� 6= ; because � ! �, andV� 6= ; because M is column allowable. It is furthermore true that V� \V� = ; and that there is no arc goingfrom V� to V�, for this would imply � ! � and � ! � by 9.1. For u; w 2 V�; v 2 V , the property u! v ! wimplies v 2 V�. For u;w 2 V�; v 2 V , the property u ! v ! w implies v 2 V� . It follows that for all2-step paths between node pairs respectively lying in V� and V� only indices lying in the same node set V�,respectively V�, need be considered. Reorder M and partition the matrix such that its upper left block hasthe form A11 A12A21 A22!where the indices of the diagonal block A11 correspond with all the elements in V�, and the indices of thediagonal block A22 correspond with all the elements in V�. It follows from the construction of V� and V�that all entries of A21 are positive, since for all u 2 V�; v 2 V�, it is true that u ! � ! � ! v. Similarly,A12 = 0. The observation made on 2-step paths with beginning and ending in V�, respectively V�, impliesthat A11 = A112 and A22 = A222. Furthermore, the inequality A21 � A21A11 + A22A21 holds. Multiplyingboth sides on the left with A22 and on the right with A11, the inequality A22A21A11 � 2A22A21A11 results.The fact that A21 is positive, and the fact that A11 contains one positive row, i.e. the row correspondingwith �, imply that A21A11 is positive too. Since A22 is nonzero, this implies that the product A22A21A11is nonnegative and nonzero, leading to a contradiction. The third statement follows by observing that theremust be a path of in�nite length going from � to � in G, that is, a path containing a circuit. If this were notthe case, there would exist a k 2 IN such that (Mk)�� = 0, whereas M�� 6= 0. The existence of such a circuitimplies by 9.2 and 9.3 that � ! �. 2De�nition 7 Let G = (V;w) be the associated graph of a nonnegative voidfree idempotent matrix of dimen-sion N , where V = f1; : : : ; Ng. The node � 2 V is called an attractor if M�� 6= 0. If � is an attractor thenthe set of its neighbours is called an attractor system. 2In the following a formal relationship is established between nonnegative idempotent matrices and overlappingclusterings. In order to sustain insight, it may again be helpful to keep the matrix on page 23 in mind. ByTheorem 1, each attractor system in G induces a weighted subgraph in G which is complete. Theorem 1furthermore provides the means to formally associate an overlapping clustering with each nonnegative columnallowable idempotent matrix. Let M be an arbitrary nonnegative idempotent matrix, let G = (V; w) be itsassociated graph. Denote by Vx the set of attractors of G. Denote the `arc from � to �' relationship in Gby (� ! �). The �rst two statements in Theorem 1 imply that ! is transitive and symmetric on Vx, and !is re
exive on Vx by de�nition of Vx. Accordingly, ! induces equivalence classes on Vx. Denote the set ofequivalence classes by fE1; : : : ; Edg. The de�nition below requires the input of a column allowable matrix, inorder to be able to distribute the elements of V nVx over the classes Ei.De�nition 8 Let M be a nonnegative column allowable idempotent matrix. Let G = (V;w) be its associatedgraph, let ! be the arc relation associated with G. Let Vx be the set of attractors in G, let E = fE1; : : : ; Edg



9. Basic MCL theory 23be the set of equivalence classes of ! on Vx. De�ne a relation � on E � V by setting �(E;�) = 1 if 9� 2 Ewith �! �, and �(E;�) = 0 otherwise. The overlapping clustering CLM = fC1; : : : ; Cdg associated with M ,de�ned on V , has d elements. The ith cluster Ci; i = 1; : : : ; d is de�ned by Equation (9.4).Ci = � v 2 V j �(Ei; v) = 1	 (9.4)2Note that the set of clusters is precisely the set of weakly connected components10 in the directed graph G.The inclusion Ei � Ci implies that each cluster has at least one element which is unique for this cluster. Allthis is in line with the procedures followed while studying the example in the previous section. It shouldbe noted that there is in general a very large number of nonnegative column allowable idempotent matriceswhich yield the same overlapping clustering according to De�nition 8. This is caused by the fact that thenumber of attractors and the distribution of the attractors over the clusters may both vary without resultingin di�erent clusterings. For example, printing attractors in boldface, the clustering ff1; 2g, f3; 4; 5gg resultsfrom all 21 possible combinations of the distributions f1; 2g, f1; 2g, and f1; 2g for the �rst cluster, and thedistributions f3; 4; 5g, f3; 4; 5g, f3; 4;5g, f3; 4; 5g, f3; 4; 5g, f3; 4;5g, and f3; 4;5g for the second cluster.Another example shows the extent to which complicated structure can be present in nonnegative idempotentmatrices. The matrix0BBBBBBBBBBBBBBBBBBBBBBB@
1=3 1=3 1=3 0 0 0 0 0 0 0 1=3 1=6 0 0 1=51=3 1=3 1=3 0 0 0 0 0 0 0 1=3 1=6 0 0 1=51=3 1=3 1=3 0 0 0 0 0 0 0 1=3 1=6 0 0 1=50 0 0 1=4 1=4 1=4 1=4 0 0 0 0 0 1=7 0 00 0 0 1=4 1=4 1=4 1=4 0 0 0 0 0 1=7 0 00 0 0 1=4 1=4 1=4 1=4 0 0 0 0 0 1=7 0 00 0 0 1=4 1=4 1=4 1=4 0 0 0 0 0 1=7 0 00 0 0 0 0 0 0 1=2 1=2 0 0 1=6 1=7 1=2 1=50 0 0 0 0 0 0 1=2 1=2 0 0 1=6 1=7 1=2 1=50 0 0 0 0 0 0 0 0 1 0 1=6 1=7 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCAis nonnegative idempotent and gives rise to the set Vx = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g, to the equivalence classesf1; 2; 3g, f4; 5; 6; 7g, f8; 9g, f10g, and to the overlapping clustering f1; 2; 3 11; 12; 15g, f4; 5; 6; 7; 13g, f8; 9; 12;13; 14; 15g, f10; 12; 13g. This matrix is also doubly idempotent and column stochastic. The MCL processconverges for nearly all input graphs to a doubly idempotent column stochastic limit11. For �xed dimension t,the class of doubly idempotent column stochastic matrices is �nite, but extremely large. The fact that it is�nite is easy to see: There is only a �nite number of values that each matrix entry can assume, namely theset of rationals f0; 1; 1=2; : : : ; 1=tg.The results in this section, especially De�nition 8, which uses Theorem 1, establish a clear relationship betweennonnegative column allowable idempotent matrices and overlapping clusterings. In practice, the equivalenceclasses E1; : : : ; Ed (see De�nition 8) tend to be singleton sets, and overlap in the setting of undirected graphshas been observed only for graphs having certain symmetries. This is discussed in [10].10For the de�nition of weakly connected components see page 5.11This is suggested by practical evidence. It is conjectured in [11] that the MCL process converges almost always ifthe input graph is symmetric.



10. Mathematical properties of the in
ation operator 2410. Mathematical properties of the inflation operatorThe � operator establishes a majorization relationship between a probability vector and its image. This isstated in Lemma 2. Concerning just � this is a nice property, however, it does not give enough footholdby itself for describing the intricate interaction of the � operator with the Exp operator. The � operatorfurthermore distributes over the Kronecker product of matrices, which is stated in Lemma 4. Combined withthe distributivity of normal matrix multiplication over the Kronecker product, this yields the result that foreach MCL process the Kronecker product of the respective iterands corresponding with two input matrices Aand B, is equal to the iterands corresponding with the input matrix which is the Kronecker product of A and B.This property is used in Section 11 to show the existence of certain periodic limits of the MCL process.Following [28], if z denotes a real vector of length n, then z[1] � z[2] � � � � � z[n] denote the entries of z indecreasing order.De�nition 9 Let x; y be real nonnegative vectors of length n. The vector y is said to majorize the vector x if(10.1) and (10.2) hold. This is denoted by x � y.x[1] + � � � + x[k] � y[1] + � � �+ y[k] k = 1; : : : ; n� 1 (10.1)x[1] + � � �+ x[n] = y[1] + � � �+ y[n] (10.2)2The relationship � entails a rather precise mathematical notion of one vector x being more homogeneous thananother vector y. It induces a partial order on each set of nonnegative vectors of �xed dimension. It turnsout that the in
ation operator �r makes probability vectors less homogeneous for values r > 1, and makesprobability vectors more homogeneous for values r < 1, which is stated in Lemma 2. This lemma follows fromthe fact that the vectors � and �r� satisfy the stronger condition of majorization by ratio (Lemma 3, alsofound in [28]).Lemma 2 Let � be a probability vector, let r be a real number, r > 0. The two inequalities (10.3) and (10.4)are implied by the fact that � and �r� satisfy the conditions of Lemma 3. The two equalities (10.5) and (10.6)are obvious.� � �r� r > 1 (10.3)� � �r� r < 1 (10.4)� = �r� r = 1 (10.5)� = �r� � is homogeneous (10.6)De�nition 10 Let x; y be real positive vectors of length n. The vector y is said to majorize by ratio thevector x, which is written x / y, if Pxi =P yi andx[1]=y[1] � x[2]=y[2] � � � � � x[n]=y[n] (10.7)2Lemma 3 ( [28], page 179) Majorization by ratio implies (normal) majorization.Proof. Without loss of generality, assume that y[i] = yi and x[i] = xi. The claim is that for k = 1; : : : ; n�1,kXj=1 yj � kXj=1 xj



10. Mathematical properties of the in
ation operator 25This follows fromkXj=1 yj nXl=1 xl � kXj=1 xj nXl=1 yl = kXj=1 yj nXl=k+1xl � kXj=1 xj nXl=k+1 yl= kXj=1 nXl=k+1 yjyl(xlyl � xjyj ) � 0 2The behaviour of �r(�) as r goes to in�nity (where � is a stochastic vector of dimension n), is easily described.One has that limr!1 �r(�)=(�1; : : : ; �n), where �i=0 if �i < maxi �i and �i=1=m if �i=maxi �i, where mis the number of indices i such that �i=maxj �j . Also, �0(�)=(�1; : : : ; �n), where �i=0 if �i=0 and �i=1=kif �i 6= 0, where k is the number of nonzero entries of �. The orbit of �r(�) under r (0 � r � 1), where �is a stochastic vector, has the property that �s(�) / �t(�) whenever s < t, and satis�es the multiplicativeproperty �s�t(�)=�st(�). So the �r operator is fairly well understood, and there are many results concerningthe majorization relationship between vectors. One such result is the characterization of so called Schur{convex functions � (which have the property that x � y implies �(x) � �(y)) in terms of properties of theirpartial derivatives. In [10] a particular Schur{convex function is one of the main ingredients of a performancecriterion for graph clustering. A celebrated result in the theory of majorization is that x � y i� there is adoubly stochastic matrix D such that x = Dy [27].Unfortunately, results from the theory of majorization of vectors do not carry over to matrices in such astraightforward way (i.e. the columns of one matrix majorizing the columns of another matrix). In [27] thisissue is discussed at length. However, Lemma 2 clearly shows the in
ationary or `decontracting' e�ect of �r,r > 1, as opposed to the contracting e�ect of matrix multiplication of nonnegative matrices in terms ofthe so called Hilbert distance between positive vectors (see [11]). Moreover, the in
ation operator preservesthe majorization by ratio relationship between vectors. For certain perturbations of circulant limits of theMCL process introduced in Section 12, matrix multiplication preserves the normal majorization relationship.Both cases (Hilbert distance, majorization) exemplify the phenomenon that the workings of the expansionand in
ation operator can be compared and contrasted in special cases. Annoyingly however, in
ation doesnot necessarily preserve normal majorization, and expansion of circulants does not necessarily preserve ma-jorization by ratio. A similar gap exists for the Hilbert distance.Lemma 4 Let A;B be nonnegative matrices of respective dimensions s1�t1 and s2�t2, let r 2 IR be positive.Denote the Kronecker product by (� 
 �). Equation (10.8) holds.�r(A
B) = �rA
 �rB (10.8)Proof. Use the following notation for the Kronecker product of matrices. Let (A 
 B)i;j;k;l denote theentry (A
B)is2+k;jt2+l, which is by de�nition equal to AijBkl. Here i = 1; : : : ; s1, k = 1; : : : ; s2, j = 1; : : : ; t1,and l = 1; : : : ; t2. I prove Identity (10.8) by proving that the ratios between two entries in the same column isthe same on both sides of Equation (10.8). Let i; j; k; l be as above and let i0; k0 be additional indices withinthe same bounds as respectively i and k. The indices j; l, identify the (jt1+ l)th column on both sides of (10.8).The two index pairs (i; k) and (i0; k0) identify two row entries in this column.



11. Equilibrium states of the MCL process 26��r(A
B)�i j k l��r(A
B)�i0j k0l =  (A
B)i j k l(A
B)i0j k0l !r =  Ai j Bk lAi0j Bk0l !r
= � AijAi0j �r � BklBk0l�r = ��rA�i j��rA�i0j ��rB�kl��rB�k0l= ��rA
 �rB�i j k l��rA
 �rB�i0jk0l 2Lemma 5 Let A;B, be square column stochastic matrices with no further restrictions imposed on their re-spective dimensions. Let K = A 
 B be their Kronecker product. Suppose all three are input to the sameMCL process (�; e(i); r(i)). Denote the respective iterand pairs by (A2i; A2i+1), (B2i; B2i+1), (K2i; K2i+1),i = 1; : : : ;1. Identity (10.9) holds.Kj = Aj 
Bj j = 1; : : : ;1 (10.9)Proof. The lemma follows from the observation that both matrix multiplication and � distribute over theKronecker product. 211. Equilibrium states of the MCL processIn order to characterize the equilibrium states of the MCL process, I make two extra assumptions on the inputrows r(i) and e(i). These arei) ri = c eventually, c 2 IR; c > 1.ii) ei = 2 eventually.The main purpose of these requirements is to study for speci�c parameters whether matrices exist correspond-ing with periodic limits. This question will be answered a�rmatively below. The �rst requirement impliesthat the process di�ers genuinely from the usual Markov process. It is necessary to require ri > 1 eventuallyin order to ensure that the limit of the corresponding MCL process can in principle have structural propertieswhich are di�erent from the original input graph in terms of the number and distribution of the weakly con-nected components. Consider a regular ergodic input graph (all example graphs in the �gures except graph G2in Figure 4 are regular and ergodic). The structural properties of all intermediate iterands (with respect toreachability) are identical, and positive entries can thus only tend to zero eventually, they can not becomeequal to zero eventually. It is true only for the limit of the process that it may di�er structurally from theinput graph.An equilibrium state corresponds with an MCL process (M; e(i); r(i)) with e(i)=c 2, and r(i)=c c > 1, for whichthe associated row of matrix pairs (T(2i); T(2i+1)) is periodic. A periodic row of objects is a row consisting



11. Equilibrium states of the MCL process 27of a �nite list of objects repeated in�nitely many times. The period of a periodic row is the minimumcardinality of such a �nite list, the period of a constant row is 1. An equilibrium state can be associated withthe input matrix M , with the in�nite row (T(2i); T(2i+1)) generated by M , and with a �nite list of matricesconstituting a cycle of period p in (T(2i); T(2i+1)). A priori, I distinguish three di�erent types Li (i = 1; : : : ; 3)of equilibrium states for the MCL process with column stochastic input matrix M , input row r(i)=c c > 1, andinput row e(i)=c 2. A matrix M is said to be of type Li if its associated output row is of type Li. In order ofdecreasing strength of properties, the types Li are:L1 M is doubly idempotent, implying that all matrices T2i and T2i+1 are equal.L2 The row of pairs (T2(i); T2(i)+1) has period 1. Even iterands are (Exp2 � �c){id , odd iterands are(�c � Exp2){id , and T2i 6= T2i+1.L3 The row of pairs (T2(i); T2(i)+1) has period p > 1, that is, T2i = T2(i+p) and T2i+1 = T2(i+p)+1. The eveniterands T2i are idempotents under p iterations of the operator (Exp2 � �c), the odd iterands T2i+1 areidempotents under p iterations of the operator (�c � Exp2).L3a As above, where the matrix T1 is the Kronecker product of a column homogeneous column stochasticcyclic matrix P with odd period and a matrix A which is of type L2 or L1. An example of such P is apermutation matrix containing cycles of odd period only.Each of the classes L1, L2, and L3 is non-empty. The most important class of equilibrium states is the largeclass L1 of doubly idempotent matrices. These matrices are invariant under arbitrary MCL processes. Fordimensions 2; 3; 4; 5 a few matrices of L2 type for c = 2 can be found quickly by algebraic computation.They are depicted on page 29. The general graph templates on n nodes, n = 2; : : : ; 5, which were used toderive these examples, are invariant under the automorphism group of the ring-graph of order n. Note thatthe matrix R4b is the Kronecker product of the matrices 1=2J2 and R2a, where J2 is the all-one matrix ofdimension 2. Higher dimensional versions of the templates in Figure 13 have solutions as well (Lemma 6).The only clusterings suiting ring graphs are the two extreme clusterings. Slight perturbations of either theMCL process parameters or the input graphs lead the MCL algorithm to converge towards a limit of theL1 type, corresponding with one of the two extreme clusterings. For example, setting p = 101=601 in the3-dimensional matrix template in Figure 13 leads the algorithm to convergence to the identity matrix, settingp = 99=601 leads the algorithm to converge to 1=3 J , where J is the all-one matrix. The same behaviourresults after respectively setting c = 201=100 and c = 199=100. For the latter settings, it is in line withheuristic considerations that a slight increase in in
ation leads the algorithm to converge towards a matrixcorresponding with the bottom extreme partition (i.e. fsingletonsV g), and that a slight decrease in in
ationleads the algorithm to converge to a matrix corresponding with the top extreme partition (i.e. fV g).The class L2 consists of equilibrium states which are very instable by nature. The image of the column vectorsunder either �2 or Exp2 is very di�erent from the original vector. For this class, expansion and in
ation actas each others inverse. A slight perturbation of the MCL process parameters or the equilibrium state leads toone of the two getting the upper hand. This is formally proved for a subclass of the class L2 in Lemma 6.So far, all limits resulting from inputting undirected graphs were of the L1 type. If the condition e(i)=c 2 isrelaxed to e(i)=c k, where k 2 IN is a constant, examples of the L3a type can be found as well by selectingbipartite graphs, setting e(i)=c 3, and refraining from adding loops. This is not surprising, since in bipartitegraphs paths of odd length always go from one of the two node sets to the other. As was the case with ring-graphs, the relationship between parameter choice, expected behaviour, and observed behaviour fully agree,so this is an agreeable situation.



12. Flip{
op equilibrium states 28The class L3 is nonempty for rows e(i)=c 2 as well. It is easy to construct matrices of the L3a type, by takingthe Kronecker product of L1{ or L2{type matrices and permutation matrices containing odd permutationsonly, illustrating the use of Lemma 4. Denote by LxnLy the class of matrices satisfying the Lx constraints butnot satisfying the Ly constraints. It is an open question whether matrices of the type L3nL3a exist. If theyexist, I expect them in any case to be as sensitive to perturbations of parameter settings and matrix valuesas are the matrices of the L2 type. While the L3 and L2 classes are of interest for studying the MCL process,they do not form a weak spot of the MCL algorithm. If a graph constructed from some application such asa thesaurus or a database leads to an MCL process which at any stage approaches an L2 or L3 type matrix,then the application graph is in all likelihood a curiosity lacking cluster structure anyhow. Moreover, limitsof L3 type have non-real spectrum, and cannot occur if the input graph is symmetric. This follows from theresults in [11].12. Flip{flop equilibrium statesThere is a class of matrices which is known not to lead to convergence. In small dimensions, it is easy to �ndmatrices M such that �2M =M1=2, representing a 
ip{
op equilibrium state. Several of these are depicted inFigure 13, each having the form of a symmetric circulant matrix. The three-dimensional specimen is notablefor its simple (rational) form. The Kronecker product K of such a matrix with any other stochastic matrixhas the property that the MCL process (K; e(i) = 2; r(i) = 2) does not converge towards a doubly idempotentmatrix. However, such 
ip{
op equilibrium states are sensitive to perturbations. This can be proven for asubclass of them.There exists an in�nite family of `basic' (indecomposable in terms of the Kronecker product) 
ip{
op positivesemi-de�nite equilibrium states of the form aIn + (1� a)=nJn. For these states it is relatively easy to provethat they are instable with respect to alternation of Exp2 and �2.Lemma 6 Let n > 1. De�ne �n by�n = 3pvn6(n� 1) � 2(3n � 4)3(n � 1) 3pvn � 13(n � 1) (12.1)vn = 108n2 � 180n + 64 + 12(n � 1)p3n(27n � 32) (12.2)Then the n-dimensional matrix An = �nIn + (1� �n)=nJn has the property that �2(An2) = An. In the classof matrices faIn + (1� a)=nJnja 2 [0; 1]g, there is no trajectory to the equilibrium (
ip{
op) state An for theMCL process with parameters ei and ri constant equal to 2, thus these states are instable for this process.Proof. This is derived by computing the square of A = aIn + (1� a)=nJn, which equals B = a2In + (1�a2)=nJn, and subsequently solving for (B11=B12)2 = A11=A12. This yields the equation a(1� a)(a3(n � 1) +a2 + a � 1) = 0. The solutions a = 0 and a = 1 yield the double idempotents In and Jn; the term of degreethree yields the solution as stated in the lemma. It is straightforward to prove that this term has only onesolution in the interval (0; 1) (and in fact, only one real solution). It follows that for a > �n the MCL process(aIn+(1�a)=nJn; e(i) = 2; r(i) = 2) converges towards In, and that for a < �n the process converges towardsJn, as is to be expected. The cases where n = 2; 3; 4; 5 are depicted in Figure 13. 2In general, one might hope that the analysis of the stability of 
ip{
op states which correspond with symmetriccirculants is easier, even if no explicit representation is known. However, it is di�cult to describe expansionand in
ation in the same framework. Suppose that a is a positive vector such that the circulant Ca is a
ip{
op state, i.e. �2(Ca2) = Ca. Let e be a vector the elements of which sum to zero such that a + e is anonnegative vector satisfying a+ e � a, let f be likewise a vector such that a + f / a. Extend the de�nitionof � (/) to circulants by setting Cx � Cy i� x � (/)y. Now it is easy to prove that Cx � Cy =) Cx2 � Cy2,



12. Flip{
op equilibrium states 29
�1� p pp 1� p� 0BBB@1� 2p� 2q p q q pp 1� 2p� 2q p q qq p 1� 2p� 2q p qq q p 1� 2p� 2q pp q q p 1� 2p� 2q1CCCA0@1� 2p p pp 1� 2p pp p 1� 2p1A 0BB@1� 2p� q p q pp 1� 2p� q p qq p 1� 2p� q pp q p 1� 2p� q1CCAGeneral templates for (�2 �Exp2){id matrices in dimensions 2; 3; 4, and 5. Explicit solutions for the resulting equationsare given below. R2a = �0:77184 0:228160:22816 0:77184� p = 23 � 3pv + 118 3pv ;v = 17216 + 172p33R3a = 0@2=3 1=6 1=61=6 2=3 1=61=6 1=6 2=31A p = 16R4a = 0BB@0:60205 0:13265 0:13265 0:132650:13265 0:60205 0:13265 0:132650:13265 0:13265 0:60205 0:132650:13265 0:13265 0:13265 0:602051CCA q = p; p = 518 � 3pv + 1162 3pvv = 6723328 + 12592p57R4b = 0BB@0:38592 0:11408 0:38592 0:114080:11408 0:38592 0:11408 0:385920:38592 0:11408 0:38592 0:114080:11408 0:38592 0:11408 0:385921CCA q = 12 � p; p = 13 � 3pv + 172 3pvv = 171728 + 1576p33R4c = 0BB@0:59594 0:17610 0:05205 0:176100:17610 0:59594 0:17610 0:052050:05205 0:17610 0:59594 0:176100:17610 0:05205 0:17610 0:595941CCA q = p� 4p2; p = 13 � 3pv + 183pvv = 13864 + 1288p57R5a = 0BBB@0:5568 0:1108 0:1108 0:1108 0:11080:1108 0:5568 0:1108 0:1108 0:11080:1108 0:1108 0:5568 0:1108 0:11080:1108 0:1108 0:1108 0:5568 0:11080:1108 0:1108 0:1108 0:1108 0:55681CCCA q = p; p = 1360 � 3pv + 113600 3pvv = 233216000 + 136000p1545R5b = 0BBB@0:5346 0:2087 0:0239 0:0239 0:20870:2087 0:5346 0:2087 0:0239 0:02390:0239 0:2087 0:5346 0:2087 0:02390:0239 0:0239 0:2087 0:5346 0:20870:2087 0:0239 0:0239 0:2087 0:53461CCCA Values are numerically found rootsof a polynomial of degree 8 whichis irreducible over the rationals.Figure 13: (�2 � Exp2){id matrices.



13. Convergence towards equilibrium states 30and that Cx / Cy =) �r(Cx) / �r(Cy) (r � 1). Unfortunately, neither of the corresponding statements ofthe other pairings �r;� and Exp2; / is in general true, which severely impedes the analysis of the stability of
ip{
op states.One interesting freak 
ip{
op state exists in dimension 3, which has the form of a nonsymmetric circulantmatrix corresponding with the generating vector (1� b� c; b; c). Testing this template for a 
ip{
op solutionin Maple yields an algebraic number � of the form h(�), where � is a zero of g, where g is a polynomialof degree 16, and where h is a polynomial of degree 10 divided by a polynomial of degree 9. Numericalcomputations yield and verify that the matrix below is a genuine 
ip
op equilibrium state.0B@0:795668870 0:004344249 0:1999868810:199986881 0:795668870 0:0043442490:004344249 0:199986881 0:7956688701CA (12.3)13. Convergence towards equilibrium statesIn this section the stability of the equilibrium states in L1 is considered. The setting is as follows. Let Mbe the associated matrix of an equilibrium state in L1, let � be a perturbation matrix such that M + � isstochastic. For various types of perturbation � the limit or set of possible limits of the perturbed MCL process(M + �; e(i)=c 2; r(i))=c 2 is investigated. The states in L1 which are stable in every respect correspond withdoubly idempotent matrices which have precisely one nonzero entry (equal to 1) in each column. This isstated in Theorem 2. A doubly idempotent matrix M corresponds with an instable equilibrium state if it hascolumns with more than one nonzero entry. Two cases can be distinguished: the case where all columns withmultiple entries correspond with nodes which are attracted to or are part of a single attractor system havingmore than one attractor (Lemma 8), and the case where p is not an attractor and is attracted to two di�erentattractor systems (Lemma 9). For both cases, it is of interest in which respects the associated clustering of alimit resulting from the perturbed MCL process may di�er from the associated clustering of M .In the �rst case, the equilibrium state is shown to be stable on a macroscopic scale which corresponds withthe cluster structure derived from M (Theorem 4). A perturbation � of M may thus lead the MCL process(M + �; e(i); r(i)) to converge towards a di�erent equilibrium state. Theorem 4 guarantees that this newequilibrium state yields a cluster interpretation which is identical to or a re�nement of the associated clusteringof M . For a restricted class of perturbations �, Theorem 5 guarantees that the new equilibrium state yieldsa cluster interpretation which is identical to the associated clustering of M . These are perturbations onlya�ecting the principal submatrices M [�], where � is any index set describing an attractor system in M . Inwords, Theorem 5 states that for such a perturbation an attractor system cannot split into a number of smallerattractor systems.In the second case, if a perturbation of column p is unevenly spread over the attractor systems towards whichp is attracted, then the process (M; e(i); r(i)) will converge towards a state in which p is attracted to just oneof those systems. This means that the phenomenon of cluster overlap is instable in nature (Lemma 9). Thefollowing theorem identi�es the equilibrium states in L1 for which the associated matrix M is attractor for allinput matrices M + � with regard to the MCL process (M + �; e(i)=c 2; r(i)=c 2), for � small enough.Theorem 2 The MCL process with standard parameters (�; e(i)=c 2; r(i)=c 2), converges quadratically in theneighbourhood of each nonnegative idempotent column stochastic matrix for which every column has one entryequal to 1 and all the other entries equal to 0.The formulation of this theorem is rather non-technical. What I shall prove is Lemma 7.



13. Convergence towards equilibrium states 31Lemma 7 Let M 2 IR�0n�n be a nonnegative idempotent column stochastic matrix for which every columnhas one entry equal to 1 and all other entries equal to 0. Let xi be the row index such that Mxii = 1. Let f > 0be a real number and let � be a matrix in IRn�n, the columns of which add to zero, such that M + � is columnstochastic and nonnegative, and such that [M + �]xii � 1� f . De�ne the matrix � by �((M + �)2) =M + �.For f � 1=4 the inequality maxi;j j�ij j � 8f2 holds.Proof. The structure of nonnegative idempotent matrices as described in Theorem 1 implies the equalityxxi = xi, by the implication i ! xi =) xi ! xi. It furthermore follows from the de�nition of � thatmaxi;j j�ij j � f . Consider the entry [M + �]2xii. The inequalities [M + �]2xii � [M + �]2xixi [M + �]2xii �(1 � f)2 � 1 � 2f hold. Now consider the entry [�(M + �)]xii. It is true that Pk (M + �)ki2 � (1 � f)2.Furthermore, Pk 6=xi(M + �)ki � f and thus Pk 6=xi (M + �)ki2 � f2. It follows that Pk 6=xi [�(M + �)]ki �f2=(1�f)2, and consequently [�(M+�)]ki � 1�f2=(1�f)2. For f < 1=4) the inequality 1�f2=(1�f) � 1�2f2holds. Combining this inequality and the previous one yields the desired result. 2Theorem 3 The equilibrium states of the MCL process in L1 for which the associated doubly idempotentmatrices have one or more columns with more than one nonzero entry are instable.Two cases are distinguished in proving this theorem, namely the case in which a column with more than onenonzero entry corresponds with an attractor, and the case in which it corresponds with a non-attractor. Bothcases are illustrated with simple examples which generalize in a straightforward manner to higher dimensionaland more complex cases.Lemma 8 Let M , �f and L be the matricesM =  1=2 1=21=2 1=2! �f =  f f�f �f! L =  1 10 0!For each f > 0 the MCL process (M + �f ; e(i)=c 2; r(i)=c 2) converges towards L.Proof. The matrix M + �f is idempotent under matrix multiplication for arbitrary f , as it is a rank 1stochastic matrix. Direct computation shows that [�(M + �f )]11 equals (1=4 + f2 + f)=1=2 + 2f = 1=2 +2f=(1 + 4f2). Thus �(M + �f ) can be written as M + �2f=(1+4f2). For small f , the deviation of �(M + �f )from M is nearly twice as large as the deviation of M + �f from M . The lemma follows. 2The proof of the following lemma is nearly identical and is omitted.Lemma 9 Let M , �f and L be the matricesM = 0B@1 0 1=20 1 1=20 0 0 1CA �f = 0B@0 0 f0 0 �f0 0 01CA L = 0B@1 0 10 1 00 0 01CAFor each f > 0 the MCL process (M + �f ; e(i)=c 2; r(i)=c 2) converges towards L. 2The previous results do not imply that the MCL algorithm is built on quicksand. The instability of thephenomenon of cluster overlap cannot be helped, if only the limit of the MCL process is taken into account.



13. Convergence towards equilibrium states 32As mentioned before, there is a cure for this by looking at the speci�c structure which is present in all iterandsof the process [11].The instability of attractor systems consisting of more than one element is not a serious issue if only regardingclustering purposes. Below it is shown that perturbation of doubly idempotent matrices M by a matrix� for which the associated clustering C does not have overlap, lead the iterands of the MCL process (M +�; e(i)=c 2; r(i)=c 2) to stay within a class of matrices the block structure of which only admits a clustering whichis a re�nement of C. These statements are assembled in Theorem 4, which is preceded by two more technicallemmas. This result is extended by Theorem 5, which demonstrates that for a speci�c class of perturbationsthe notion `a re�nement of' in Theorem 4 can be strengthened to `identical to'. The proof of this theoremgives con�dence that the result extends to arbitrary perturbations.If a diagonal block structure can be mapped onto part of a column stochastic matrix M such that the mass ofthe columns in this part is highly concentrated in the blocks, then the entries outside the diagonal blocks tendto zero quadratically in the MCL process (M; e(i)=c 2; r(i)=c 2). If it is moreover assumed that the mass of thecolumns in the remaining part is (for each column separately) concentrated in a set of rows corresponding toat most one diagonal block, then the entries not belonging to these rows tend to zero as well. Conceptually,the proof is very similar to that of Lemma 7. The more complicated setting requires substantial elaboration.Let M be a column stochastic matrix of dimension n, let f > 0 be a real number. Assume that there is astrictly increasing row of indices k1; : : : ; kl+1 with k1 = 1 and kl+1 � n+1 such that the mass of the columnsin each principal submatrix M [ki; : : : ; ki+1�1], i = 1; : : : ; l is greater than or equal to 1� f . It is convenientto denote the set of indices fkx; : : : ; kx+1�1g by �x, indicating the xth diagonal block.Lemmas 10 and 11 hold, and are preparatory to Theorem 4. The corresponding statements for matrices whichare permutation{similar to a matrix with the required block structure follow from the fact that both matrixmultiplication and in
ation distribute over simultaneous permutation of rows and columns.Lemma 10 Let f , M and k0; : : : ; kl be as above. Let T2i and T2i+1 be the iterands of the MCL process(M; e(i)=c 2; r(i)=c 2), where T1 =M . Let �x be the range of indices fkx; : : : ; kx+1�1g and let q be an index in�x. For f small enough, the entries (Ti)jq tend to zero for all j with j 62 �x as i goes to in�nity.Proof. Suppose that kl+1 < n+1. Thus, the block diagonal structure (the blocks of which have large mass)does not fully cover M , as the last block is indexed by the range kl; : : : ; kl+1�1. This is the most generalcase where nothing is assumed about the remaining columns kl+1; : : : ; n. Let �x and q be as in the lemma,so q 2 �x. Let p be any index, 1 � p � n.Consider the pth entry of the qth column ofM2. Consider �rst the case where kl+1 � p � n. The identityM2pq= Pni=1MpiMiq holds. Split the latter sum into the parts Pi2�x MpiMiq and Pi62�x MpiMiq. For i 2 �xthe inequality Mpi � f holds. Since Pi2�x Miq � 1, the �rst sum is smaller then or equal to f . By similarreasoning it is found that the second sum is smaller than or equal to f2.Now consider the case where p 2 �y; y 6= x. Write the entryM2pq in three parts: Pi2�x MpiMiq ,Pi2�y MpiMiq ,and Pi62�x[�y MpiMiq. For the �rst part, Mpi � f and the entries Miq sum to less than one. For the secondpart, the entries Mpi sum to less than j�yj and Miq � f . For the third part, Mpi � f and the entries Miq sumto less than f . Combining these results yields that the full sum is smaller than or equal to f + j�yjf + f2. Soafter multiplication, the combined mass of all entries in column q which are not in �x is bounded from aboveby n(n+ l)(f + f2), which is of order f .Estimate the entry [�(M)]pq as follows. The sum of squares Pni=1Miq2 is bounded from above by 1=n. For



13. Convergence towards equilibrium states 33p 62 �x the inequality Mpq2 � f2 holds and thus [�(M)]pq � nf2. The combined mass of all entries incolumn q which are not in �x is thus bounded from above by the (crude) estimate n2f , which is of order f2.Combination of this with the result on multiplication yields the following. If f is viewed as the error withwhich M deviates from the block structure imposed by the index sets �x (in the index range 1; : : : ; kl+1�1),then application of � � Exp2 to M yields a matrix for which the new error is of order f2. This proves thelemma. 2Lemma 11 Let f , M and k1; : : : ; kl+1 be as in Lemma 10. Assume moreover that kl+1 < n + 1 and thatfor each q � kl+1 there exists a block indexed by �x = fkx; : : : ; kx+1�1g such that the mass in the submatrixM [�xjq] (which is part of column q) is bounded from below by 1�f . Let Ti be the iterands of the MCL process(M; e(i)=c 2; r(i)=c 2). Then, for f small enough, all entries (Ti)pq tend to zero for p 62 �x as i goes to in�nity.Proof. The proof is very similar to that of Lemma 11. Consider the pth entry of the qth column of M2.First consider the case where kl+1 � p � n. The identity M2pq = Pni=1MpiMiq holds. Split the latter suminto the partsPi2�x MpiMiq andPi62�x MpiMiq. As in the proof of Lemma 11 it is found that the two partsare respectively bounded from above by f and f2.Now consider the case where p 2 �y; y 6= x. Writing the entry M2pq in three parts: Pi2�x MpiMiq ,Pi2�y MpiMiq , and Pi62�x[�y MpiMiq , it is found that these parts are respectively bounded by f , j�yjf ,and f2. After multiplication, the combined mass of all entries in column q which are not in �x is boundedfrom above by n(n+ l)(f + f2), which is of order f .The entry [�(M)]pq is estimated as before, yielding [�(M)]pq � nf2, and bounding the combined mass of theentries [�(M)]pq , q 62 �x by n2f . Viewing f as the error with which column q deviates from the structureimposed by �x gives that applying � �Exp2 to M yields a matrix for which the new error is of order f2. Thisproves the lemma. 2Theorem 4 is a general result on perturbation of equilibrium states for which the associated matrix M mayhave columns with more than one nonzero entry. It states that the associated clustering of any idempotentlimit resulting from the perturbed process must be a re�nement of the clustering associated with M . Theproof of the theorem is a direct consequence of Lemma 10 and 11.Theorem 4 Let M be a doubly idempotent matrix in IR�0n�n for which the associated clustering C is freeof overlap. Let f > 0 and let � be a matrix in IRn�n, the columns of which sum to zero and for whichmaxi;j j�ij j � f . The iterands Ti of the MCL process (M + �; e(i)=c 2; r(i)=c 2), for f small enough, have theproperty that (Ti)pq tends to zero as i goes to in�nity, if q 6! p in the associated graph of M . Consequently,an idempotent limit resulting from the process (M + �; e(i)=c 2; r(i)=c 2) corresponds with a clustering which isidentical to or a re�nement of C. 2The following theorem extends this result for a restricted class of perturbations, namely those that only a�ectthe principal submatrices of the doubly idempotent matrix M which correspond to an attractor system inthe associated clustering of M . Theorem 1 implies that such a submatrix has the form 1kJk, where Jk is theall one matrix of dimensions k � k. Theorem 5 is concerned with limits which may possibly result from theMCL process ( 1kJk + �; e(i)=c 2; r(i)=c 2), where � is as before. It appears that for small perturbations � it isguaranteed that the iterands of the process approach arbitrarily close towards the set of rank 1 stochasticmatrices, without actually pinpointing a particular limit point. This implies that an idempotent limit of theperturbed process (M + �; e(i)=c 2; r(i)=c 2), where M is doubly idempotent and � only a�ects the attractorsystems of M , is guaranteed to yield an associated clustering which is the same as that of M , except for thecases where overlap occurs.



13. Convergence towards equilibrium states 34Theorem 5 Let M be a doubly idempotent matrix in IR�0n�n for which the associated clustering C is free ofoverlap. Let f > 0 and let � be a matrix in IRn�n, the columns of which sum to zero, for which maxi;j j�jij � f ,and for which �kl 6= 0 =) k and l are attractors in the same attractor system in M . That is, � only a�ectsthe diagonal blocks of M corresponding with its attractor systems.An idempotent limit resulting from the process (M + �; e(i)=c 2; r(i)=c 2), has an associated clustering which isidentical to C.This theorem is a consequence of the following lemma. Note that the diagonal blocks of M correspondingwith its attractor systems are of the form 1kJk.Lemma 12 Let f > 0 be a real number, let J be an arbitrary rank 1 column stochastic matrix in IR�0n�n, let� 2 IRn�n be a matrix the columns of which sum to zero and for which maxi;j j�jij � f . For f small enough,the matrix �2[(J + �)2] can be written as J 0 + �, where J 0 is rank 1 column stochastic, the columns of � sumto zero and maxi;j j�jij � cf2, where c > 0 is a constant independent from J, �, and f .Proof. Consider (J + �)2. This product can be written as J2 + J� + �J + �2. The identities J2 = J andJ� = 0 hold. Furthermore, the sum J+�J is a rank 1 column stochastic matrix. Thus the product (J+�)2 canbe written as the sum of a rank 1 column stochastic matrix and �2. It is easy to show that maxi;j j�2jij � nf2,which is of order f2.Now consider the result of applying �2 to J+�, and compare this with �2J . First compute the renormalizationweight for the lth column of �2(J + �). This equals Pi(Jil + �il)2. Split this sum into the parts Pi Jil2,2Pi �ilJil, and Pi �il2. Then 2jPi �ilJilj � 2f , and Pi �il2 � nf2. It follows that Pi(Jil + �il)2 can bewritten as Pi Jil2 + �d, where j�dj � 2f + nf2 (and the d stands for denominator).Observe that (Jkl + �kl)2 = Jkl2 + 2Jkl�kl + �kl2 can be written as Jkl2 + �e, where j�ej � 2f + f2. It followsthat [�2(J + �)]kl can be estimated as below.Jkl � �ePi Jil2 + �d � (Jkl + �kl)2Pi(Jil + �il)2 � Jkl + �ePi Jil2 � �dNow let a=b be a positive fraction less than or equal to one, let x and y be real numbers. Observe thata� xb+ y = ab � x+ ay=bb+ y � ab � jxj+ jyjb+ ya+ xb� y = ab + x+ ay=bb� y � ab + jxj+ jyjb� yFinally,[�2J ]kl � j�ej+ j�djPi Jil2 + j�dj � [�2(J + �)]kl � [�2J ]kl + j�ej+ j�djPi Jil2 � j�djSince Pi Jil2 � 1=n it follows that the di�erence j[�2(J + �)]kl � [�2J ]klj can be bounded by cf , where c > 0is a constant depending on n only. This, combined with the result on (J + �)2 proves the lemma. 2Remark. An alternative proof this lemma is given in [11] using results on the Hilbert distance betweenpositive vectors. In this setting the proof simpli�es considerably.Remark. For the proof of Theorem 5 one needs also consider the behaviour of columns in M , the associatednodes of which are not attractors. It is an easy exercise to show that such columns exhibit the same behaviour



14. Scaling the MCL algorithm 35as the columns of the attractor systems to which they are attracted. This concludes a series of results on thestability and instability of the equilibrium states in L1 in both the usual and a macroscopic sense.The combined results of Theorem 4 and 5 indicate that perturbations of M may only disturb the phenomenonof overlap, which is inherently instable. Intuitively, it is clear that otherwise the clustering associated with anidempotent matrix must be stable under small perturbations. This is because the submatrices correspondingwith attractor systems are e�ectively the only part of the matrix that may a�ect the associated clustering;the columns of nodes that are attracted to such a system must follow suit (the distribution of such a column cin the powers of M is forced to converge towards the distribution of the corresponding attractor submatrix,no matter how c is perturbed itself). The only thing lacking here is a proof that if the set of columns of Mcorresponding with an entire attractor system is perturbed, than the same set of columns must have rank 1in the limit of the powers of the perturbed matrix.In [10] experimental results are discussed concerning the phenomena of overlap and attractor systems. Currentevidence suggests that these phenomena imply the existence of automorphisms of the input graph. Generally,the MCL process converges so fast that idempotency can be recognized long before instability of overlap andattractor systems begin to play a role. This is related to the fact that the examples given here concern smallgraphs. However, the crucial property is that the natural cluster diameter is small. Thus, large graphs Gfor which the natural cluster diameter is small may also lead the MCL process (TG; e(i); r(i)) to convergetowards idempotency before instability starts to play a role. Finally, by using the results in [11] overlap canbe detected at early stages. The primary use of the MCL process lies in detecting cluster structure however,and the observed correspondence between graph automorphisms and respectively cluster overlap and attractorsystems does not seem particularly useful for detection of the latter two.14. Scaling the MCL algorithmThe complexity of the MCL algorithm, if nothing special is done, is O(N3) where N is the number of nodesof the input graph. The factor N3 corresponds to the cost of one matrix multiplication on two matrices ofdimension N . The in
ation step can be done in O(N2) time. I will leave the issue aside here of how manysteps are required before the algorithm converges to a doubly idempotent matrix. In practice, this numberlies typically somewhere between 10 and 100, but only a small number of steps (in a corresponding rangeof approximately 3 to 10) in the beginning correspond with matrix iterands that are not extremely sparse.The only way to cut down the complexity of the algorithm is to keep the matrices sparse. Fortunately, theMCL process is by its very nature susceptible to such modi�cation. This issue is discussed below, followed bya brief description of the MCL implementation in use at the CWI.Complexity and scalabilityThe limits of an MCL process are in general extremely sparse. All current evidence suggests that overlapor attractor systems of cardinality greater than one correspond with certain automorphisms of the inputgraph [10].The working of the MCL process with respect to �nding cluster structure is mainly based on two phenomena.First, the disappearance of 
ow on edges between sparsely connected dense regions, in particular the edges inthe input graph. Second, the creation of new 
ow within dense regions, corresponding with edges in the limitgraph not existing in the input graph.Typically, the average number of nonzero elements in a column of a limit matrix is equal to or very close toone, and the intermediate iterands are sparse in a weighted sense. The expansion operator causes successiveiterands to �ll very rapidly, but if natural cluster structure is present and the cluster diameters are not toolarge (cf. [10]) then the in
ation operator ensures that the majority of the matrix entries stays very small,



14. Scaling the MCL algorithm 36and that for each column the deviation in the size of its entries is large. A small cluster diameter implies thatthe equalizing of probability distributions is relatively easy as 
ow need not be transferred over long distancesbefore it eventually stabilizes. This fact is exploited in various proposals for matrix pruning schemes madebelow.Remark. Before introducing these schemes a remark on the justi�cation of pruning is in place. I will notattempt a numerical or perturbation analysis of pruning. Rather I will stick to heuristic reasoning in higher-level terms of cluster structure and random walks when discussing the viability of pruning. This is put to thetest by experimenting with randomly generated testgraphs in [10].Pruning schemes. If it is assumed that the probabilities of intermediate random walks are indeed distributedinhomogeneously per column, then this leads naturally to the idea that it will do no harm to remove interme-diate random walks (i.e. setting matrix entries to zero) which have very small probability. The interpretationof the process then enforces obvious constraints on such pruning:� The magnitude of a transition probability is only relevant in relationship to the other transition probabil-ities of the associated tail node. Pruning must be done locally rather than globally, that is, column-wise.� Pruning should only remove a small part of the overall weight of a column; the corresponding entriesshould ideally have large (downward) deviation from the column average (for a suitable notion of columnaverage).� In order to maintain the stochastic interpretation, columns are rescaled after pruning.Together these form the the key to an e�cient implementation of the MCL algorithm. Three di�erent pruningschemes have been considered and implemented. Let M be a sparse column stochastic matrix. Suppose acolumn c of the square M2 has been computed with full precision. The three schemes are respectively:� Exact pruning | the k largest entries of the column are computed. Ties are broken arbitrarily or areallowed to increase the bound k. This computation becomes increasingly expensive for larger values of kand increasing deviation between k and the number of nonzero entries of c.� Threshold pruning | a threshold value f is computed in terms of the mass centre ctr(c) of order twoof c. All values greater than f are kept, the rest is discarded. A typical candidate for such a thresholdvalue is of the form a ctr(c)(1 � b[maxi(ci) � ctr(c)]), where 0 < a �1 and b is chosen in the range 1 : : : 8;another one is a[ctr(c)]b, where 0 < a � 1 �b. The motivation for the �rst depends on the fact thatif maxi(ci) is close to ctr(c) then the (large) nonzero entries of the vector c are rather homogeneouslydistributed.� A combination of the above, where threshold pruning is applied �rst in order to lower the cost of exactpruning. It is either allowed or disallowed for threshold pruning to leave a number of nonzero entriessmaller than k.If pruning with pruning constant k is incorporated into the algorithm, the complexity is reduced to O(Nk2)for a single matrix multiplication. This follows from the fact that any column of the product of two k-prunedmatrices has at most k2 nonzero entries. It is assumed that pruning can be done in O(t) time for a vectorwith t nonzero entries. In the experiments in [10] this was ensured by using threshold pruning.Factors affecting the viability of pruning. It is intuitively acceptable that pruning eats away theleast probable walks, if they have large downward deviation from the column centre, and if the total number



References 37of pruned entries accounts for a relatively small percentage of the column mass, say somewhere in between 5and 10 percent. If the distribution of a column c is rather homogeneous, with many entries approximatelyequal to the centre ctr(c), and if pruning removes a sizeable fraction of the distribution, this will clearly disturbthe MCL algorithm, rather than perturb. The examples in [10] indicate that the latter will be the case if thediameter of the natural clusters is large and if the subgraphs induced by the clusters are very homogeneous.Convergence in the presence of pruning. The convergence properties in the setting sketched abovedo not change noticeably, and the resulting clusterings are still very satisfactory. Clusterings of graphs withup to a thousand nodes resulting from both normal matrix computation and prune mode with otherwiseidentical parametrizations were compared. The respective clusterings sometimes di�ered slightly (e.g. a nodemoving from one cluster to another) and were often identical. The e�ect of varying the pruning parameter isinvestigated quantitatively in [10].An example of pruning is given in Figure 14. The equilibrium state and several matrix iterands are given forthe MCL process with input graph G3, and pruning constant k = 5. The clustering resulting from this prunedprocess is the same as the clustering resulting from the unperturbed process.MCL implementationThe MCL algorithm was implemented at the CWI by the author. It is part of a library written in C withextensive support for matrix operations, mapping of matrices onto clusterings, comparison of clusterings,generation of statistics (e.g. for di�erent pruning schemes), and facilities for random generation of partitionsand cluster test matrices. Both Jan van der Steen and Annius Groenink have contributed signi�cantly to thematrix section of the library in terms of rigor and elegance. The library will be made available under a publiclicense.At the heart of the library lies the data structure implementing a matrix. A matrix is represented as anordered array of vectors, and a vector is represented as an array of index/value pairs. Each index is uniquein the array, and the index/value pairs are ordered on increasing index. This generic construction is used torepresent a nonnegative vector by its positive entries only. The vector (4:2; 0:0; 2:7; 3:1; 0:0; 0:0; 5:6)T is thusrepresented as the array (indexing starts at zero)[0j4:2][2j2:7][3j3:1][6j5:6]There is a choice of representing a matrix via its rows or its columns. A column stochastic matrix M isnaturally represented via its columns. Assuming that pruning is applied with pruning constant k, computingthe square M2 requires for each column of M2 the computation of a weighted sum of at most k columns,resulting in a vector which may have k2 entries. This vector is pruned down to at most k entries via eitherof the schemes given above. For large k, say larger than 70, it is pertinent that threshold pruning is appliedin order to ease the burden of exact pruning. This may lead to a pruned vector with less than k entries.It is easy to envision a looping process in which several thresholds are tried in order to obtain an optimumthreshold value resulting in a vector with a number of entries close or even to k, or even a version of thresholdpruning where the pruning regime depends on the weight distribution of the probability vector, so that nodeswith a large homogeneous distribution are allowed to have more than k nodes. This was not tried for, but theexperiments in [10] indicate that �ne-tuning the pruning regime may result in considerably better performance.References1. ACM/IEEE, editor. Proceedings of the 26th ACM/IEEE Design Automation Conference. IEEE, June1993.2. ACM/SIAM, editor. Proceedings of the fourth annual ACM{SIAM symposium on discrete algorithms.ACM, January 1993.3. Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitioning: a survey. Integration:the VLSI Journal, 19(1{2):1{81, 1995.
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1CCCCCCCCCCCCCCCCCAM1mclFigure 14: Iteration of (�2 � Squaring) with initial iterand M de�ned in Figure 8. Pruning with pruning constant k = 5is applied throughout the process.
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