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ABSTRACT

Detection of protein families in large databases is
one of the principal research objectives in structural
and functional genomics. Protein family classification
can significantly contribute to the delineation of
functional diversity of homologous proteins, the
prediction of function based on domain architecture
or the presence of sequence motifs as well as
comparative genomics, providing valuable evolu-
tionary insights. We present a novel approach called
TRIBE-MCL for rapid and accurate clustering of
protein sequences into families. The method relies
on the Markov cluster (MCL) algorithm for the assign-
ment of proteins into families based on precomputed
sequence similarity information. This novel
approach does not suffer from the problems that
normally hinder other protein sequence clustering
algorithms, such as the presence of multi-domain
proteins, promiscuous domains and fragmented
proteins. The method has been rigorously tested and
validated on a number of very large databases,
including SwissProt, InterPro, SCOP and the draft
human genome. Our results indicate that the method
is ideally suited to the rapid and accurate detection of
protein families on a large scale. The method has
been used to detect and categorise protein families
within the draft human genome and the resulting
families have been used to annotate a large proportion
of human proteins.

INTRODUCTION

Genome projects are generating enormous amounts of
sequence data (1) that need to be effectively analysed. The goal
of functional genomics is to determine the function of proteins
predicted from these sequencing projects (2–4). To achieve
this goal, computational approaches can assist the classifica-
tion of functional genomics targets. In particular, it is well
known that members of the same protein family may possess
similar or identical biochemical functions (5). Protein families
can be defined as those groups of molecules which share
significant sequence similarity (6). To detect a protein family,

algorithms should take into account all similarity relationships
in a given arbitrary set of sequences, a process that is defined
as ‘sequence clustering’ (7). This approach is usually based on
grouping homologous proteins together via a similarity
measure obtained from direct sequence comparison. Ideally,
the resulting clusters should correspond to protein families,
whose members are related by a common evolutionary history
(8). Well characterised proteins within a family can hence
allow one to reliably assign functions to family members
whose functions are not known or not well understood (7). The
detection of protein families is also instrumental in the field of
comparative genomics (9). Families may be specific to certain
taxonomic groups or widespread across all domains of life
(10), facts that can provide evolutionary insights into the
underlying biology of organisms (11).

Many methods are currently available for the clustering of
proteins into families. These methods generally rely on
sequence similarity measures such as those obtained by
BLAST (12) or other database search methods (13). One
problem that these methods face is the detection of the multi-
domain structure of many protein families (14). Proteins
containing multiple domains can confound these methods and
result in the incorrect grouping of proteins into families (15).
The presence of a shared domain within a group of proteins
does not necessarily imply that these proteins perform the
same biochemical function (16). Ideally, these types of
proteins should be classified into a single family only if they
exhibit highly similar domain architectures. Apart from these
relatively large, independently folded, protein domains (17), it
has been realised that smaller, quite widespread protein
modules exacerbate the problem even further (18). Many
proteins sharing these so-called ‘promiscuous domains’ (e.g.
SH2, WD40, DnaJ) (19) are known to have very different func-
tions. Proteins assigned to a protein family purely on the basis
of a promiscuous domain are unlikely to share a common
evolutionary history with other members of that family.

The problem of detecting and classifying multi-domain
proteins has been addressed by a number of approaches, which
rely on the detection of individual domains using BLAST
reports (20), domain database dictionaries (21,22) or iterative
sequence comparison (23). Some of these methods rely on
manual intervention for family assignment of multi-domain
proteins (24). All the above mentioned techniques suffer from
a number of drawbacks: they can be either too computationally
intensive, somewhat inaccurate or not fully automatic, hence
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they do not allow the reliable and automatic detection of
protein families within very large data sets, such as the human
genome (25). Given the ever-increasing amount of genome
sequence information (over half a million protein sequences)
(26), it is imperative that protein sequence clustering methods
be as robust and automatic as possible.

Despite significant progress in sequence clustering, new
challenges have emerged, due to the availability of large
eukaryotic genomes, in terms of their size and complexity (27).
In particular, eukaryotic protein families constitute a bottle-
neck for most methods. Many eukaryotic proteins contain large
numbers of protein domains (28,29), each of which needs to be
detected and resolved by an efficient clustering algorithm. The
iterative automatic domain detection algorithms (23) suffer
from an excessive and unpredictable number of additional
sequence comparison steps, which renders them somewhat
impractical when using modest computational resources.
Another approach would be to detect proteins with very similar
domain architectures (30), rather than attempting to detect each
domain individually. The assumption is that proteins with
near-identical sets of domains may have very similar biochem-
ical roles (5,31).

Previously, we developed the GeneRAGE algorithm for the
clustering of proteins within complete genomes (23). This
algorithm utilises a comprehensive system of error detection
and correction using the Smith–Waterman dynamic program-
ming alignment algorithm (32). The problem of multi-domain
proteins is addressed using sequence comparison to detect
domains using a domain detection algorithm (also based on
Smith–Waterman). This algorithm was developed and tested
on protein families within relatively small data sets, such as
prokaryotic genomes (33). Given such data sets, the algorithm
effectively and accurately identifies protein families and also
correctly detects multi-domain proteins (34). When the algo-
rithm is applied to larger data sets, such as those obtained from
eukaryotic organisms, some of the above mentioned problems
become apparent. The detection of protein domains using
GeneRAGE becomes hampered to a large extent by promiscuous
domains, peptide fragments (representing incomplete database
entries) and proteins of complex domain structure. Domains
such as a ‘response regulator’ domain from two-component
systems (35) cause proteins with vastly differing functions
(such as heat shock factors and phytochromes) (36) to be
assigned incorrectly to the same family (37).

Given the difficulty of detecting such domains accurately
and the ever-increasing amount of eukaryotic data available,
we have re-approached sequence clustering using an elegant
mathematical approach based on probability and graph flow
theory. Sequence similarity search algorithms have previously
benefited from such approaches, for example hidden Markov
model-based search algorithms provide very sensitive detection
of distant protein sequence similarity (38). An ideal method
would require sequence similarity relationships as input and be
able to rapidly detect clusters solely using this information,
without being led astray by the complex modular domain
structure of eukaryotic proteins. Traditionally, most methods
deal with similarity relationships in a pairwise manner, while
graph theory allows the classification of proteins into families
based on a global treatment of all relationships in similarity
space simultaneously. To this end, we present the TRIBE-MCL
algorithm as an efficient and reliable method for sequence

clustering. TRIBE-MCL is based on the Markov cluster
(MCL) algorithm, previously developed for graph clustering
using flow simulation (39). This approach for protein sequence
clustering is astonishingly fast and highly accurate. It avoids
most of the problems mentioned above and has already been
successfully utilised for the clustering of large data sets and
family annotation of the draft human genome (25) (see also
www.ensembl.org).

MATERIALS AND METHODS

Data handling

A FASTA file containing all sequences that are to be clustered
into families is assembled. This file is filtered using an accurate
and sensitive compositional bias detection algorithm, CAST
(40), then compared against itself using BLAST (12). The
all-against-all sequence similarities generated by this analysis
are parsed and stored in a square matrix.

Algorithm

This matrix represents sequence similarities as a connection
graph. Nodes of the graph represent proteins, and edges
represent sequence similarity that connects such proteins. A
weight is assigned to each edge by taking the average pairwise
–log10(E-value) (12), resulting in a symmetric matrix. We have
found that this simple weighting scheme produces reliable
results. Other more complex schemes may be devised in future
research, for example length-based weighting. These weights
are transformed into probabilities associated with a transition
from one protein to another within this graph. This matrix is
passed through iterative rounds of matrix multiplication and
matrix inflation (see below) until there is little or no net change
in the matrix. The final matrix is then interpreted as a protein
family clustering. The inflation value parameter of the MCL
algorithm is used to control the granularity (or ‘tightness’) of
these clusters.

Availability

The original MCL algorithm and additional information is
available at http://members.ams.chello.nl/svandong/thesis/
index.html. The additional modules for protein sequence
analysis can be obtained from the authors on request; more
information is also available at http://www.ebi.ac.uk/research/
cgg/services/tribe/.

MARKOV CLUSTERING OF SEQUENCE
SIMILARITIES

Data representation

Sequence similarity relationships within a given protein data
set can be represented as a square matrix, whose elements
contain similarity metrics for any pair of proteins in the data
set. These elements can be binary numbers (23) or real
numbers [e.g. E-values from BLAST (12)]. Alternatively, this
matrix can be considered as a weighted graph, whose nodes
(vertices) represent proteins and connections (edges) represent
similarity relationships. It has been realised that such graphs
are an elegant and concise way of representing sequence simi-
larity relationships (41). Furthermore, these graphs are
amenable to graph clustering algorithms, developed in the
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fields of mathematics and computer science. Such algorithms
include single-linkage clustering and k-means (42), with which
we have extensively experimented, before choosing the MCL
algorithm, because of its relevance, elegance and efficiency.

The algorithm

The MCL algorithm is an algorithm designed specifically for
the settings of simple graphs and weighted graphs (43). It has
previously been used in the field of computational graph
clustering (39,43,44). Given that it is possible to represent
biological sequence similarity relationships in terms of these
graphs (23,41), it is possible to use an algorithm such as MCL
for biological sequence clustering.

Natural clusters in a graph are characterised by the presence
of many edges between the members of that cluster, and one
expects that the number of ‘higher-length’ (longer) paths
between two arbitrary nodes in the cluster is high. In particular,
this number should be high, relative to node pairs lying in
different natural clusters. A different angle on this is that
random walks on the graph will infrequently go from one
natural cluster to another, based on graph transition probability
estimates.

The MCL algorithm finds cluster structure in graphs by a
mathematical bootstrapping procedure. The process determin-
istically computes (the probabilities of) random walks through
the sequence similarity graph, and uses two operators trans-
forming one set of probabilities into another. It does so using
the language of stochastic matrices (also called Markov
matrices) which capture the mathematical concept of random
walks on a graph.

The MCL algorithm simulates random walks within a graph
by alternation of two operators called expansion and inflation.
Expansion coincides with taking the power of a stochastic
matrix using the normal matrix product (i.e. matrix squaring).
Inflation corresponds with taking the Hadamard power of a
matrix (taking powers entrywise), followed by a scaling step,
such that the resulting matrix is stochastic again, i.e. the matrix
elements (on each column) correspond to probability values.

Definition of the inflation operator

A column stochastic matrix is a non-negative matrix with the
property that each of its columns sums to 1. Given such a
matrix M ∈ Rk×k, M ≥ 0, and a real number, r > 1, the column
stochastic matrix resulting from inflating each of the columns
of M with power coefficient r is written ΓrM, and Γr is called
the inflation operator with power coefficient r. Formally, the
action of Γr: Rk×k → Rk×k is defined by:

Each column j of a stochastic matrix M corresponds with node
j of the stochastic graph associated with M. Row entry i in
column j (i.e. the matrix entry Mij) corresponds with the
probability of going from node j to node i. It is observed that
for values of r > 1, inflation changes the probabilities associated
with the collection of random walks departing from one particular
node (corresponding with a matrix column) by favouring more
probable walks over less probable walks.

Expansion corresponds to computing random walks of
‘higher length’, which means random walks with many steps.

It associates new probabilities with all pairs of nodes, where
one node is the point of departure and the other is the destin-
ation. Since higher length paths are more common within clus-
ters than between different clusters, the probabilities
associated with node pairs lying in the same cluster will, in
general, be relatively large as there are many ways of going
from one to the other. Inflation will then have the effect of
boosting the probabilities of intra-cluster walks and will
demote inter-cluster walks. This is achieved without any a priori
knowledge of cluster structure. It is simply the result of cluster
structure being present. This property of the algorithm lends
itself well to the problem of biological sequence comparison
(see below).

Eventually, iterating expansion and inflation results in the
separation of the graph into different segments. There are no
longer any paths between these segments and the collection of
resulting segments is simply interpreted as a clustering. The
inflation operator can be altered using the parameter r.
Increasing this parameter has the effect of making the inflation
operator stronger, and this increases the granularity or ‘tight-
ness’ of clusters.

Cast in the language of stochastic flow, we can state that
expansion causes flow to dissipate within clusters whereas
inflation eliminates flow between different clusters. Expansion
and inflation represent different tidal forces which are alter-
nated until an equilibrium state is reached. An equilibrium
state takes the form of a so-called doubly idempotent matrix,
i.e. a matrix that does not change with further expansion or
inflation steps. The graph associated with such a matrix
consists of different connected directed components. Each
component is interpreted as a cluster, and has a star-like form,
with one attractor in the centre and arcs going from all nodes of
that component to the attractor. In theory, attractor systems
with more than one attractor may occur (these do not change
the cluster interpretation). Also, nodes may exist that are
connected to different stars, which is canonically interpreted as
cluster overlap, or in other words nodes may belong to multiple
clusters (39,43,44).

With respect to convergence, it can be proven that the
process simulated by the algorithm converges quadratically
around the equilibrium states. In practice, the algorithm starts to
converge noticeably after 3–10 iterations. Global convergence is
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Figure 1. Flowchart of the TRIBE-MCL algorithm.
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very hard to prove; it is conjectured that the process always
converges if the input graph is symmetric (39,43,44). This
conjecture is supported by results concerning the matrix
iterands. For symmetric input graphs, it is true that all iterands
have real spectrum (the set of eigenvalues), and that all
iterands resulting from expansion have non-negative spectrum
and are diagonally symmetric to a positive semi-definite
matrix. It can be shown that these matrices have a structural
property which associates a directed acyclic graph (DAG) with
each of them. It turns out that inflation strengthens (in a quan-
titative sense) this structural property and will never change
the associated DAG, whereas expansion is in fact able to
change the associated DAG. This is a more mathematical view
on the ‘tidal forces’ analogy mentioned earlier. DAGs gener-
alise the star graphs associated with MCL limits, and the spec-
tral properties of MCL iterands and MCL limits can be related
via the inflation operator. These results imply that the equilib-
rium states can be viewed as a set of extreme points of the set
of matrices that are diagonally similar to a positive semi-defi-
nite matrix. This establishes a close relationship between the
MCL iterands, MCL limits, and cluster (and DAG) structure in
graphs (45).

The MCL algorithm also associates return probabilities (or
loops) with each node in the initial input graph. The flow para-
digm underlying MCL naturally requires this, and it can be
motivated in terms of the spectral and structural properties
mentioned earlier. As for the weights that are chosen, experience
shows that a ‘neutral’ value works well. In the implementation
used, ‘neutral’ is chosen as a weight (in principle different for
each node) that will not change when the inflation operator is
applied to the stochastic column associated with the node. It is
possible to choose larger weights (see Fig. 2), and this will
increase cluster granularity. The effect is secondary, however,

to that of varying the inflation parameter, and the algorithm is
not very sensitive to changes in the loop weights.

A very important asset of the algorithm is its ‘bootstrapping’
nature, retrieving cluster structure via the imprint made by this
structure on the flow process. Further key benefits of the algo-
rithm are (i) it is not misled by edges linking different clusters;
(ii) it is very fast and very scalable; (iii) it has a natural para-
meter for influencing cluster granularity; (iv) the mathematics
associated with the algorithm shows that there is an intrinsic
relationship between the process it simulates and cluster
structure in the input graph (45); and (v) its formulation is
simple and elegant.

From the definition of the MCL algorithm it is seen that it is
based on a very different paradigm than any linkage-based
algorithm. One possible view of this is that MCL, although
based on similarities between pairs, recombines these similari-
ties (via expansion) and is thus affected by similarities on the
level of sets (as generalising pairs). Alternating expansion with
inflation turns out to be an appropriate way of exploiting this
recombination property.

The structure of the MCL algorithm is fully described in
Figure 1. The algorithm sets out by computing the graph of
random walks of an input graph, yielding a stochastic matrix. It
then alternates the expansion operator that squares a matrix
using the usual matrix product with the inflation operator.
Inflation is done by raising each matrix entry to a given power
and rescaling the matrix so that it becomes stochastic again.
Alternation continues until an equilibrium state is reached in
the form of a so-called doubly idempotent matrix.

Application of the MCL algorithm to biological graphs

The section above describes the MCL algorithm in a general
fashion. In this section, we describe how the algorithm relates

Figure 2. (A) Example of a protein–protein similarity graph for seven proteins (A–F), circles represent proteins (nodes) and lines (edges) represent detected
BLASTp similarities with E-values (also shown). (B) Weighted transition matrix and associated column stochastic Markov matrix for the seven proteins shown in
(A). For explanations, please see text.
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Figure 3. Graph representing the largest interconnected group of protein families from the SwissProt protein database (237 protein families, 21 727 sequences in
total). Circles represent protein families, with associated family Ids and annotations (where known). Edges show BLAST similarities between families. Circles are
coloured according to the GeneOntology (GO) (52) functional class assignments (where available). This graph was generated using the Bio-Layout graph layout
algorithm (41).
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to the clustering of proteins into protein families. Biological
graphs may be represented as follows (Fig. 2A): (i) nodes of
the graph represent a set of proteins that we would like to
assign to families; (ii) edges within the graph represent
similarity between these proteins; (iii) edges are weighted
according to a sequence similarity score obtained from an
algorithm such as BLAST.

A Markov matrix (Fig. 2B) is constructed, representing tran-
sition probabilities from any protein in the graph to any other
protein for which a similarity has been detected. Each column
of the matrix represents a given protein, and each entry in a
column represents a similarity between this protein and
another protein. Diagonal elements are set arbitrarily to a
‘neutral’ value as described above. The entries in the Markov
matrix are probabilities generated from weighted sequence
similarity scores (e.g. from BLAST). This Markov matrix is
supplied to the MCL algorithm. Initial expansion of the
Markov matrix simulates random walks, which allow one to
measure ‘flow’ in the graph. Areas of high flow indicate that a
large number of random walks go through this area. The MCL
algorithm uses iterative rounds of expansion and inflation
(explained earlier) to promote flow through the graph where it
is strong, and remove flow where it is weak. This process
terminates when equilibrium has been reached, i.e. further
rounds of expansion and inflation leave the matrix unaltered.

In a biological sense, we expect that members of a protein
family will be more similar to each other than to proteins in
another family. Experiments using the Bio-Layout graph visu-
alisation algorithm (41) have shown this to be true for most
protein similarity graphs. Because of this property of biological
graphs, flow within protein families is strong, i.e. a random
walk starting at any given protein in a family is more likely to
linger within this family than to cross to another family. Flow
between protein families will be weaker than flow within a
family as there are relatively few (if any) paths that cross two
distinct protein families. Inter-family paths represent either
sequence similarity relationships due to multi-domain proteins
or mere false positive similarity detections. These properties of
biological similarity graphs make them ideally suited to the

Table 1. The top 50 promiscuous domains from InterPro occurring in distinct
SwissProt protein families identified by TRIBE-MCL

InterPro ID No. of
families

Domain description

IPR001064 141 Crystallin

IPR000504 110 RNA-binding region RNP-1 (RNA recognition
motif)

IPR003006 107 Immunoglobulin and major histocompatibility
complex domain

IPR000531 97 TonB-dependent receptor protein

IPR003015 96 Myc-type, helix–loop–helix dimerisation domain

IPR001680 76 G-protein β WD-40 repeats

IPR000561 73 EGF-like domain

IPR000169 72 Eukaryotic thiol (cysteine) proteases active sites

IPR000255 67 Phosphopantetheine attachment site

IPR001899 65 Gram-positive cocci surface protein ‘anchoring’
hexapeptide

IPR001450 60 4Fe–4S ferredoxin, iron–sulfur binding domain

IPR000130 54 Neutral zinc metallopeptidases, zinc-binding
region

IPR000205 54 NAD-binding site

IPR001005 54 Myb DNA-binding domain

IPR001440 52 TPR repeat

IPR001356 49 Homeobox domain

IPR000822 45 Zinc finger, C2H2 type

IPR001841 43 RING finger

IPR000005 42 AraC type helix–turn–helix domain

IPR001777 42 Fibronectin type III domain

IPR001452 38 Src homology 3 (SH3) domain

IPR002290 37 Serine/Threonine protein kinase family active site

IPR000886 34 Endoplasmic reticulum targeting sequence

IPR001304 32 C-type lectin domain

IPR000194 31 ATP synthase α and β subunit, N-terminal

IPR002203 29 Protein splicing (intein)

IPR000923 28 Type-1 copper (blue) domain

IPR001092 28 Helix–loop–helix dimerisation domain

IPR001789 28 Response regulator receiver domain

IPR001611 27 Leucine-rich repeat

IPR001917 27 Aminotransferases class II

IPR000063 24 Thioredoxin family

IPR002110 24 Ankyrin-repeat

IPR001220 23 Legume lectins β

IPR003009 23 Proteins binding FMN and related compounds
core region

IPR000524 22 Bacterial regulatory proteins, GntR family

IPR002114 22 Serine phosphorylation site in HPr protein

IPR000014 21 PAS domain

IPR001478 20 PDZ domain (also known as DHR or GLGF)

IPR000792 19 Bacterial regulatory protein, LuxR family

IPR001650 19 Helicase C-terminal domain

Table 1. Continued

Column names: InterPro ID, the InterPro accession number; No. of families,
the number of families in which the corresponding domain is present;
Domain description, the InterPro description line.

InterPro ID No. of
families

Domain description

IPR002088 19 Protein prenyltransferases α subunit repeat

IPR000644 18 CBS domain

IPR002035 18 von Willebrand factor type A domain

IPR000047 17 λ and other repressor helix–turn–helix

IPR000086 17 NUDIX hydrolase domain

IPR001623 17 DnaJ N-terminal domain

IPR002223 17 Pancreatic trypsin inhibitor (Kunitz) family

IPR000437 16 Prokaryotic membrane lipoprotein lipid
attachment site

IPR000583 16 Glutamine amidotransferase class II
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MCL algorithm. The iterative rounds of inflation and expan-
sion remove this weak flow across protein families, and
promote the stronger flow within protein families. This boot-
strapping procedure allows protein families hidden in the
graph to become visible by gradually stripping the graph down
to its basic components as detected by stochastic flow.

Many of the problems that normally hinder protein sequence
clustering are eliminated by the MCL approach. Proteins
possessing a promiscuous domain, which is present in many
functionally unrelated proteins, are normally very difficult to
cluster correctly. Promiscuous domains will connect a member
of a given protein family to all members of that family and
possibly to other protein families. Because these inter-family
connections are still far fewer than intra-family connections,
the algorithm gradually eliminates these inter-family similari-
ties and detects protein families accurately. The algorithm
requires no a priori knowledge of protein domains, and clusters
proteins into families purely based on observed relationships
through the entire similarity graph. However, proteins
containing different domains or sets of domains will have very
different sequence similarity patterns, and hence we expect the
MCL algorithm to cluster proteins with different domain struc-
tures into distinct families. We have extensively validated the
performance of the algorithm in terms of speed and accuracy.
We have also assessed the performance of the algorithm in
terms of the quality of protein family descriptions, based on
database annotations.

VALIDATION OF THE ALGORITHM

In order to test the effectiveness of protein family detection
using TRIBE-MCL, we have performed extensive validation
using the InterPro protein domain database (46) and the Struc-
tural Classification of Proteins (SCOP) database (47). These
databases contain extensive information relating to protein
domains and structures. Ideally, clusters detected by the
TRIBE-MCL algorithm should have similar domain architectures,
including sequence patterns and protein folds, based on
InterPro and SCOP, respectively.

InterPro validation

The InterPro database (46) is a collection of protein domains
and functional signatures from multiple databases such as
PRINTS (48), PFAM (21) and PROSITE (49). This well
curated database contains a vast amount of information
relating to protein domains and sequence motifs. It is possible
to obtain InterPro information for many entries in the
SwissProt database (50). In order to validate our clustering
algorithm, we took the SwissProt protein database
(80 000 proteins) and clustered it into 8332 families using
the TRIBE-MCL algorithm. This analysis took ∼5 min to
complete on a Sun Ultra 10 workstation. Protein family and
domain information for each SwissProt protein was extracted
(if available) from the InterPro database. Of the 8332 families,
1821 families contain four or more members with
corresponding InterPro annotations. Families that do not
contain four or more annotated members are discarded. For
each of the 1821 families, we determine the domain structure
of annotated members of that family, according to InterPro
domain classifications, and retain the most frequently
occurring domain combination.

This analysis is performed in order to determine which fami-
lies exhibit robust domain combinations in contrast to less well
defined protein families which may display disparate (or even
conflicting) domain architecture. Interestingly, 1583 families
(out of 1821 or 87%) display full correspondence of domain
structure across all annotated members. When individual
proteins are considered, we count the proportion of proteins
with identified InterPro domain combinations identical to the
most frequently occurring domain combination of the cluster
they belong to. The number of proteins with this property is
14 188 out of a total of 14 409 proteins considered (98%); this
value can be considered as an estimate of the classification
precision according to InterPro. This result illustrates that
although the algorithm has no fixed concept of protein
domains, the resulting families have a very consistent domain
structure, indicating accurate and meaningful clustering.
Although the second set was also clustered using
TRIBE-MCL, no validation was possible due to limited avail-
able annotation of the detected families from InterPro.

SCOP validation

The SCOP database is a collection of well characterised
proteins for which three-dimensional structures are available
(47). These proteins have been expertly classified into families
based on their folding patterns and a variety of other informa-
tion. Given that family information for these proteins is well
understood and accurately represented in SCOP, it was decided
to cluster all proteins in the PDB (18 248 entries) into protein
families using the TRIBE-MCL algorithm at multiple inflation
values (corresponding to different cluster granularity). This
analysis detected 1167 families (inflation value 1.1)—and with
increasing inflation values of 2, 3, 4 and 5 the number of
families is 1395, 1606, 1672 and 1761, respectively. For each
set of clusters (i.e. families), we determine the most frequently
occurring SCOP annotation, as above. We also count the
number of distinct clusters containing identical SCOP annotations
in the same way. Similar to the InterPro validation, we calculate
the total number of proteins in clusters with SCOP classifica-
tions consistent with the cluster SCOP assignment. For higher

Figure 4. Distribution of protein family sizes within the human genome.
The x-axis represents family size and the y-axis (bars) indicates the number of
paralogous protein families.
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inflation values (i.e. tighter clustering), this precision estimate
is highest: 87% for inflation value 5 decreasing to 79% for the
lowest inflation value of 1.1. These results further indicate that
the clustering obtained by TRIBE-MCL is accurately and
consistently assigning proteins into families, despite the fact
that this classification relies on structural similarities, which
are not all readily detectable at the sequence level.

LARGE-SCALE FAMILY DETECTION

An analysis of the effects of promiscuous domains

As mentioned above, TRIBE-MCL does not require any
explicit knowledge of protein domains to detect protein fami-
lies. This feature can be used for the analysis of domains that
are present in many families, such as promiscuous domains.
We have decided to analyse the presence of these domains in
the SwissProt database using TRIBE-MCL, and estimate how
frequently they occur, based on the presence of InterPro (46)
entries in the corresponding SwissProt (50) sequence. In other

words, for each protein entry in SwissProt containing a detect-
able domain with InterPro, we count how many different
protein families we have detected that contain this domain. A
list of these promiscuous domains in SwissProt is described in
Table 1. It is surprising that the largest set of proteins that are
interconnected through promiscuous domains comprises of
237 protein families (21 727 sequences in total), corresponding
to 22.3% of all SwissProt entries (Fig. 3). Although the spec-
tacular complexity of these interconnected families and the
range of their functional properties has been suspected before
(14), this is the first time that we obtain a glimpse of this effect
at this scale using clustering and visualisation. This effect
arises for a number of reasons: first, the family detection is
accurate but the corresponding domain is falsely identified by
InterPro (e.g. crystallin, shared by 141 families; Table 1);
secondly, the presence of these domains in unrelated families
represents a meaningful biological phenomenon (e.g. RNA-
binding region RNP-1, shared by 110 families; Table 1);
thirdly, the granularity of family definition is sometimes too

Table 2. The 28 largest protein families in the draft human genome recorded in Ensembl 0.80 together with their automatically derived
consensus annotations and the total number of sequences (from Ensembl, SwissProt and SPTrembl) that they contain

Ensembl 080 family Automatic annotation No. of peptides

ENSF00000002017 Zinc finger protein 1743

ENSF00000002558 Class II histocompatibility antigen, β chain 1497

ENSF00000004397 Cytochrome B 1231

ENSF00000004396 Cytochrome B 1122

ENSF00000002016 Olfactory receptor 975

ENSF00000002557 Class I histocompatibility antigen, α chain precursor 814

ENSF00000004395 Cytochrome B fragment 782

ENSF00000004394 Cytochrome B 731

ENSF00000004718 Cytochrome C oxidase polypeptide I EC 1.9.3.1 648

ENSF00000002556 HLA Class I histocompatibility antigen, B α chain precursor 526

ENSF00000006350 NADH ubiquinone oxidoreductase chain 4 EC 1.6.5.3 456

ENSF00000002015 Myosin heavy chain 455

ENSF00000004393 Cytochrome B 447

ENSF00000004392 Cytochrome B fragment 435

ENSF00000006349 NADH ubiquinone oxidoreductase chain 2 EC 1.6.5.3 419

ENSF00000002555 Class II histocompatibility antigen, α chain 398

ENSF00000002013 Protein tyrosine phosphatase, non-receptor type EC 3.1.3.48 protein tyrosine phosphatase 381

ENSF00000002645 Haemoglobin chain 375

ENSF00000002014 Receptor precursor EC 2.7.1.112 368

ENSF00000002012 Unknown 355

ENSF00000002009 Cadherin-related tumour suppressor homologue precursor fat protein homologue 349

ENSF00000004391 Cytochrome B 341

ENSF00000002554 HLA Class II histocompatibility antigen, β chain precursor 341

ENSF00000002010 Protein EC 2.7.1.- 341

ENSF00000002644 Haemoglobin α chain 338

ENSF00000006348 NADH ubiquinone oxidoreductase chain 2 EC 1.6.5.3 328

ENSF00000002011 EC 3.4.21.- 327

ENSF00000002553 Class I histocompatibility antigen, α chain precursor 317
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high, resulting in many distantly related families to contain similar
motifs (e.g. immunoglobulin and major histocompatibility
complex domain, shared by 107 families; Table 1).

Protein family analysis of the draft human genome

The release of the publicly sequenced draft human genome
necessitated the need for protein family analysis and functional
annotation to be performed and made available for researchers.
This type of information can be very useful for locating similar
genes to a gene of interest or for assigning function to
previously unknown genes. To achieve high-quality annotation
automatically, functional descriptions for all genome
sequences might be obtained from curated database entries,
based on detected sequence similarities and subsequent family
assignments. To this end, TRIBE-MCL was applied to a full
set of peptides from the EnsEMBL 0.80 release (29 691
proteins) of the draft human genome along with a vertebrate
subset of proteins from the SwissProt and SPTrEMBL
databases (73 347 entries). All protein similarities within these
103 038 proteins were detected using BLAST (12). This
information (over 15 million protein similarities) was used by
the TRIBE-MCL algorithm to detect all protein families within
these three data sets. Given the pre-computed BLAST-based
similarities, the clustering step took ∼15 min on a single CPU
of a Compaq ES40 server. Finally, the RLCS algorithm
(A.J.Enright, unpublished data) was then used to determine a
consensus annotation for each detected protein family.

In all, 13 023 protein families were detected, of which
11 481 families (88% of the total) are human specific. On
average, each human protein family contains 2.5 members,
while there are only 1110 single-member families (3% of the
total number of families). The family size distribution has an
exponential shape, with hundreds of protein families with more
than 20 members (Fig. 4) and 347 families with more than
50 members (data not shown), indicating a high degree of
paralogy. Some well known families that are detected are zinc
finger-containing proteins, olfactory receptors, members of the
ras superfamily of GTPases, myosin, actin, keratin, immuno-
globulin, certain ribosomal proteins and multiple kinase types
(Table 2). The procedure has detected many well known

families and a number of novel families in the human genome
whose functions are either unknown or predicted. As an
example, we show that the TFIIB family of proteins (51) has
been identified correctly, containing the human, rat and
Xenopus homologues (Fig. 5). Despite the fact that the quality
of clusters is very high, some of the largest families (with more
than 1000 members) may contain a number of unrelated
members. This usually arises from the presence of multiply
repeated sequence patterns and not the presence of individual
promiscuous domains. We are working towards the definition
of multiple levels of protein family classification, using post-
processing of the initial clusters with multiple-threshold
clustering.

The largest family identified (EnsEMBL 0.80 release) is a
class of zinc finger-containing transcription factors, while the
largest unannotated family contains 355 members (Table 2).
All detected protein families were subsequently made avail-
able as part of the EnsEMBL 0.80 release. The clustering is
fully accessible at www.ensembl.org and is continually being
updated with new versions of the EnsEMBL database. It is
worth mentioning that the annotations derived from the
families detected by TRIBE-MCL are being used as annotations
for a large number of human genes at EnsEMBL.

DISCUSSION

We have presented a novel algorithm that generates accurate
protein families using the MCL formalism for graph clustering
by flow simulation. The actual implementation of the algo-
rithm allows the efficient and rapid clustering of any arbitrary
set of protein sequences, given a list of all pairwise similarities
obtained by another method, such as BLAST. Because the
method does not operate directly on sequences but on a graph
that contains similarity information, it avoids the expensive
step of sequence alignment. Instead, global patterns of
sequence similarity are detected and used to partition the
similarity graph into protein families.

The quality of the clustering is impressive, as validated using
the available protein domain and structure databases—InterPro
and SCOP, respectively. Up to 95% agreement can be obtained
in a comparison of the resulting classification using
TRIBE-MCL and the manually curated InterPro database.
Given the speed and quality of the resulting clusters,
TRIBE-MCL has been used to cluster all human genes (from
the EnsEMBL project) into annotated protein families. This
task would previously have been prohibitively expensive to
achieve in such a short period of time. We hope that the
method will become widely used by the community and find
some other interesting applications.
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