# GLIMMER



**Dennis Flottmann** 

Universität Bielefeld

1

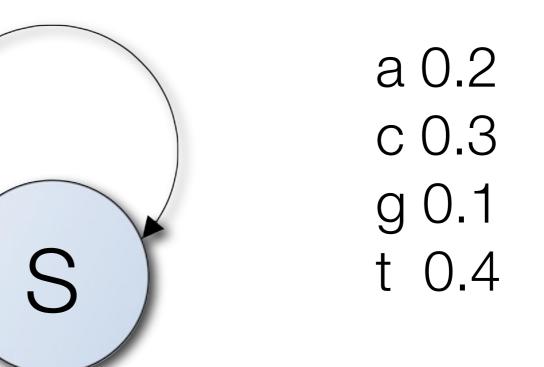
## Agenda

- Who invented GLIMMER?
- What is GLIMMER?
- How GLIMMER works
  - ► IMMs
  - ICMs
- GLIMMER live demonstration
- GLIMMER today and in comparison to other tools

## Who invented GLIMMER?

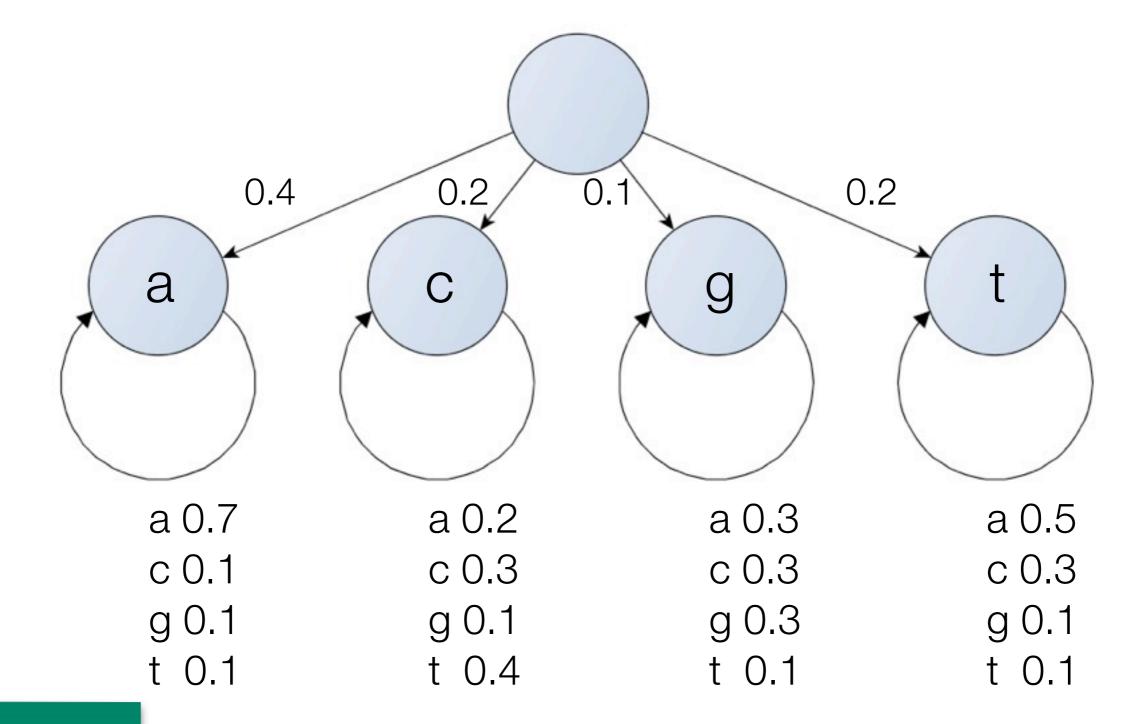
- Steven L. Salzberg
- Arthur L. Delcher
- Simon Kasif
- Owen White

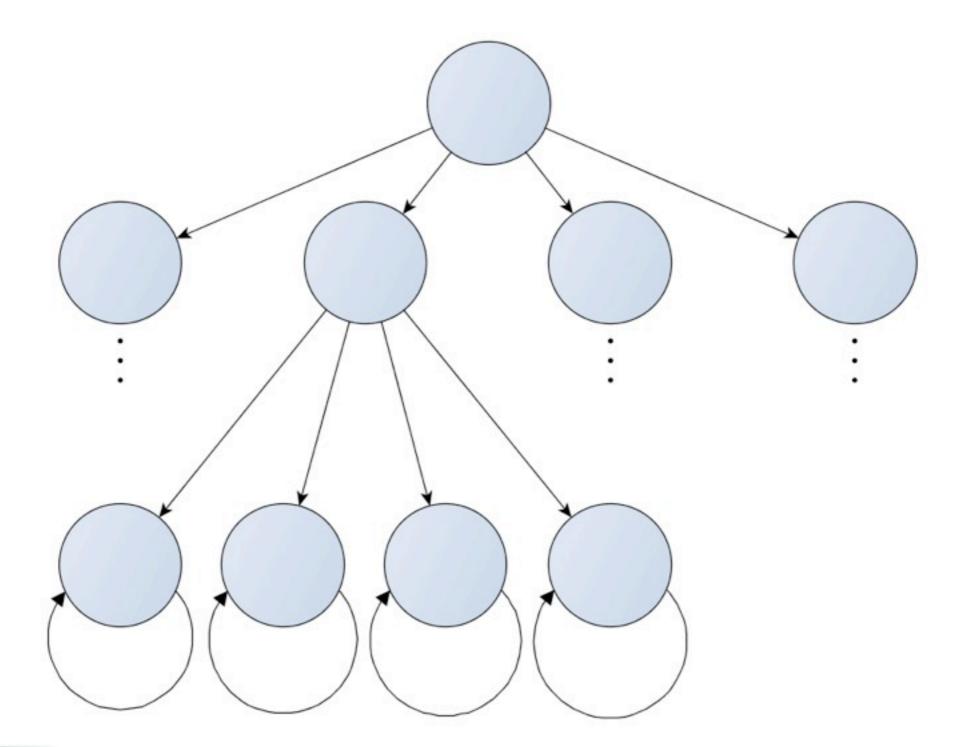



### What is GLIMMER?

GLIMMER is a software tool, implementing a computational scoringmethod to identify genes on coding regions of given DNA-sequences (procaryotic organisms)

- Desktop-application (no use of web-service necessary)
- developed under OSI License (opensource)
- customizable
- does not require many system resources (max. 50-60 MB of RAM)
- http://www.cbcb.umd.edu/software/glimmer/


## How GLIMMER works


- GLIMMER calculates 7 IMM-Models (6 per reading frame + 1 non-coding regions)
- searches for all open reading frames and calculates score for all models
- orfs with adequate score will be examined for existing overlaps
- orfs with lower score then will be dismissed



#### $P(ccccc) = (0.3)^5 = 0,00234$







- linear-combinations of Markov models
- chain of k-th order calculates the following base out of the k previous bases
- approach of Markov chains is used e.g. with GeneMark



- all Markov chains from 0 to 8-th order will be calculated
- chains get a weight depending on their frequency of occurrence in the training-data
- if training-data is not sufficient for a higher order -> fallback to a chain of lower order

#### How GLIMMER works Interpolated Markov Models

Calculating the IMMs

$$P(S \mid M) = \sum_{x=1}^{n} IMM_{8}(S_{x})$$

 $IMM_8(S_x) = \chi_8(S_{x-1}) * P_8(S_x) + (1 - \chi_8(S_{x-1})) * IMM_7(S_x)$ 

$$P_i(S_x) = P(S_x \mid S_{x-i}, \dots, S_{x-1}) = \frac{f(S_{x,i})}{\sum_{b \in \{acgt\}} f(S_{x,i}, b)}$$



### How GLIMMER works Interpolated Markov Models

Calculating the weights

- weight is 1.0 if occurrence of  $S_{x-i} \dots S_{x-1}$  in the training-data exceeds the threshold value (400)
- else:
  - frequency of the bases  $f(S_{x,i},b) \mid b \in \{acgt\}$  will be compared to prediction of the next shorter model IMM<sub>i-1</sub>
  - if there are differences a higher weight will be given:

$$\chi_i(S_{x-1}) = \begin{cases} 0.0 & c < 0.50 \\ \frac{c}{400} \sum f(s_1 s_2 \dots s_i b)_{b \in} \{acgt\} & c \ge 0.50 \end{cases}$$

Universität Bielefeld

## How GLIMMER works

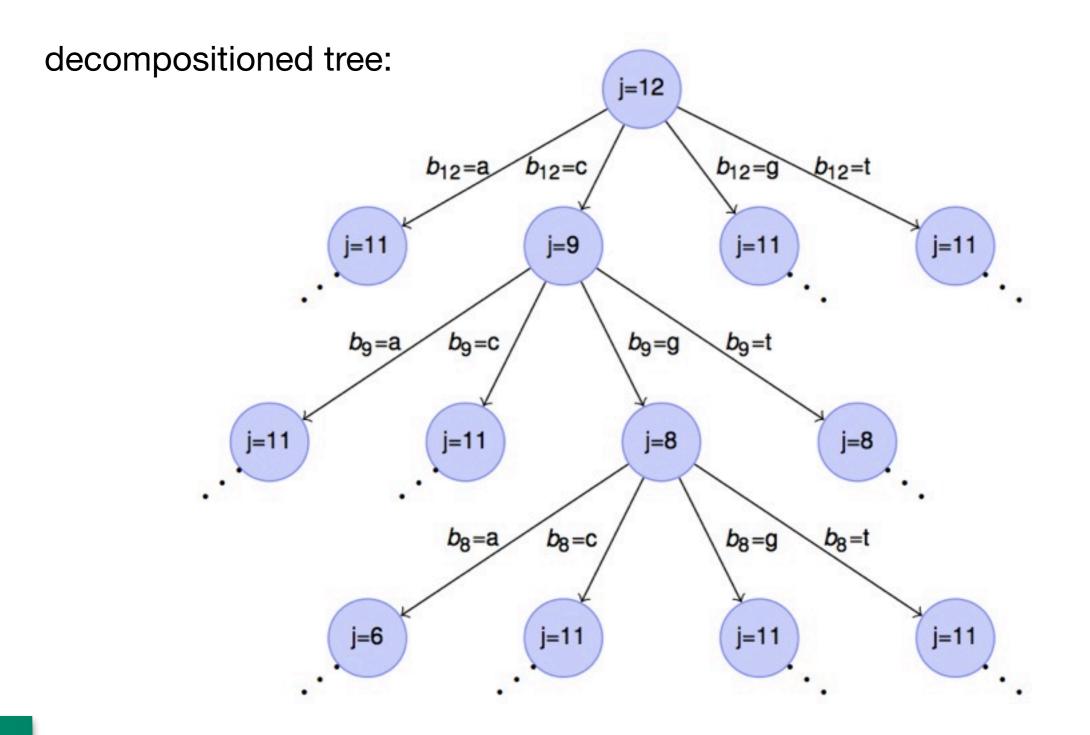
- GLIMMER calculates 7 IMM-Models (6 reading frame + 1 non-coding regions) based on training-data
- searches for all open reading frames and calculates score for all models
- orfs with adequate score will be examined for existing overlaps
- orfs with lower score will be dismissed

## How GLIMMER works

- detection-rate is only ~97-98%
- much too high false-positives rate
- missing overlap-treatment causes too many unrecognized genes



- ICMs: an extended version of IMMs
- the prediction of a base does not only depend on its predecessor
- the position of a base in its whole context is important!

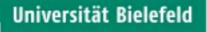

Mutual Information I of two radom variables X, Y is:

$$I(X;Y) = \sum_{i} \sum_{j} P(x_{j}, y_{j}) * \log(\frac{P(x_{i})P(y_{j})}{P(x_{i}, y_{j})})$$

- the sequence is divided into frames of length k+1
- calculation of mutual information  $I(x_1, X_{k+1}), I(X_2, X_{k+1}), ..., I(X_k, X_{k+1})$
- search maximum  $I(X_i, X_{k+1})$
- the quantity of frames is devided into 4 sub-quantities, which are sorted according to the calculated max. position and the hereby given base
- the algorithm starts over again for each of the four sub-quantities








#### How GLIMMER works Overlap treatment

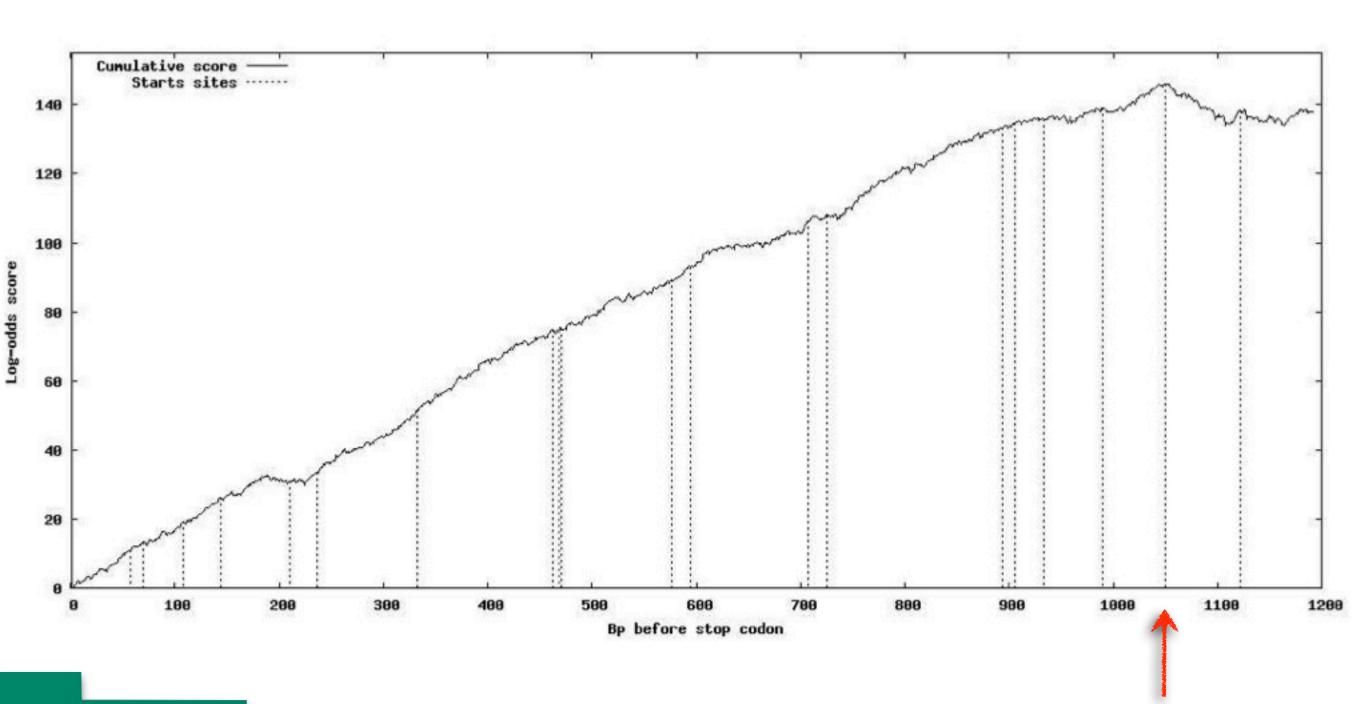
- GLIMMER 2 tries to find alternative start-codon-positions
- after a gene is dismissed the recalculation of the overlaps will begin
- in the following example, gene A has a higher score at the moment:

$$\xrightarrow{5^{\circ}} A \xrightarrow{5^{\circ}} B$$

gene B will be dismissed with high probability



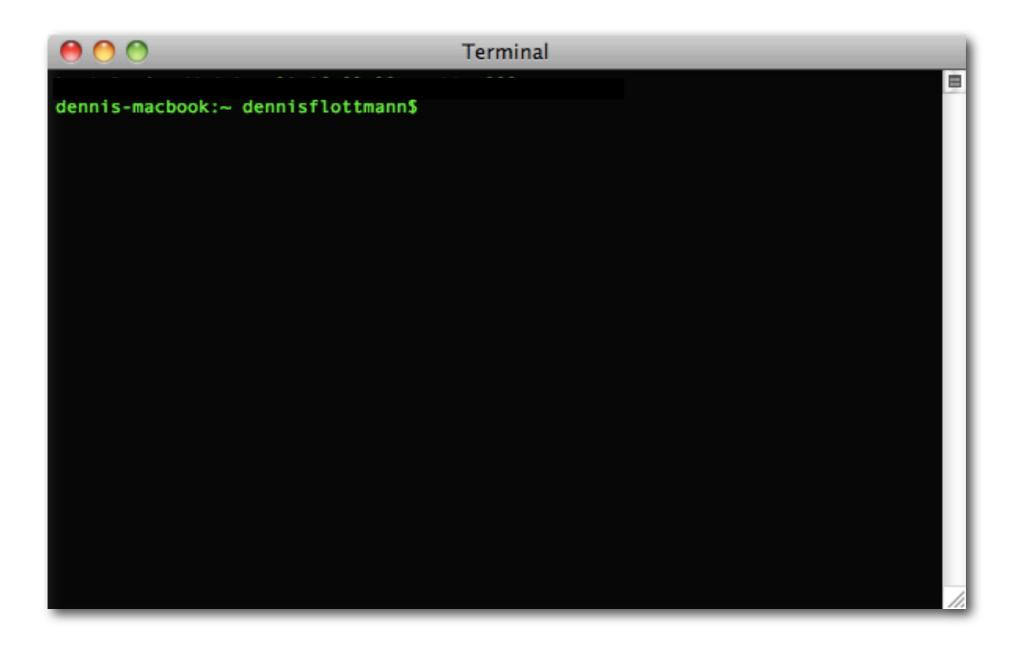
## How GLIMMER works Comparison between GLIMMER 1 & 2


|                |                 | GLIMN                    | /IER 1.0                  | GLIMMER 2.0              |                           |  |  |  |  |  |  |
|----------------|-----------------|--------------------------|---------------------------|--------------------------|---------------------------|--|--|--|--|--|--|
| Organism       | Genes annotated | Annotated genes<br>found | Additional genes<br>found | Annotated genes<br>found | Additional genes<br>found |  |  |  |  |  |  |
| H. influenzae  | 1738            | 1715 (98.7%)             | 234 (13.5%)               | 1720 (99.0%)             | 242 (13.9%)               |  |  |  |  |  |  |
| M. genitalium  | 483             | 479 (99.2%)              | 78 (16.1%)                | 480 (99.4%)              | 82 (17.0%)                |  |  |  |  |  |  |
| M. jannaschii  | 1727            | 1715 (99.3%)             | 210 (12.2%)               | 1721 (99.7%)             | 218 (12.6%)               |  |  |  |  |  |  |
| H. pylori      | 1590            | 1545 (97.2%)             | 293 (18.4%)               | 1550 (97.5%)             | 322 (20.3%)               |  |  |  |  |  |  |
| E. coli        | 4269            | 4099 (96.0%)             | 757 (17.7%)               | 4158 (97.4%)             | 868 (20.3%)               |  |  |  |  |  |  |
| B. subtilis    | 4100            | 4006 (97.7%)             | 917 (22.4%)               | 4030 (98.3%)             | 1022 (24.9%)              |  |  |  |  |  |  |
| A. fulgidus    | 2437            | 2385 (97.9%)             | 274 (11.2%)               | 2404 (98.6%)             | 341 (14.0%)               |  |  |  |  |  |  |
| B. Burgdorferi | 849             | 845 (99.5%)              | 67 (7.9%)                 | 843 (99.3%)              | 62 (7.3%)                 |  |  |  |  |  |  |
| T. pallidum    | 1039            | 1012 (97.4%)             | 180 (17,3%)               | 1014 (97.6 %)            | 250 (24 1%)               |  |  |  |  |  |  |
| T. maritima    | 1877            | 1849 (98.5%)             | 190 (10.1%)               | ncreaused a              | 208 (11.1%)               |  |  |  |  |  |  |
|                |                 |                          | 0.7 %                     |                          |                           |  |  |  |  |  |  |

## GLIMMER today and in comparison to other tools



- calculates the score backwards beginning with the stop-codon
  - because IMMs are only trained for genes (transition from coding to noncoding of a context-frame result in low scores)
  - score is added up (reaching the correct start-codon results in a maximum score)
- GLIMMER 1/2 preferred longer orfs; GLIMMER3 prefers higher scores


# GLIMMER today and in comparison to other tools GLIMMER 3



#### GLIMMER today and in comparison to other tools Other improvements

- Ribosomal binding sites can give a strong hint for the correct start-codon
  - ELPH searches for motifs in the quantity of sequences
  - GLIMMER uses created PWM to score potential RBS
- Overlaps
  - GLIMMER3 calculates every possible orf between start- & stop-codon
  - a dynamic algorithm tries to combine a quantity of orfs into a valid sequence with maximum total-score and a minimum of overlaps
- improved long-orf training
  - GLIMMER2 chooses orfs > 500bp
  - GLIMMER 3 determines threshold independently as long as there are no overlaps

## GLIMMER live presentation



# GLIMMER today and in comparison to other tools Other tools

- GeneMark (Borodovsky et al. 1993)
  - GeneMark.hmm
  - GeneMarkS
  - also eucaryotic versions available
- EasyGene (Larsen et al. 2003)

# GLIMMER today and in comparison to other Tools Comparison: GLIMMER3 vs. ...

| Genome            |          | vs. GeneMark.hmm |         | vs. EasyGene 1.2 |          |         | vs. GeneMarkS |          |         |       |
|-------------------|----------|------------------|---------|------------------|----------|---------|---------------|----------|---------|-------|
| Organism          | # Genes  | 3' Match         | 5' & 3' | Extra            | 3' Match | 5' & 3' | Extra         | 3' Match | 5' & 3' | Extra |
| A. fulgidus       | 1165     | +4               | -20     | -86              | +5       | -25     | +119          | 0        | +2      | -71   |
| B anthracis       | 3132     | -2               | -48     | -134             | +13      | -63     | +175          | +1       | +412    | -142  |
| B. subtilis       | 1576     | +2               | +280    | +87              | +15      | -10     | +536          | -5       | -39     | +193  |
| C. tepidum        | 1292     | +1               | +21     | +19              | +10      | +9      | +182          | +1       | -14     | +29   |
| C. perfringens    | 1504     | -2               | +177    | -120             | -2       | -8      | -21           | -3       | -14     | -139  |
| E. coli           | 3603     | -25              | +18     | +188             | +60      | +44     | +407          | -25      | -29     | +190  |
| G. sulfurreducens | 2351     | +13              | +215    | +34              | +5       | -1      | +60           | +14      | +41     | +66   |
| H. pylori         | 915      | -1               | -3      | -55              | +4       | -6      | +148          | -1       | -8      | -41   |
| P. flourescens    | 4535     | +17              | +288    | +59              | NA       | NA      | NA            | +17      | +479    | +46   |
| R. solanaccearum  | 2512     | +7               | +183    | +225             | +11      | +48     | +193          | -3       | +160    | +190  |
| S. epidermidis    | 1650     | +3               | -32     | -40              | NA       | NA      | NA            | +6       | +204    | -64   |
| T. pallidum       | 575      | +2               | -8      | +94              | +8       | -8      | +176          | -2       | -18     | +90   |
| A                 | verages: | +2               | +89     | +23              | +13      | -2      | +198          | +1       | +98     | +29   |

# GLIMMER today and in comparison to other tools Customization



Universität Bielefeld

#### Abstract

- GLIMMER is a gene-finding tool that recognizes 97-98% of all genes in a prokaryotic genom
- also an eucaryotic version is available (GLIMMERHMM)
- by chosing certain training-data also other tasks can be realized
- online-version available

## Questions?

## Thank you for your attention!