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Chapter 1

Notation

A string (or word or sequence) T = t1t2 · · · tn is a sequence of characters
(or symbols or letters) from an alphabet Σ. A substring of T is any string
Ti...j = titi+1 · · · tj, where 1 ≤ i ≤ j ≤ n. A suffix of T is any substring Ti...n,
where 1 ≤ i ≤ n. A prefix of T is any substring T1...j, where 1 ≤ j ≤ n. We
sometimes also use notation T [i, j] = T [i . . . j] = Ti,j for Ti...j.

The length of a string T is denoted |T |. The cardinality of a set U is also
denoted |U |.

The set of all strings is denoted Σ∗ and the set of all strings of length n
is denoted Σn.

We use the common Big-O notation for complexities. Informally, O(f(x))
denotes something that grows at most as fast as f(x), o(f(x)) something that
grows strictly slower than f(x), Θ(f(x)) something that grows as fast as f(x),
Ω(f(x)) something that grows at least as fast as f(x), and ω(f(x)) something
that grows strictly faster than f(x).
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Chapter 2

Alignments Revisited

We will first explore general alignment techniques and then proceed into
ones tailored for biosequences. For self-containedness we repeat some familiar
concepts.

2.1 Edit Distance

Let A = a1 · · · am ∈ Σ∗ and B = b1 · · · bn ∈ Σ∗ be two sequences. Edit
distance is defined through edit operations, of which most common are
E1. Deletion: ai does not correspond to any character in B, ai → ε.

E2. Insertion: bj does not correspond to any character in A, ε→ bj.

E3. Substitution: ai corresponds to bj, ai 6= bj, ai → bj.

Operations E3 shall not cross:

• If ai → bj an ai′ → bj′ , then i < i′, if and only if j < j′.

Definition 2.1.1 Given sequences A and B, their edit distance D(A,B) is
the smallest amount of operations E1, E2 and E3 to convert A into B.

Edit distance is also called Levenshtein distance. If only operation E3 is
allowed, then edit distance is called Hamming distance. It can be shown that
edit distance is a metric:

1) D(A,B) ≥ 0,

2) D(A,B) = 0, if and only if A = B,

3) D(A,B) = D(B,A),

5
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4) D(A,C) ≤ D(A,B) +D(B,C).

Example 2.1.2 A = abba, B = bbb

abba abba

|:|| 3 operations |::| 2 operations

bb b bbb

At least two operations are required, because |A| = |B| + 1 and B contains
one less b than A. Hence, D(A,B) = 2.

Visualization of edits

1. Trace

Also identity operations are shown. Lines should not cross.

2. Alignment

indust-ry--

in---terest

3. Listing of operations

industry d→ ε intery ε→ e
inustry u→ ε interey y → s
instry s→ ε interes ε→ t
intry ε→ e interest
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2.1.1 Edit distance computation

Let us denote dij = D(a1 · · · ai, b1 · · · bj), 0 ≤ i ≤ m, 0 ≤ j ≤ n.
Theorem 2.1.3 Edit distances dij and especially dmn = D(A,B) can be
computed using the recurrence

dij = min{di−1,j−1 + (if ai = bj then 0 else 1), di−1,j + 1, di,j−1 + 1}, (2.1)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and using initialization

d00 = 0,

di0 = i, 1 ≤ i ≤ m, and

d0j = j, 1 ≤ j ≤ n.

Proof. Induction, exercise for the reader.
Values (dij), 0 ≤ i ≤ m, 0 ≤ j ≤ n, can be computed using tabulation,

i.e. dynamic programming:

Algorithm 2.1.4 D(A,B) computation using dynamic programming, basic
version.

Input: A = a1a2 · · · am, B = b1b2 · · · bn
Output: Matrix (dij), 0 ≤ i ≤ m, 0 ≤ j ≤ n, dmn = D(A,B)
(1) for i := 0 to m do di0 := i; (* initialization *)
(2) for j := 1 to n do d0j := j;
(3) for j := 1 to n do
(4) for i := 1 to m do
(5) dij := min{di−1,j−1 + (if ai = bj then 0 else 1), di−1,j + 1, di,j−1 + 1}

Example 2.1.5 A = baacb, B = abacbc
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D(A,B) = dmn = d5,6 = 3.

The time requirement of Algorithm 2.1.4 is Θ(mn). The space require-
ment is the same, but easily improved to O(m); Values dij depend from each
others as follows:

To compute values dij, 1 ≤ i ≤ m, at column j is is sufficient to know values
di,j−1, 1 ≤ i ≤ m, at column j − 1. We leave for the reader to modify
Algorithm 2.1.4 to use only one vector of length m+ 1 in the computation.

Tracing the edit operations

As typical in dynamic programming, the steps (here edit operations) cho-
sen for the optimum solution (here dmn) can be traced back afterwards. From
dmn we can trace back towards d00 and re-evaluate the decisions at each (dij).
There is no need to store explicit pointers.
Example 2.1.6

Four different solutions are found, e.g.:

(a1 → b1), (a2 → b2), (A3...5 → B3...5), (ε→ b6)
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Some improvements

It is possible to speed-up edit distance computation in many ways. Several
algorithms exist with running time O(mn/ log n) [MP80, Mye99, CLZU02]
(differing completely in the techniques and in the assumptions on the machine
model). Also, it is possible to develop faster algorithms for the case where
the edit distance is small or large. For example, using the diagonal method
[Ukk85] one can compute edit distance in O(D(A,B)m) time. Many of the
techniques for speeding-up edit distance computation are quite specific, and
cannot easily be modified to work on any variation of edit distance, like
those tailored for biological sequences. We will next cover one speed-up
trick applicable to many variants of sequence alignment: sparse dynamic
programming.
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2.2 Sparse Dynamic Programming

The goal in sparse dynamic is to compute only some cells of the dynamic
programming matrix. Let M(A,B) denote the set of matching character
pairs, that is, M(A,B) = M = {(i, j) | ai = bj}. We will next show how to
compute edit distances di,j = D′(A1...i, B1...j) only for pairs (i, j) ∈ M , for
D′(A,B) being the edit distance where substitution operation is forbidden.

Longest common subsequence and (deletion/insertion)
edit distance

Definition 2.2.1 Given sequences A and B, the (deletion/insertion) edit
distance D′(A,B) is the smallest amount of operations E1 and E2 (see page
5) to convert A into B.

We observe the following connection to longest common subsequence -
problem.

Definition 2.2.2 Sequence C = c1c2 · · · cr is the subsequence of A =
a1a2 · · · am, if C can be obtained by deleting zero of more characters from A.
Sequence C is the longest common subsequence of A and B, LCS(A,B) = C,
if C is the longest sequence that is a subsequence of both A and B.

Theorem 2.2.3 a) |LCS(A,B)| = (|A|+ |B| −D′(A,B))/2.

b) Let

(1) ai1 → ε, ai2 → ε, . . . , aip → ε and

(2) ε→ bj1 , ε→ bj2 , . . . , ε→ bjr

be the deletions and insertions in the optimal listing of edit operations
corresponding to D′(A,B). Then LCS(A,B) = C, where C equals A
after deletions (1) and C equals B after deletions corresponding to the
insertions (2) inverted.

Proof.



CHAPTER 2. ALIGNMENTS REVISITED 11

b) Due to the construction C is clearly a subsequence of A and B. If C
is not longest possible, we have |C| < |C ′|, where C ′ = LCS(A,B).
Then we can convert A to B with (|A|− |C ′|) deletions and (|B|− |C ′|)
insertions, that is

D′(A,B) ≤ |A| − |C ′|+ |B| − |C ′| < |A| − |C|+ |B| − |C| = D′(A,B),

which is a contradiction. Hence C = LCS(A,B).

a) From b) we have |LCS(A,B)| = |A| − p and |LCS(A,B)| = |B| − r,
therefore

2 · |LCS(A,B)| = |A|+ |B| − (p+ r) = |A|+ |B| −D′(A,B).

�

Example 2.2.4 LCS(stockholm, tukholma) = tkholm;
D′(stockholm, tukholma) = 5; |tkholm| = 6 = (9 + 8− 5)/2.

Modifying previous algorithms for D′(A,B).

To compute D′(A,B) the recurrence for (dij) becomes

dij = min{di−1,j−1 + (if ai = bj then 0 else ∞), di−1,j + 1, di,j−1 + 1}

There exists bit-parallel algorithms for D′(A,B) with running time
O(d n

w
em) that together with the shortest detour technique give running time

O(d d
w
em). There exist also algorithms that work faster when LCS(A,B) is

large.

O(|M | logm) time algorithm to compute D′(A,B)

There are several different algorithms for computing LCS using sparse
dynamic programming. First one is the Hunt-Szymanski algorithm [HS77].
We will explore a variant of this algorithm [MNU03], that extends to many
directions.
Theorem 2.2.5 For values dij = D′(A1...i, B1...j), (i, j) ∈ M , where M =
M(A,B) = {(i, j) | ai = bj} ∪ {(0, 0)}, holds

dij = min{di′,j′ + i− i′ + j − j′ − 2 | i′ < i, j′ < j, (i′, j′) ∈M}, (2.2)

with initialization d0,0 = 0. We have D′(A,B) = dm+1,n+1.
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Proof. Consider consecutive characters of A, ai′ and ai, in LCS(A,B). They
have counterparts bj′ and bj in B. The corresponding optimal listing of edit
operations for D′(A,B) contains only deletions and insertions between the
two identity operations ai′ → bj′ and ai → bj. The smallest number of
deletions and insertions to convert Ai′+1...i−1 into Bj′+1...j−1 is i − 1 − (i′ +
1)+1+j−1−(j′+1)+1 = i− i′+j−j′−2. The recurrence considers for all
pairs (i, j), ai = bj, all possible preceding pairs (i′, j′), ai′ = bj′ ; from these
the one is chosen that minimizes the overall cost of converting first A1...i′ into
B1...j′ (cost di′,j′), and then Ai′...i into Bj′...j (cost i − i′ + j − j′ − 2). The
initialization is correct; if ai → bj is the first identity operation, the cost of
converting A1...i−1 into B1...j−1 is i−1+j−1 = d0,0+i−0+j−0−2 = di,j. Make
an induction assumption that all values di′,j′ , i

′ < i, j′ < j, are computed
correctly. Then by induction it follows that each dij receives the correct value.
Finally, dm+1,n+1 = D′(A,B), because if (i′, j′) is the last edit operation,
converting Ai′+1...m into Bj′+1...n costs m− i′ + n− j′ = dm+1,n+1 − di′−j′ . �

Algorithm derivation from recurrence.

Let us write (2.2) as

dij = i+ j − 2 + min{di′,j′ − i′ − j′ | i′ < i, j′ < j, (i′, j′) ∈M},

by bringing all values out from the minimization that are not affected. Com-
pute values dij in the reverse column-order <rc:

(i′, j′) <rc (i, j) if and only if j′ < j or (j′ = j and i′ > i).

The observation is that if all values di′,j′ , (i′, j′) <rc (i, j) are computed
before computing dij, the condition j′ < j does not need to be taken into
account separately; for all values di′,j′ already computed, the condition i′ < i
is enough to guarantee that also j′ < j. We can write the recurrence as

dij = i+j−2+min{di′,j′−i′−j′ | i′ < i, (i′, j′) <rc (i, j), (i′, j′) ∈M}. (2.3)

The idea of the algorithm is to consider cells (i′, j′) ∈ M in the reverse
column-order: Store each value di′,j′ − i′ − j′ in a data structure T (to be
defined) with key i′ so that the minimum among values with key i′ < i can
be retrieved from T . Let this minimum be d. Then dij = i + j − 2 + d.
Figure illustrates the situation.
Lemma 2.2.6 The following operations can be supported with a binary
search tree T in time O(log n), where n is the number of nodes in the tree.
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Figure 2.1: Geometric interpretation of recurrence (2.3).

Insert(v, i) : Add value v to the tree with key i. If key i is already in
the tree, replace its value v′ with min(v, v′).

v = Minimum(l, r): Returns the minimum value v from nodes {i} that be-
long to the interval l ≤ i ≤ r.

Proof. Let us consider a binary tree with key and value pairs stored only in
its leaves. The keys define a total order for the leaves. Each internal node
contains a search key such that the key of node s is greater or equal to the
largest key in its left subtree, and smaller that any key in its right subtree.
As known, this kind of tree can be maintained balanced so that each root to
leaf path has length O(log n).

Store for each internal node s the minimum value among the values v(i)
associated to the leaves i under it. Let us denote this minimum value v(s).
These values can be easily maintained when inserting leaves and when bal-
ancing the tree; only values on the paths from the inserted leaf / constant
number of nodes towards the root are affected.

It is hence sufficient to show that query Minimum(l, r) can be answered
in O(log n) time: Find node s, where the search paths to keys l and r separate
(can be the root, or empty when no keys in the query interval). Let path(s, l)
denote the set of nodes through which the path from s goes when searching
for key l, excluding node s and leaf L where the search ends. Similarly, let
path(s, r) denote the set of nodes through which the path from s goes when
searching for key r, excluding node s and leaf R where the search ends.

Now for each node in path(s, l), where the path continues to the left,
holds that the keys i in the right subtree are at least l and at most r. Choose
vl = mins′∈S′(v(s′)), where S ′ is the set of roots of there right subtrees.
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Similarly for each node in path(s, r), where the path continues to the right,
holds that the keys i in the left subtree are at most r and at least l. Choose
vl = mins′′∈S′′(v(s′′)), where S ′′ is the set of roots of there left subtrees. The
final result is the minimum of vl, vr, (if L = l then v(L) else ∞), and
(if R = r then v(R) else ∞).

The correctness follows from the fact that the subtrees of nodes in S ′∪S ′′
contain all keys that belong to the interval [l, r], and only them (excluding
leaves L and R, which are taken into account separately). Running time is
clearly O(log n). �

Algorithm 2.2.7 Computation of D′(A,B) with sparse dynamic program-
ming
Input: Set M = {(i, j) | ai = bj} in reverse column-order, |A| = m ≤ n = |B|
Output: D′(A,B)
(1) T .Insert(0, 0); (* add d0,0 = 0 with key 0 *)
(2) for p := 1 to |M | do begin
(3) (i, j) := M [p];
(4) d := i+ j − 2 + T .Minimum(−∞, i− 1); (* d = di,j *)
(5) T .Insert(d− i− j, i); end;
(6) return T .Minimum(−∞,m) +m+ n; (* dm+1,n+1 *)

Theorem 2.2.8 Distance D′(A,B) or |LCS(A,B)| can be computed using
Algorithms 2.2.7 in time O((n+ |M |) logm) and space O(|M |), where M =
{(i, j) | ai = bj}.

Proof. Reverse column-order guarantees that the call T .Minimum(−∞, i−
1) corresponds to taking minimum in (2.3). The only difference is that T
contains only the smallest value at each row i′, which does not however affect
the correctness. Algorithm calls O(|M |) times the operations in T . Each of
these take O(logm) time, as there can only be m+1 leaves at a time. Finally,
set M can be easily constructed in O(|Σ| + m + n + |M |) time on constant
alphabet, or in general O((m + n) logm + |M |) time (exercise). As m ≤ n,
the claim holds. �

Observation 2.2.9 The previous theorem can be improved; one can achieve
O(n logm+ |M | log logm) time and O(m) space. The improvement is based
on replacing the binary search tree with a more efficient data structure. Space
requirement can be improved by constructing M column by column simulta-
neously with Algorithm 2.2.7.
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Sparse dynamic programming with D(A,B).

The previous method for computing D′(A,B) can be extended to com-
pute unit cost edit distance D(A,B) as well. The recurrence becomes more
complex and one has to resort to two-dimensional range minimum queries.
The running time then is O(n logm + |M | log n log logm). With somewhat
different techniques (and somewhat more complex algorithm) one can achieve
O((n+ |M |) log log n) time also for distance D(A,B) [EGGI92, GP92].

2.3 Approximate String Matching

Let S = s1s2 · · · sn ∈ Σ∗ be a text string and P = p1p2 · · · pm ∈ Σ∗ a
pattern string. Let k be a constant, 0 ≤ k ≤ m. The k mismatches problem
is to search for all substrings X of S, |X| = |P |, that differ from P in at
most k positions. The k errors problem is to search for all ending positions
of substrings X in S for which hold D(P,X) ≤ k. Instead of fixed k, one
can consider error level α = k/m.

First row to zero -trick

Let D(P,X) denote the edit distance with operations E1-E3 such that
each operation has cost 1. Define (hij), 0 ≤ i ≤ m, 0 ≤ j ≤ n with recurrence:

h0j = 0, 0 ≤ j ≤ n,

hi0 = i, 1 ≤ i ≤ m, and

hij = min{hi−1,j−1 + (if pi = sj then 0 else 1), hi−1,j + 1, hi,j−1 + 1}.

Matrix (hij) is like (dij), but first row is initialized to 0. The approximate
occurrences of the pattern are found on the last row of (hij), as follows.
Theorem 2.3.1 Let an optimal path to hmj start at h0r. Then
D(P, sr+1sr+2 · · · sj) = hmj and hmj = min{D(P, stst+1 · · · sj) | t ≤ j}.

Proof. For contradiction, assume that there is t 6= r + 1 for which d =
D(P, st · · · sj) < D(P, sr+1 · · · sj). It follows that the optimal path from
h0,t−1 to hmj has cost d < hmj, which is a contradiction as hmj is the cost of
the optimal path.. �

Let sr+1sr+2 · · · sj as in Theorem 2.3.1. Mark the counterpart of hmj in
S as V (m, j) = sr+1sr+2 · · · sj.
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Algorithm 2.3.2 Approximate string matching, k errors

Input: P , S, k.
Output: Approximate occurrences of P in S, whose edit distance from P is at most k.
(1) for i = 0 to m do hi0 := i;
(2) for j = 1 to n do begin
(3) h0j := 0;
(4) for i := 1 to m do
(5) hij := min{hi−1,j−1+ (if pi = sj then 0 else 1), hi−1,j + 1, hi,j−1 + 1};
(6) if hmj ≤ k then begin
(7) compute V (m, j); (* trace back optimal path*)
(8) write(j, V (m, j)); end end (* end position and matching sequence*)

Algorithm 2.3.2 has running time O(mn) and space requirement O(mn).
To save space, one can e.g. use a circular buffer to maintain only columns
j − m − k, . . . , j − 1 in memory. The space is then O(m2). If only the
end positions of occurrences are of interest, it is sufficient to maintain only
previous column.

Theorem 2.3.3 Approximate string matching under k errors can be solved
using Algorithm 2.3.2 in O(mn) time and O(m) space, when the outputs are
the occurrence end positions, and in space O(m2), when the outputs are the
occurrence substrings.

The same algorithm allowing only substitutions solves the k mismatches
problem. Faster algorithms exist, for example both problems can be solved
in O(kn) time [LV88] using some suffix tree techniques together with the
diagonal algorithm in [Ukk85].

Myers’ bit-parallel algorithm [Mye99] extends easily to approximate string
matching (with a bit-equivalent of the zero the first row -trick). The running
time is O(dm

w
en) in the worst case and O(d k

w
en) in the average case.

2.4 Fundamentals of Biological Sequence

Alignment

Biological sequence alignment is typically defined through maximum
weight alignment rather than minimum amount operations in alignment as
in edit distance. Algorithm-wise the differences are minimal, but the maxi-
mization framework allows a probabilistic interpretation for alignments. Let
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us define s(a, b) the score for aligning symbol a with symbol b (or identically
substituting a with b). Let d be the penalty of an indel, that is, penalty for
inserting a symbol or deleting a symbol. Then the weight of an alignment is
defined by the sum of substitution scores minus the sum of indel penalties in
it.

For example, the following substitution matrix is often used for DNA
sequence alignments:

s(a, b) ’A’ ’C’ ’G’ ’T’
’A’ 1 −1 −0.5 −1
’C’ −1 1 −1 −0.5
’G’ −0.5 −1 1 −1
’T’ −1 −0.5 −1 1

The judgement for the scores is that so-called transition mutations (here with
score −0.5) are twice as frequent as so-called transversions (here with score
−1). Let d = 1. The weight or total score of the alignment

A C C - G A T G

| | | | | |

A - C G G C T A

is 1− 1 + 1− 1 + 1− 1 + 1− 0.5 = 0.5.

2.4.1 Global alignment

To define the problem of finding maximum scoring alignment, i.e., global
alignment problem, we first need to formalize the concept of an alignment. An
alignment of A and B is a pair of sequences U = u1u2 · · ·uh and L = l1l2 · · · lh
such that A is subsequence of U , B is subsequence of L, U contains h −m
symbols ′−′, and L contains h − n symbols ′−′. The weight or score of
alignment U,L is W (U,L) =

∑h
i=1 s(ui, li), where s(a,′−′) = s(′−′, b) = −d.

Let S(A,B) be the total score of the optimal alignment of A and B, that
is, S(A,B) = max(U,L)∈A(A,B) W (U,L), where A(A,B) denotes the set of all
valid alignments of A and B. Then the global alignment problem is to find
an alignment with score S(A,B).

Let us denote sij = S(a1 · · · ai, b1 · · · bj), 0 ≤ i ≤ m, 0 ≤ j ≤ n.
Theorem 2.4.1 Global alignment scores sij and especially smn = S(A,B)
can be computed using the recurrence

sij = max{si−1,j−1 + s(ai, bj), si−1,j − d, si,j−1 − d}, (2.4)
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where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and using initialization

s00 = 0,

si0 = −id, 1 ≤ i ≤ m, and

s0j = −jd, 1 ≤ j ≤ n.

The correctness proof is identical to the corresponding theorem on edit
distance; in the sequel, we leave similar proofs for the reader. For complete-
ness the algorithm is given in Algorithm 2.4.2. The algorithm is also called
Needleman-Wunsch after the inventors.

Algorithm 2.4.2 S(A,B) computation using dynamic programming, basic
version.

Input: A = a1a2 · · · am, B = b1b2 · · · bn
Output: Matrix (sij), 0 ≤ i ≤ m, 0 ≤ j ≤ n, smn = S(A,B)
(1) for i := 0 to m do si0 := −id; (* initialization *)
(2) for j := 1 to n do s0j := −jd;
(3) for j := 1 to n do
(4) for i := 1 to m do
(5) sij := max{si−1,j−1 + s(ai, bj), si−1,j − d, si,j−1 − d}

Tracing back the optimal alignment(s) is identical to the corresponding
procedure for edit distances.

An approximate string matching version of global alignment is easy to
derive: zero the first row and check for maximum values in the last row.

2.4.2 Local alignment

Local alignment is the problem of finding the substrings of A and B with
highest scoring alignment. For an arbitrary scoring scheme this problem can
be solved e.g. by applying global alignment for all suffix pairs from A and
B in O((mn)2) time. However, the scoring schemes are designed so that
local alignments with score less than zero are not statistically significant; it
is more likely to find a zero scoring alignment in random strings. Therefore,
one can use a version of the zero the first row -trick: use global alignment
recurrence, but add an option to start a new alignment at any suffix/suffix
pair by assigning score 0 for an empty alignment. This observation is the
Smith-Waterman algorithm for local alignment.
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Let us denote lij = max{S(ai′ · · · ai, bj′ · · · bj | i′ ≤ i, j′ ≤ j}, 0 ≤ i ≤ m,
0 ≤ j ≤ n.
Theorem 2.4.3 Non-negative local alignment scores lij can be computed us-
ing the recurrence

lij = max{0, li−1,j−1 + s(ai, bj), li−1,j − d, li,j−1 − d}, (2.5)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and using initialization

l00 = 0,

li0 = 0, 1 ≤ i ≤ m, and

l0j = 0, 1 ≤ j ≤ n.

It is easy to modify Algorithm 2.4.2 accordingly.
After the computation, one can locate max lij or maintain the maximum

value during computation. In the latter case, O(m) space is sufficient for
finding the maximum (computing the recurrence e.g. column by column). To
trace back the alignment, one cannot usually afford O(mn) space to store the
matrix. Instead one can easily modify the dynamic programming algorithm
to maintain, in addition to maximum score, also the left-most positions in A
and B, say i′ and j′, respectively, where a maximum scoring alignment ending
at lij starts. Then it is easy to recompute a matrix of size (i−i′+1)×(j−j′+1)
to output (all) local alignment(s) with maximum score ending at lij. The
space is hence quadratic in the length of the longest local alignment with
maximum score. The details are left for an exercise to the reader.

2.4.3 Overlap alignment

Overlap alignment is the problem of finding a maximum scoring alignment
between any suffix of A and any prefix of B. Like in local alignment, we are
interested only in alignments with score greater than zero. It is easy to see
that again a variant of the first row to zero -trick works.

Let us denote oij = max{S(ai′ · · · ai, b1 · · · bj | i′ ≤ i}, 0 ≤ i ≤ m,
0 ≤ j ≤ n.
Theorem 2.4.4 Non-negative overlap alignment scores oij can be computed
using the recurrence

oij = max{oi−1,j−1 + s(ai, bj), oi−1,j − d, oi,j−1 − d}, (2.6)
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where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and using initialization

o00 = 0,

oi0 = 0, 1 ≤ i ≤ m, and

o0j = −dj, 1 ≤ j ≤ n.

Again, modifications to Algorithm 2.4.2 are minimal.
Overlap alignment is important for fragment assembly, where one tries

to assemble a sequence given a random subset of its substrings as input:
Computing the overlap alignments for all pairs of substrings and accepting
those pairs with high enough score defines an overlap graph with substrings
as nodes and edges weighted by the overlap score. Paths in the overlap graph
represent possible partial assemblies for the target sequence. Many assembly
methods have been developed building on top of the overlap graph.

2.4.4 Affine gap scores

In sequence evolution, simple mutations are more frequent than indels.
However, indels often occur in blocks, and the simple linear scoring scheme
with penalty d for each base is not well grounded. More realistic schemes
have been developed. We cover here the affine gap model, as it, although not
perfect model either, admits an efficient algorithm.

Recall the definition of alignment through sequences U and L containing
A and B, respectively, as subsequences and gap symbols ′−′ to form the
alignment. We say there is a run of gaps U [l, r], L[l, r] in the alignment if
U [i] =′ −′ or L[i] =′ −′ for all l ≤ i ≤ r. Identically, we say there is a run
of matches U [l, r], L[l, r] in the alignment if U [i]! =′ −′ and L[i]! =′ −′ for
all l ≤ i ≤ r. Any alignment can be partitioned into a sequence of runs of
matches and gaps: Let U = U1U2 · · ·Uk and L = L1L2 · · ·Lk denote such a
partitioning, where for all i |Ui| = |Li| and Ui, Li is either a run of matches
or a run of gaps. Let P(U ,L) denote the set of all possible such partitions.
Let WG(Ui, Li) = W (Ui, Li) for a run of matches Ui, Li and WG(Ui, Li) =
−α−β(|Ui|−1) for a run of gaps. The affine gap score SG(A,B) is defined as
SG(A,B) = max(U,L)∈A(A,B) max(U1···Uk,L1···Lk)∈P(U,L)

∑k
i=1WG(Ui, Li), where

A(A,B) denotes the set of all valid alignments of A and B. Then the global
alignment problem under affine gap model is to find an alignment with score
SG(A,B). Here α is the penalty for opening a gap and β the penalty for
extending a gap, with β < α. The idea is that starting a gap always costs
significantly, but its small extension not that much.
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Let us denote sgij = SG(a1 · · · ai, b1 · · · bj), 0 ≤ i ≤ m, 0 ≤ j ≤ n.
Theorem 2.4.5 Global alignment under affine gap scores sgij and especially
sgmn = SG(A,B) can be computed using the recurrence

sgij = max
i′≤i,j′≤j,i′+j′<i+j

{sgi−1,j−1 +s(ai, bj), sgi′,j′−α−β(j−j′+i−i′)}, (2.7)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and using initialization

sg00 = 0,

sgi0 = −α− β(i− 1), 1 ≤ i ≤ m, and

sg0j = −α− β(j − 1), 1 ≤ j ≤ n.

Proof. Initialization is correct: For U = A[1, i] and L =′ −′i, WG(U,L) =
−α − β(i − 1). Similarly for U =′ −′j and L = B[1, j], WG(U,L) = −α −
β(j − 1). These are the values stored at first row and first column of the
matrix. For induction, assume the recurrence is correct for i′, j′ such that
i′ ≤ i, j′ ≤ j, and i′ + j′ < i + j holds. In any alignment the last operation
is (1) ai → bj, (2) ai →′ −′, or (3) ′−′ → bj. In case (1) maximum score is
given by sgi−1,j−1 + s(ai, bj) because by induction assumption sgi−1,j−1 is the
maximum scoring alignment for A1,i−1 and B1,j−1. For (2) the alignment ends
with a run of gaps with ai in the end. The run can start at any position i′ < i
in A and at any position j′ ≤ j in B. Since by induction assumption sgi′,j′
is the maximum scoring alignment for A1,i′ and B1,j′ , inserting Bj′+1,j and
deleting Ai′+1,i costs −α−β(i− i′+ j− j′), value sgij is correctly computed.
Case (3) is analogous to (2) and leads to the same recurrence with j′ < j
and i′ ≤ i. These cases can be combined to the common maximization over
i′, j′ for which i′ ≤ i, j′ ≤ j, and i′ + j′ < i+ j. �

The running time for evaluating the recurrence (2.7) is O((mn)2). Notice
that the recurrence is very general in the sense that −α − β(j − j′ + i − i′)
could be replaced with any other function on the gap length. Also, it is easy
to modify the recurrence to compute variants of run of gaps definition: One
could define separately a run of insertions and a run of deletions. Then, the
recurrence changes so that one takes separately maxi′<i sgi′,j − α− β(i− i′)
and maxj′<j sgi,j′−α−β(j−j′). The running time reduces to O(mn(m+n)).

There are several ways to speed-up the affine gap score recurrences. The
most common is to fill two or more matrixes simultaneously, where one is for
alignments ending at match state, and the others are for being inside a run
of gaps (or run of insertions and run of deletions).

Let SG(A,B| match) = max(U,L)∈AM(A,B)

max(U1···Uk,L1···Lk)∈P(U,L)

∑k
i=1 WG(Ui, Li), where AM(A,B) denotes
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the set of all valid alignments of A and B ending at a match. Let
SG(A,B| gap) = max(U,L)∈AG(A,B) max(U1···Uk,L1···Lk)∈P(U,L)

∑k
i=1WG(Ui, Li),

where AM(A,B) denotes the set of all valid alignments of A and B ending
at a gap.

Let mij denote SG(A1,i, B1,j| match) and gij denote SG(A1,i, B1,j| gap).

Theorem 2.4.6 Global alignment under affine gap scores sgij and especially
sgmn = SG(A,B) can be computed using the recurrence

sgij = max(mij, gij)

mij = max{mi−1,j−1 + s(ai, bj), gi−1,j−1 + s(ai, bj)} (2.8)

gij = max{mi−1,j − α, gi−1,j − β,mi,j−1 − α, gi,j−1 − β}

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and using initialization

m00 = 0,

mi0 = −∞, 1 ≤ i ≤ m,

m0j = −∞, 1 ≤ j ≤ n,

g00 = 0,

gi0 = −α− β(i− 1), 1 ≤ i ≤ m, (and)

g0j = −α− β(j − 1), 1 ≤ j ≤ n.

Proof. First, sgij = max(mij, gij) follows from the definitions. Initialization
works correctly as in match matrix the first row and first column do not
correspond to any valid alignment, and hence the initialization of gap ma-
trix is identical to that of matrix sg. The correctness of mij computation
follows easily by induction, as max{mi−1,j−1, gi−1,j−1} is the maximum score
of all alignments where a match can be appended. The correctness of gij
computation can be seen as follows. An alignment ending in a gap is either
(1) opening a new gap or (2) extending an existing one (2). In case (1) it is
sufficient to take the maximum of scores for aligning A1,i−1 with B1,j and A1,i

with B1,j−1 so that the previous alignment ends with a match, and then add
the cost for opening a gap. These maxima are given (by induction assump-
tion) by mi−1,j and mi,j−1. In case (2) it is sufficient to take the maximum of
scores for aligning A1,i−1 with B1,j and A1,i with B1,j−1 so that the previous
alignment end with a gap, and then add the cost for extending a gap. These
maxima are given (by induction assumption) by gi−1,j and gi,j−1. �

The running time is now reduced to O(mn). Similar recurrence can be
derived for local alignment and overlap alignment under affine gap score.
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2.4.5 Invariant technique

It is instructive to study an alternative O(mn) time algorithm for align-
ment under affine gap score. This algorithm uses an invariant technique
similar to what we used earlier in sparse dynamic programming for longest
common subsequence problem.

Consider the formula sgi′,j′−α−β(j− j′+ i− i′) inside the maximization
in Equation (2.7). This can be equivalently written as −α−β(j+i)+sgi′,j′+
β(j′ + i′). The maximization goes over valid values of i′, j′ and the first part
of the formula, −α − β(j + i), is not affected. Recall the search tree T of
Lemma 2.2.6. With a symmetric change it can be transformed to support
range maximum query instead of range minimum query. Then by storing
values sgij +β(j+ i) together with key i to the search tree, we can query the
maximum value and add the invariant. We directly obtain Algorithm 2.4.7,
i.e., an O(mn logm) time algorithm for computing global alignment under
affine gap score.
Algorithm 2.4.7 SG(A,B) computation using dynamic programming and
range maximum queries.

Input: A = a1a2 · · · am, B = b1b2 · · · bn
Output: Matrix (sgij), 0 ≤ i ≤ m, 0 ≤ j ≤ n, sgmn = SG(A,B)
(1) T .Insert(0, 0); (* tree initialization *)
(2) for i := 0 to m do sgi0 := −α− β(i− 1); (* initialization *)
(3) for j := 1 to n do sg0j := −α− β(j − 1);
(4) for j := 1 to n do
(5) for i := 1 to m do
(6) sgij := max{sgi−1,j−1 + s(ai, bj),
(7) T .Maximum(0, i)− α− β(i+ j)};
(8) T .Insert(sgij + β(i+ j), i)

The use of a data structure in Algorithm 2.4.7 is in fact unnecessary.
It is sufficient to maintain maximum value on each row, and then maintain
on each column the maximum of row maxima. The modified O(mn) time
algorithm is given in Algorithm 2.4.8.
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Algorithm 2.4.8 SG(A,B) computation using dynamic programming and
row/column maxima updating.

Input: A = a1a2 · · · am, B = b1b2 · · · bn
Output: Matrix (sgij), 0 ≤ i ≤ m, 0 ≤ j ≤ n, sgmn = SG(A,B)
(1) for i := 0 to m do (* initialization *)
(2) sgi0 := −α− β(i− 1);
(3) ri = sgi0 + βi;
(4) for j := 0 to n do
(5) sg0j := −α− β(j − 1);
(6) cj = sg0j + βj;
(7) for j := 1 to n do
(8) for i := 1 to m do
(9) sgij := max{sgi−1,j−1 + s(ai, bj),
(10) max(cj , ri)− α− β(i+ j)}
(11) ri = max(ri, sgij + β(i+ j))
(12) cj = max(cj , ri)

We leave for the reader to prove the correctness of Algorithms 2.4.7 and
2.4.8.

2.5 Gene Alignment

Consider the problem of having an unknown protein sequence and look-
ing for its counterpart (gene) in DNA. With prokaryotes, the task, call it
Prokaryote gene alignment, is relative easy: just modify the approximate
string matching version of global alignment so that si−1,j−1 + s(ai, bj) is re-
placed by si−1,j−3 + maxb∈aminoacids[Bj−2,j ] s(ai, b), where A is the protein se-
quence, B is the DNA sequence and aminoacids[xyz] is the set of amino acids
coded by codon xyz. For symmetry, also si,j−1 − d should be replaced by
si,j−3 − d and initialization modified accordingly.

With eukaryotes, introns need to be taken into account. Most common
way to do this is to use affine gap penalties and assign large gap opening
cost and very small gap extension cost in the DNA side, and use linear
gap cost in the protein side. Call this approach Eukaryote gene alignment
with affine gaps. We leave as an exercise for the reader to formulate an
O(mn) algorithm for solving this variant. However, this approach is clearly
problematic because intron lengths can vary from tens to tens of thousands
of nucleotides: there is no good choice for gap extension cost.
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For simplicity of exposition, we consider in the sequel that the pattern
P = A is an RNA sequence instead of a protein and denote the DNA sequence
T = B; the protein to DNA versions follow using the idea explained above.

Let us now develop a better approach for gene alignment in eukaryotes
exploiting the fact that the number of introns in genes is usually quite small.
For example, on human genome the average number of introns is 7.8 with
maximum being 1481. We can fix the maximum number of introns allowed
in an alignment as follows: Define eijk as the maximum scoring alignment of
P1,i and Tj′,j for some j′, using exactly k free runs of gaps in Tj′,j. Call the
problem of computing values ek = maxj emjk for 0 ≤ k ≤ MAXINTRONS
as Eukaryote gene alignment with limited introns. Then the following result
follows easily for solving the problem.
Theorem 2.5.1 Eukaryote gene alignment with limited introns problem can
be solved computing the scores eijk using the recurrence

eijk = max{ei−1,j−1,k + s(ai, bj), ei−1,j,k − d, ei,j−1,k − d,max
j′<j

ei,j′,k−1} (2.9)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and using initialization

e000 = 0,

ei00 = −di, 1 ≤ i ≤ m,

e0jk = 0, 1 ≤ j ≤ n, 0 ≤ k ≤ min(j,MAXINTRONS), and

eijk = −infty otherwise.

The proof is left for the reader. The running time is
O(mn2MAXINTRONS), but this can be easily improved to
O(mnMAXINTRONS) by replacing maxj′<j ei,j′,k−1 with mi,k−1 that
maintains the row maximum for each k during the computation of eijk’s.
That is, mik = max(mik, eijk). It is left as an exercise for the reader to
find a correct evaluation order for the values eijk and mik so that they get
computed correctly.

Obviously the values j giving the maximum for maxj emjk are plausible
ending positions for the alignment. The alignment(s) can be traced back
with the normal routine. It is left as an exercise to modify this recurrence to
take more properties of genes into account, e.g. the start/stop codons and
the conserved dinucleotides at intron/exon boundaries.

1http://www.bioinfo.de/isb/2004040032/

http://www.bioinfo.de/isb/2004040032/
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2.6 Exercises

1. Modify Algorithm 2.1.4 at page 7 to use only one vector of length m+1
in the computation.

2. Give pseudocode for local alignment using space O(m).

3. Give an example of perfectly balanced binary search tree storing 8
(value,key) pairs in its leaves as described in Lemma 2.2.6. Give an
example of a range minimum query for some non-empty interval.

4. A van Emde Boas tree (vEB tree) supports in O(log log n) time in-
sertions, deletions, and predecessor queries for values in interval [1, n].
Predecessor query returns the largest element i′ stored in the vEB tree
smaller than query element i. Show how the structure can be used in-
stead of a balanced search tree of Lemma 2.2.6 to solve range minimum
queries for semi-infinite intervals (−∞, i] (i.e. for the type of queries
we used e.g. in the LCS algorithm).

5. Give pseudocode for tracing an optimal path for maximum scoring local
alignment, using space quadratic in the alignment length.

6. Prove the correctness of Algorithms 2.4.7 and 2.4.8 at pages 23 and 24.

7. SOLiD2 sequencing produces short reads of DNA in colour-space with a
two-base defined by the matrix (row=first base, column=second base):

A C G T

A 0 1 2 3

C 1 0 3 2

G 2 3 0 1

T 3 2 1 0

For example, T012023211202102 equals TTGAAGCTGTCCTGGA (first base
is always given). Modify overlap alignment to work properly in the case
where one of the sequences in SOLiD read and the other is a normal
sequence.

8. Give pseudocode for prokaryote gene alignment.

9. Give pseudocode for eukaryote gene alignment with affine gaps.

10. Give pseudocode for eukaryote gene alignment with limited introns.

2TM Applied Biosystem
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11. Modify the recurrence for gene alignment with limited introns so that
the alignment must start with a start codon, end with an end codon,
and contain GT and AG dinucleotides at intron boundaries. Can you
still solve the problem in O(mnk) time? Since there are rare exceptions
when dinucleotides at intron boundaries are something else, how can
you make the requirement softer?

12. Develop an algorithm for tracing an optimal path for maximum scoring
local alignment, using space linear in the alignment length. Hint. Let
[i′, i]× [j′, j] define the rectangle containing a local alignment. Assume
you know jmid for row (i − i′)/2 where the optimal alignment goes
through. Then you can independently recursively consider rectangles
defined by [i′, (i − i′)/2] × [j′, jmid] and [(i − i′)/2] × [jmid, j]. To find
jmid you may consider similar algorithm as was used in MSA to find
alignments going through certain coordinate pair.

13. Develop a sparse dynamic programming solution for computing the
longest common subsequence of multiple sequences. What is the ex-
pected size of the match set on a random sequences from an alphabet
of size σ? Hint. The search tree can be extended to higher dimensional
range queries using recursion — see range trees from computational
geometry literature).



Chapter 3

Compressed Data Structures

In the next chapter, we will need some concepts from data compression
& compressed data structures introduced next.

The goal in data structure compression is to represent the structure in
small space, but at the same time preserve its functionality.

Example 3.0.1

There are
(

2n
n

)
/(n+ 1) different binary trees of n nodes. Hence it is possible

to construct a bijection f :binary trees→ {0, 1, . . .
(

2n
n

)
/(n+1)−1}. For each

binary tree T one can efficiently compute f(T ), and vice versa( [KM06]).
Coding (f(T ) as binary number) is optimal, if all binary trees are as likely.
However, the coding is not functionality preserving, because one cannot im-
plement procedures such as “proceed to the left child of node v” without
decompressing the whole encoding.

Surprisingly, a binary tree can be represented using 2n + o(n) bits so
that the transitions from parent to children and back can be simulated in
constant time [Jac89]. This follows from an easy reduction from trees to
bitvector rank and select queries (see [Jac89]) covered in the sequel.

These kind of structures are the basis in replacing widely used bioinfor-
matics data structures like suffix trees with practical alternatives that can
handle much larger data sets. Since compressed suffix trees are quite techni-
cal, and also they are not (yet) heavily exploited in bioinformatics, we will
focus on just compressed suffix arrays, that are more limited in use, but have
been adopted widely in high-throughput sequencing data analysis.

Before the actual data structures, we will go through some basics of data
compression.

28
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3.1 Huffman coding

Huffman coding assigns a variable length prefix code to each symbol, i.e.,
each symbol has a code that is not a prefix of any other code. The algorithm
works as follows:

1. Set the code of each symbol si to ε.

2. Construct sets {s1}, . . . , {sσ}.

3. Find sets A and B, whose sum of probabilities is smallest.

4. Add a bit 0 in front of the codes of symbols in A and bit 1 in front of
the codes of symbols in B

5. Combine sets A and B.

6. Repeat steps 3-5, until only one set exists.

For example:

It can be shown that Huffman algorithm minimizes
∑σ

i=1 p(si)`i over all
prefix codes, and that each `i satisfies `i ≤ − log p(si) + 1. Hence, for a
text T [1, n], Huffman coding requires at most n(H(T ) + 1) bits plus the
representation of the code table, where empirical entropy H(T ) is defined as

H(T ) = −
σ∑
i=1

p(si) log p(si), (3.1)

and p(si) is defined as the number of times si occurs in T divided by |T |.
Huffman tree is a keyword trie with binary egde labels, where each root

to leaf path spells a different code word in the Huffman code table.
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3.2 Elias codes

To code a sequence of (large) integers, one can use self-delimiting integer
codes like Elias γ- and δ-coding [Eli75]. For integer x = x10 taken in its binary
expression x2, we have γ(x) = 0|x2|−11x2. E.g. γ(5) = 001101, since 510 =
1012. To decode γ(x), one can read zeros until encountering the first one to
reveal the length y of x2, and then the y next bits contain x2 = x10. Hence,
a sequence of γ-coded integers can be decoded uniquely. Notice that γ(x)
occupies at most 2 times the number of bits required for binary expression of
x. To have asymptotically smaller codes, the idea can be applied recursively
one step further to obtain δ-code: δ(x) = 0|O

|x2|−1|−11(|x2| − 1)2x2. E.g.
δ(5) = 0112252 = 0110101.

3.3 Bit-vector operations rank and select

The following operations on bit-vector B[1 . . . n] are key components of
many more complex compressed data structures:
• rank(B, i) tells how many 1-bits there is up to position i in B, and

• select(B, i) tells which position contains the i-th 1-bit.

rank-operation in constant time:
Storing all values rank(B, i) would take O(n log n) bits, where n = |B|.
Partial solution 1: Let us store each `-th rank(B, i) as is and scan the

rest of the bits (at most `), during the query. We then have an array first,
where first[i/`] = rank(B, i) when i mod ` = 0 (/ is here integer division).
If we choose ` = (dlog ne)2, we need (about) n log n/(log2 n) = n/(log n)
bits space for the array first. We can answer rank(B, i) in O(log2 n) time:
rank(B, i) = first[i/`]+rank(B, `∗(i/`)+1, i), where rank(B, i′, i) computes
the amount of 1-bits in the range B[i′ . . . i].

Partial solution 2: Let us store more answers. We store inside each area
of length ` answers for each k-th position (how many 1-bits from the start
of the are). We obtain an array second, where second[i/k] = rank(B, ` ∗
(i/`) + 1, i), when i mod k = 0. This uses overall space n log `/k bits.
Choosing k = dlog ne gives O(n log log n/(log n)) bits space usage. Now
we can answer rank(B, i) in O(log n) time, as rank(B, i) = first[i/`] +
second[i/k] + rank(B, k ∗ (i/k) + 1, i).

Final solution: We use so-called four Russians Trick to improve the
O(log n) query time into constant. This is based on an observation that
there are only

√
n bit-vectors of length k/2 = dlog ne/2. We store for each

position j in each of the (log n)/2 size bit-vector C a value rank(C, j) as



CHAPTER 3. COMPRESSED DATA STRUCTURES 31

is. This takes overall O(
√
n log n log log n) bits. Let a table third[0 . . .

√
n−

1][0 . . . dlog ne/2 − 1] store the above values, where the first index equals C
as an integer. Let ci and di be the first and second half of the bit-vector
rank(B, k ∗ (i/k), i) as k/2 bit integers (one has to zero the first bit of ci,
because that bit is already taken into account in the table first). We obtain
the final formula to compute rank(B, i)

rank(B, i) = first[i/`] + second[i/k]

+third[ci][min(i mod k, k/2− 1]

+third[di][max((i mod k)− k/2,−1)], (3.2)

where third[di][−1] = 0. Integers ci and di can be read in constant time from
the bit-vector B, if the model of computation is chosen properly (RAM-
model, where w = Ω(log n)). E.g. using C-language, B can be represented
as an array unsigned B[n/32+1]. Then each ci and di can be read from the
bit-vectors representing integers B[i/32] and B[i/32+1] (Exercise: write a
C-program that reads ci and di in constant time).

Theorem 3.3.1 Bit-vector rank operation for a given bit-vector B[1 . . . n]
can be supported in constant time on a RAM-model when the size of the
computer word is w = Ω(log n). In addition to the bit-vector B, one needs a
dictionary of size o(n) to support the operation.

select-operation in constant time:
Notice that select can be implemented in O(log n) time by making a

binary search on the rank-dictionary. Constant time solution is possible
using techniques like above [Mun96, Cla96]:

Theorem 3.3.2 Bit-vector select operation for a given bit-vector B[1 . . . n]
can be supported in constant time on a RAM-model when the size of the
computer word is w = Ω(log n). In addition to the bit-vector B, one needs a
dictionary of size o(n) to support the operation.

3.4 Wavelet trees

Wavelet tree generalizes rank and select queries to sequences from any
alphabet size [GGV03]. Let us denote by ranks(T, i) the count of symbols s
upto position i in T , and by selects(T, j) the position of the j-th s in T . Here
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T ∈ Σ∗. We will next show several ways to reduce the problem of rank/select
computation on general sequences to computation on binary sequences.

3.4.1 Linear representation

Let us represent a string T [1 . . . n] ∈ Σ∗ as σ binary strings Bs[1 . . . n]
for all s ∈ Σ, such that Bs[i] = 1 if T [i] = s otherwise Bs[i] = 0. Now,
ranks(T, i) = rank(Bs, i) and selects(T, j) = select(Bs, j). After preprocess-
ing binary strings Bs for rank/select queries, we can answer ranks(T, i) and
selects(T, j) in constant time using σn(1 + o(1)) bits of space.

3.4.2 Balanced representation

Consider a perfectly balanced binary tree where each node corresponds to
a subset of the alphabet. The children of each node partition the node subset
into two. A bitmap Bv at the node v indicates to which children does each
sequence position belong. Each child then handles the subsequence of the
parent’s sequence corresponding to its alphabet subset. The root of the tree
handles the sequence T [1 . . . n]. The leaves of the tree handle single alphabet
symbols and require no space.

To answer query ranks(T, i), we first determine to which branch of the
root does s belong. If it belongs to the left, then we recursively continue at
the left subtree with i ← rank0(Broot, i). Otherwise we recursively continue
at the right subtree with i ← rank1(Broot, i). The value reached by i when
we arrive at the leaf that corresponds to s is ranks(T, i).

The character ti at position i is obtained similarly, this time going left
or right depending on whether Bv[i] = 0 or 1 at each level, and finding out
which leaf we arrived at.

Query selects(T, j) is answered by traversing the tree bottom-up.
The above hierarchical structure is called wavelet tree [GGV03]. The size

of the structure is n log σ(1 + o(1)) bits. Wavelet tree supports rank/select
queries in O(log σ) time.

3.4.3 Huffman-shaped representation

Let the alphabet symbol probabilities be defined by the relative symbol
frequencies in T . The Huffman-shaped wavelet tree is a wavelet tree, where
the underlying balanced binary tree is replaced by the Huffman tree of the
given empirical probability distribution. It is easy to see that the space-
requirement of Huffman-shaped wavelet tree is n(H(T ) + 1)(1 + o(1)).



CHAPTER 3. COMPRESSED DATA STRUCTURES 33

3.5 Burrows-Wheeler transformation

Burrows-Wheeler transformation (BWT) [BW94] offers an efficient way to
achieve high-order compression. The idea is simple: The text is transformed
into a better compressible form. BWT works as follows:
• Construct the n cyclic shifts t1t2 · · · tn, t2t3 · · · tnt1, . . ., tnt1 · · · tn−1 of

a string T = t1 · · · tn and sort them into the lexicographic order.

• Let the string be mississippi. After sorting the cyclic shifts, we get
a matrix M .

1 imississipp

2 ippimississ

3 issippimiss

4 ississippim

5 mississippi

6 pimississip

7 ppimississi

8 sippimissis

9 sissippimis

10 ssippimissi

11 ssissippimi

• The transform is the last column L of M , pssmipissii, and row num-
ber, 5, where the original string appears in M . Notice that the trans-
formed text is a permutation of the original.

The transform BWT (T ) is reversible, i.e., one can obtain T from
BWT (T ). It is enough to be able to (virtually) walk through the rows
of M in the order of right-shifts of T : 5 mississippi, 1 imississipp, 6
pimississip, . . . , 4 ississippim. Once this walk order is found, the orig-
inal text is revealed backwards: L[5] =i, L[1] =p, L[6] =p, . . ., L[4] =m. To
find this walk just based on the last column L may seem difficult, but in
fact it remains to observe that one can just follow where the revealed symbol
maps in the first column of M , which is well-defined as the i-th occurrence
of symbol s in L becomes the i-th occurrence in the first column F of M : To
see this, let Xs and Y s be two rows of M ending with symbol s and X < Y ,
where < denotes lexicographic order of strings X and Y . Now, sX and sY
are right-shifts of Xs and Y s and clearly sX < sY , that is, the relative order
of all occurrences of s must be the same in F and L, proving the claim. The
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mapping from k-th occurrence of symbol s in L to its k-th occurrence in F is
called LF -mapping. It is easy to compute by stable sorting L and recording
where the symbols map in the sorted order.

With the LF -mapping, the algorithm to reverse the Burrows-Wheeler
transform can be stated as follows. Set i the stored row number. Repeat n
times:

• Read L[i]. Set i := LF (i).

With our example, this gives:

i 5 1 6 7 2 8 10 3 9 11 4

i p p i s s i s s i m

3.5.1 Construction

The construction of the Burrows-Wheeler transform requires an efficient
algorithm to sort the cyclic shifts of the text. Sorting the cyclic shifts is
essentially equivalent to sorting the suffixes of the text. In fact, in our
example the order becomes the same:

1 i

2 ippi

3 issippi

4 ississippi

5 mississippi

6 pi

7 ppi

8 sippi

9 sissippi

10 ssippi

11 ssissippi

In general, one can add an endmarker to the end of the text. This
special symbol is considered to be smaller than any other alphabet symbol.
Then, sorting cyclic shifts is the same as sorting suffixes. The loss in
compressibility due to the endmarker is negligible. From now on we assume
there is a virtual endmarker at the end of the text. The sorted order of the
suffixes is called suffix array. Notice that it is enough to store an array of
integers denoting the starting positions of the suffixes:



CHAPTER 3. COMPRESSED DATA STRUCTURES 35

i Pos m i s s i s s i p p i

------ 1 2 3 4 5 6 7 8 9 10 11

1 11

2 8

3 5

4 2

5 1

6 10

7 9

8 7

9 4

10 6

11 3

It is possible to construct the suffix array in O(n) time on a text of length
n [KSB06, KSPP05, KA05]. We omit the details here.

3.6 Compressed suffix array

We will next see how to exploit the Burrows-Wheeler transform and
wavelet trees to develop a compressed suffix array. See [NM07] for a sur-
vey on the topic.

Recall the suffix array Pos[1 . . . n]. Given Pos[1 . . . n], the occurrences
of the pattern P = p1p2 . . . pm can be counted in O(m log n) time: The
occurrences form an interval Pos[sp, ep] such that suffixes tPos[i]tPos[i]+1 . . . tn,
for all sp ≤ i ≤ ep, contain the pattern P as a prefix. This interval can be
searched for using two binary searches in time O(m log n) [MM93]. Once
the interval is obtained, the starting positions of the occ occurrences can be
listed in O(occ) time.

In the following, we develop a mechanism to find the interval [sp, ep]
matching a given pattern without requiring the full storage array Pos[1 . . . n].

3.6.1 Succinct LF -mapping.

Let L be the Burrows-Wheeler transformed text, i.e. L is the last column
of matrix M , and let F be the sorted order of symbols of the text, i.e. F is
the first column of M . Let the k-th occurrence of some symbol s in L be at
row i. Recall that we defined LF (i) = j as the mapping of k-th occurrence
of symbol s = L[i] to its k-th occurrence F [j] in F .
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Let us consider how to succinctly represent function LF (), since it is a cen-
tral part of compressed full-text indexes. Instead of precomputing LF -values
into a table, we can rewrite LF -mapping in the form LF (i) = C[L[i]] + k,
where the array C[1, σ] stores in C[s] the number of occurrences of charac-
ters {$, 1, . . . , s − 1} in the text T . Notice that C[s] + 1 is the position of
the first occurrence of s in F (if any). To compute the value of k, we can
exploit wavelet tree for L: k = rankL[i](L, i). Hence we have the identity
LF (i) = C[L[i]] + rankL[i](L, i).

3.6.2 Backward search.

We exploit the connection of suffix array and Burrows-Wheeler transform
to derive a pattern search algorithm that works in O(m) steps [FM00, FM05].
The algorithm for counting the pattern occurrences is shown below.

Algorithm Count(P [1 . . .m],L[1 . . . n])
(1) i← m;
(2) sp← 1; ep← n;
(3) while (sp ≤ ep) and (i ≥ 1) do
(4) s← P [i];
(5) sp← C[s] + ranks(L, sp− 1)+1;
(6) ep← C[s] + ranks(L, ep);
(7) i← i− 1;
(8) if (ep < sp) then return “not found”

else return “found (ep− sp+ 1) occurrences”.

The correctness of the above algorithm is easy to see by induction: At
each phase i [sp, ep] gives the maximal interval of suffix array Pos pointing
to suffixes prefixed by P [i . . .m]. Figure 3.1 gives an example.

The time requirement of the Count() algorithm is clearly O(m) if function
ranks() can be computed in constant time. Using the results from Sect. 3.4,
we can support ranks() in constant time using σn(1 + o(1)) bits of space,
OR we can support ranks() in O(log σ) time using n log σ(1 + o(1)) bits of
space. Other space-time tradeoffs appear in the literature.

3.6.3 Self-indexing.

So far we can only support counting queries. We are not able to locate
the occurrence positions. One way to do this is to sample suffix array values
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Figure 3.1: Backward search step on the Burrows-Wheeler transform of S =
CATACT#.

and retrieve the rest using LF -mapping. Adjusting the sample rate gives
different space/time tradeoffs. The details follow.

Let r be the sample rate. We sample values Pos[i] such that Pos[i] = rk
for 0 ≤ k ≤ n/r. We need a bitvector B[1, n] to mark the positions that are
sampled, i.e., B[i] = 1 if Pos[i] = rk otherwise B[i] = 0. Then the samples
can be stored in an array SSA[0, n/r]: SSA[rank(B, i) − 1] = Pos[i] for
Pos[i] = rk.

Now, if B[i] = 1, then Pos[i] = SSA[rank(B, i)] restores the sampled
suffix array value. If B[i] = 0, one can apply j = LF (j) = C[L[j]] +
rankL[j](L, j), say d times, until B[j] = 1 holds, where j = i in the beginning.
Then Pos[i] = d + SSA[rank(B, j)]. Here L[1, n] is the same Burrows-
Wheeler transform as used for supporting counting queries.

To retrieve one value Pos[i] takes O(r log σ) time, since each of the d ≤
r steps requires one rank-computation (via wavelet tree) on the Burrows-
Wheeler transform L.

One can choose r = log1+ε
σ n for any given ε > 0 to have the samples in

SSA[] fit in (n/r) log n = n log σ/ logε n = o(n log σ) bits, which is of the
same order as required for counting queries. This setting enables retrieval of
Pos[i] in time O(log1+ε n).

Bitvector B and its rank-structure require n + o(n) bits if implemented
as described in Sect. 3.3. However, since B is sparse (with r bits set), it can
be run-length compressed into O(r log(n/r) = o(n) bits using Elias codes
[Eli75]. It is easy to extend the rank-solution to such a compressed repre-
sentation [MN07] (use the same two-level mechanism to store pointers into
the compressed representation as the partial rank answers). Alternatively,
one can compress B with the identifier coding [Pag99, RRR02] for which
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rank-structures are also easy to store.
The resulting structure is called compressed suffix array. (Other imple-

mentations for compressed suffix array exist; in fact, the original proposal
[GV06] uses quite a different mechanism for compression and achieves slightly
better running time for retrieval of suffix array values.)

Our compressed suffix array can be further developed into a self-index. A
self-index replaces the text with a compressed representation, so that the text
itself can be discarded. For this functionality, we should be able to access
the text substrings efficiently. Notice, that we can extract the whole text
from the (wavelet tree of the) Burrows-Wheeler transform using the reverse
transformation as explained earlier. To access arbitrary substring efficiently,
we can exploit sampling once more. It is enough to store inverse sampled
suffix array values in an array ISSA[0, n/r]: ISSA[k] = i for Pos[i] = rk.
Then, given a text interval [e, f ], i = ISSA[k] for smallest rk ≥ f gives us the
suffix array index containing pointer to suffix Trk,n. Applying LF -mapping
starting from i analogously as in extracting the whole text backwards, reveals
the substring Te,rk backwards and hence Te,f as its prefix. Running time is
O((f − e+ r) log σ) and the space is the same as for array SSA.

3.7 Compressed suffix trees

Suffix tree is a classical full-text index, that extends suffix arrays with
several useful functionalities. It is a tree whose leaves are the suffixes of the
text, and each path from root to a leaf spells the corresponding suffix. The
edges are labeled with pointers to text substrings. The edge labels are of
maximal length so that the tree branches on each internal node. Hence, with
n leaves, the tree has at most n−1 internal nodes. Each node and edge stores
constant number of values / pointers that each can be represented using log n
bits. A concept often required in the construction and applications of suffix
tree is suffix link: Let aX be the substring (prefix of suffix) leading to node
v and let X be the substring leading to node w. Then we say that there
is suffix link from v to w, denoted sl(v) = w. Another useful notion is the
string depth of a node w, defined as the length |X| of the string X leading
to w. Figure 3.2 illustrates the definitions.

For more details on basic concepts related to suffix tree, see e.g. [Gus97].
A careful implementation of suffix tree requires (3x+2n) log n bits, where

x < n is the number internal nodes. This is without suffix links, parent
pointers, auxiliary information, etc. In many practical implementations, log n
is the computer word size (32 or 64 bits).

For ≈ 3 gigabases sequence of Human Genome, which can be represented
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Figure 3.2: Suffix tree of S = CATACT. Dashed arrows denote suffix links.
Numbers in brackets are pointers to text substring giving the edge labels. The
edge with no label denotes the end of the sequence; in practice, a specific
endmarker is appended for this purpose.

in 6 gigabits using 2 bits per base, the difference in space-requirement is
more than 65-fold, assuming x = 0.7n as shown to hold for DNA sequences
[PZ07]. While for many applications it is enough to have suffix tree built for
some collections of short sequences, there are tasks that require the tree to
be built for the complete sequence collection. We will see some examples in
the sequel. Therefore it is of interest to study whether it is possible to reduce
the 65-fold difference.

3.7.1 Sadakane’s structure.

Sadakane [Sad07] has proposed a mechanism to simulate suffix tree by
several compressed data structures. The idea is to split suffix tree into differ-
ent logical units that can be compressed independently. These logical units
are (i) leaves, (ii) tree hierarchy, (iii) edge labels, and (iv) suffix links. For
(i) one can exploit the connection to suffix array; In suffix tree the leaves can
be represented in arbitrary order, i.e., also in the lexicographic order of the
suffixes they represent. Once this order is fixed (as we assume in the sequel),
the leaves can be replaced by any implementation of compressed suffix array.
For (ii) one can use the balanced parentheses sequence. For (iii) and (iv)
the solutions are new compressed data structures for longest common prefix
information, range minimum queries and lowest common ancestor queries,
explored next.
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Longest common prefix information is well-known associate of suf-
fix array; it is defined by an array LCP [2, n] with LCP [i] =
|lcp(TPos[i],n, TPos[i−1],n)|, where lcp(X, Y ) denotes the longest prefix common
to X and Y . The lowest common ancestor -query c = lca(v, w) on a tree
returns the common ancestor c of given two nodes v and w such that c resides
lowest in the tree. There is an interesting connection between LCP and lca
on a suffix tree (assuming lexicographic order of suffixes in leaves): Let v and
w be two leaves of suffix tree, given as integers such that Pos[v] and Pos[w]
give the suffix positions, then c = lca(v, w) is the node reached after following
length RMQLCP (v+ 1, w) min{LCP [v+ 1], LCP [v+ 1], . . . , LCP [w]} prefix
of the path label from root to leaf v (or equivalently to leaf w). It is easy
to see that each internal node of suffix tree corresponds to some range mini-
mum query RMQ(i, j) on LCP array. With the interplay between balanced
parentheses, RMQ, and LCP , it is possible to efficiently extract the edge
labels in suffix tree when requested (see the details in [Sad07]).

Finally, suffix links can be simulated using the above structures as well.
Suffix link on a leaf node is in fact an inverse function of LF -mapping, whose
computation is easy to include in the compressed suffix array. On an internal
node, suffix link computation uses a transitivity property. Let c = lca(v, w),
sl(c) = c′, sl(v) = v′, and sl(w) = w′. Then lca(v′, w′) = c′. Given the
position of c in the balanced parentheses sequence, the positions of v and w
can be revealed with constant time operations on it. Then it is enough to
compute v′ and w′ from v and w using compressed suffix array, and then use
RMQ on LCP to reveal the string depth of c′ and again balanced parentheses
operations to find out the position of c′ in it.

The time-requirement of operations sketched above depend on the un-
derlying data structures. Using the compressed suffix array described earlier
and the new data structures in [Sad07], the maximum running time on any
suffix tree operation is O(log1+ε n).

The space-requirement is 6n + sizeof(CSA) + o(n) bits, where
sizeof(CSA) is the space-requirement of the underlying compressed suffix
array. The 6n consist of 2n bits from the balanced parentheses, 2n from
compressed LCP , and 2n from range minimum query structure. The o(n)
comes from the sublinear data structures associated with the representations
(much alike the earlier rank-structure).

The first implementation of Sadakane’s compressed suffix tree can
be found in http://www.cs.helsinki.fi/group/suds/cst. The space-
requirement is 8.8 GB in that case, i.e., about 12-times larger than the
compressed genome sequence. Yet, this is over 5-times less than a normal
suffix tree, and actually closer to 10-times less than a suffix tree with equiv-
alent functionality; the compressed suffix tree has in addition to standard

http://www.cs.helsinki.fi/group/suds/cst


CHAPTER 3. COMPRESSED DATA STRUCTURES 41

functions, access to parent, computation of subtree size, number of leaves in
subtree, suffix links, lca, possibility to attach auxiliary data in compressed
form. These extended functionalities are in fact crucial to most advanced
algorithms exploiting suffix tree [Gus97].

There are alternative proposals for compressed suffix trees providing
different time/space tradeoffs and dynamic updates [RNO08b, RNO08a,
FMN08].

Many compressed suffix tree variants have been recently im-
plemented by Simon Gog, and can be found inside a generic
succinct data structure library http://www.uni-ulm.de/en/in/

institute-of-theoretical-computer-science/research/sdsl.html.

http://www.uni-ulm.de/en/in/institute-of-theoretical-computer-science/research/sdsl.html
http://www.uni-ulm.de/en/in/institute-of-theoretical-computer-science/research/sdsl.html


Chapter 4

High-throughput sequence
mapping and analysis

4.1 Sequence mapping

Sequence mapping is a fundamental primitive required in many sequence-
related studies. For example, the recent ChIP-sequencing technology can
be used to produce large number of short DNA sequences tagging protein
binding sites [JMMW07]. The underlying mapping problem can be stated
essentially as a multiple pattern matching problem: Given a set P of short
sequences (patterns extracted from protein binding sites), find their occur-
rence positions in a long sequence T (the whole genome). In the best case,
the occurrence is exact (pattern matches a substring of T ), but typically
some errors must be allowed (pattern matches approximately a substring of
T ).

Figure 4.1 shows the different application areas of high-throughput (next-
generation) sequencing. In addition to ChIP-sequencing discussed above,
one can sequence complementary DNA of RNA trancsripts using RNA-
sequencing. There the problem is that reads should be mapped to genome
allowing an intron to split the read; we will discuss this case separately. Other
applications are targeted resequencing and whole genome resequencing, where
in the former some areas of the genome are spliced out, enriched, and then
sequenced, and in the latter the whole genome is sequenced. Sequencing
can also be applied to genomes whose sequence is not yet known, and then
the process is called de novo sequencing and the problem to be solved is
fragment assembly. When the tissue contains several organisms, the task of
identifying them is called metagenomics. This usually involves both known

42
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Figure 4.1: Atlas of high-throughput sequencing applications.

and unknown genomes.
Very recently also epigenomics studies have joint this atlas. It is possible

to measure the chemical changes in DNA that do not change the sequence.
Such changes affect gene regulation and are then likely to constitute the main
mechanism why e.g. identical twins are not really identical in their pheno-
type. There is also evidence that these chemical changes are inheritable.
One such chemical change is DNA methylation, where some cytosines have
a modification such that a methyl group is bound to them. In promoter re-
gions of eukaryote genes DNA methylation level is inversely proportional to
the transcription activity. There is a sequencing technology called bisulfite
sequencing, to target the promoter areas (or in fact CpG islands) with high
methylation levels.

As a summary, ChIP-sequencing, methylation sequencing, and targeted
resequencing are quite similar in the analysis perspective; some areas are
targeted and the task is to find them based on sequence mapping. RNA
sequencing adds the difficulty of split reads. In de novo sequencing, sequence
mapping is not an option, so the task is to find overlaps between the reads
and construct the consensus sequence based on the observed overlaps.

4.1.1 Read types, significance of hits, filtering

Different sequencing technologies produce different kinds of reads, e.g.:
• Illumina Solexa1 reads are typically of length 35−150 basepairs (get-

ting longer all time with advances in technology). Each base is asso-

1TM Illumina, Inc.
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ciated with an encoded probability of the observation being correct.
Typical sequencing error is a mutation; indels occur less frequently.

• SoLID2 are similar in length to Solexa reads, but the coding is in colour-
space with a two-base code defined by the matrix (row=first base, col-
umn=second base):

A C G T

A 0 1 2 3

C 1 0 3 2

G 2 3 0 1

T 3 2 1 0

Consider the values in the matrix as colours. For example,
T012023211202102 equals TTGAAGCTGTCCTGGA (first base is always
given). Error probabilities are like in solexa, but the advantage of
colour code is that if there is a sequencing error, the whole suffix of
the read is incorrect; for a long read with an error in the middle it is
unlikely that the read maps to any part of the genome. This separates
most measurement errors from SNPs that only affect the code locally
(two consecutive colours); a read including a SNP can be mapped to
the correct location in the genome allowing basically two errors in the
alignment.

• 454 sequencing3 reads are about 400 basepairs long. The errors pro-
duced by the sequencer are different from the two above; the sequence
is constructed as runs of symbols mapping light intensity to the length
of the run. Raw data files actually keep the observed intensities and se-
quence mapping could exploit these values (approximate string match-
ing with run-length encoded strings).

Classical Sanger sequencing could be included to the picture, providing
much longer and more accurate reads, but the advantage of the new tech-
nology is simply their much better bases per euro proportion. For the same
reason, 454 reads are typically only used in de novo sequencing projects,
where the read length is important. In resequencing projects, Solexa and
SoLID are the prevailing techniques.

All the three high-throughput techniques generalize to providing paired
end and mate pair reads. Paired end read is a suffix, prefix pair of a fragment
of DNA, with read length smaller than the fragment length:

2TM Applied Biosystem
3TM 454 Life Science, Roche Diagnostics
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TGACGACTGCTAGCTA..........................AGCTACGTAGCATCGT

Mate pair is the same thing but produced with a different sequencing tech-
nique. The most notable difference for the analysis perspective is that the
fragment for paired end reads is at maximum about 1000 base pairs, as mate
pairs can be produced from longer fragments (upto several thousands).

In what follows, we mostly discuss reads of Solexa type; generalizations
to other types are left for the reader (see exercises).

First thing to consider when mapping reads is the probability of find-
ing the correct occurrence location. Let A = a1a2 · · · am be the consen-
sus sequence of a read with an associated sequence of probabilities p(A) =
p1p2 · · · pm, where 0.25 ≤ pi ≤ 1 tells the probability of i-th position in the
read being ai. Denote M [c, i] = pi if ai = c and M [c, i] = (1− pi)/(|Σ| − 1)
if c 6= ai. Then we have a positional weight matrix (PWM) M representing
the read. We say that matrix M occurs in position j in a genome sequence
T = t1t2 · · · tn if p(M,T, j) =

∏m
i=1M [tj+i−1, i] > t, where t is a predefined

threshold. Consider a random T from an i.i.d. model with qc denoting the
probability of symbol c. We wish to compute whether M is expected to oc-
cur in the random T . The probability of M matching a random sequence
of length m is

∑
C=c1c2···cm∈Σm:p(M,C,1)>t

∏m
i=1 qci . By the linearity of expecta-

tion, the expected number of occurrences for M in T is

E(M,T ) = (n−m+ 1)
∑

C=c1c2···cm∈Σm:p(M,C,1)>t

m∏
i=1

qci . (4.1)

We can now set thresholds t ≤ 1 and f ≤ 1 such that reads with PWM
matrix M having E(M,T ) > f can be filtered out.

Computing E(M,T ) is problematic because it requires enumeration over
all sequences of lengh m. To obtain an easier to compute filter, we use an
alternative modeling: We model position i in the read as ai with probability
pi and as a joker symbol * matching any symbol with probability (1 − pi).
Then A matches a random sequence of length m with probability

∏m
i=1 piqai +

(1 − pi), and the expected number of occurrences of A in random sequence
T = t1t2 · · · tn is

E(A, T ) = (n−m+ 1)
m∏
i=1

piqai + (1− pi). (4.2)

Again we can use filtering E(A, T ) > f , and now the filtering is easy to do in
linear time in the read length. Notice that we have on purpose overused here
the measurement error probability to obtain as stringent filter as possible; the
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error includes the case that joker matches ai. More accurate interpretation
would be that joker matches only other symbols but ai, and then the match
probability would be piqai + (1− pi)(1− qai).

In the sequel, we assume that one of the filters above, or some more
advanced filtering, has been done so that random hits are unlikely. Notice
that a read should originate from exactly one location in the donor DNA,
but if this location happend to be inside a repeat, we can still expect to see
many occurrences when aligning the read to the reference sequence.

4.1.2 Problem modeling and theoretical solutions

Indexed multiple approximate string matching

Typically the problem is modeled as a k mismatch problem or as a k
errors problem (see Sect. 2.3), ignoring the probabilities. Using that model-
ing, the best online solutions are the O(rmn/w) time bitparallel algorithms,
where r is the number of reads. One can do much better by using average-
optimal multiple approximate string matching [FN04], which gives running
time O(rm log|Σ|(rm) + (k + log|Σ|(rm))n/m) holding for small k, where the
first part comes from preprocessing the read set and second part from match-
ing. However, since the approach builds an index for the read set, the
space requirement will be a bottleneck (O(r|Σ|`), where ` needs to be set
to O(Θ(log|Σ|) to obtain the optimal running time).

The above solutions do not yet exploit the fact that the reference is a
static sequence and can be preprocessed into an index structure, to be used
with many read sets. Let us first assume that there are no errors in the reads
and we are interested only on exact matches (applications without the need
of SNP detection). For such indexed exact multiple pattern matching the
obvious solution is as follows. Build suffix tree of T , and match each pattern
in P against a path in the tree. Report the occurrence positions lying in
the subtree leaves of the found path (if exists). The solution is takes (after
building the suffix tree in O(T ) time) linear (optimal) time in proportion
to the total length of sequences in P and to the number of occurrences. In
practice, binary search on suffix array is usually faster for the same task
and much more space-economic. To get more space savings, one can use
compressed suffix array of Chapter ?? with some sacrifice in running time.

For indexed multiple approximate pattern matching there is no obvious
solution. In fact, this problem was the Holy Grail of pattern matching for
long time, until Cole, Gottlieb, and Lewenstein [CGL04] finally were able
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to develop an index with guaranteed running time for approximate searches.
However, their index requires superlinear space making it useless for genome-
scale sequences. This bottleneck was soon overcome by Chan et al. [CLS+06];
they provide an O(n) words index with running time O(m+occ+polylog(n)),
where m is the length of the pattern and occ is the number of occurrences
with upto k-errors. The space can be further decreased to O(n) bits by using
the compressed suffix tree as part of the index. However, the result works
only for very small values of k, as the O() space terms hide 3k and logk

2

n
factors. In short read mapping, the sequences are quite accurate and allowing
only a few errors usually suffice in the search. It would be very interesting
to see if a practical implementation of this index would work better than the
more heuristic approaches covered next.

4.1.3 BWT-based approaches

One practically efficient solution to indexed approximate multiple pattern
matching is the simulation of backtracking on suffix tree. This technique is
behind the fastest and most memory efficient solutions to sequence mapping
up-to-date: BWT-SW4, BWA5, SOAP26, Bowtie7, and readaligner8.

Let us first study backtracking on suffix tree and then see how it can
be simulated using backward search in compressed suffix array. To get the
idea, it is enough to consider k-mismatches problem, where an occurrence
is a substring of T that can be converted into the pattern with at most k
substitutions, i.e., the Hamming distance of the pattern and its occurrence
is at most k.

The backtracking for k-mismatch occurrences of a pattern P [1,m] in
T [1, n] works as follows. Make a depth-first traversal to the suffix tree of
T upto string depth m. Count the mismatches between P and each path
label. Report suffixes in the subtrees whose path labels have at most k mis-
matches. It is obvious that this algorithm can be sped up by maintaining the
current number of mismatches at the nodes, and retracting on paths with
more than k mismatches encountered.

The same backtracking idea can be applied for e.g. the k-errors problem
by filling in the familiar dynamic programming tables along the backtrack-
ing paths (or even faster by running the Myers’ bitparallel algorithm instead
[Mye99]). It works also for local alignment (Smith-Waterman algorithm)

4http://i.cs.hku.hk/$\sim$ckwong3/bwtsw/
5http://maq.sourceforge.net/bwa-man.shtml
6http://soap.genomics.org.cn/index.html
7http://bowtie-bio.sourceforge.net/
8http://www.cs.helsinki.fi/group/suds/readaligner/

http://i.cs.hku.hk/$\sim $ckwong3/bwtsw/
http://maq.sourceforge.net/bwa-man.shtml
http://soap.genomics.org.cn/index.html
http://bowtie-bio.sourceforge.net/
http://www.cs.helsinki.fi/group/suds/readaligner/
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[LST+08] and for matching position-specific scoring matrices (PSSMs) (see
the SUDS Genome Browser, http://www.cs.helsinki.fi/group/suds/

cst), or even for read mapping versions of profile HMMs (not covered here).
In all cases, backtracking can be replaced by branch-and-bound mechanism;
for example in the latter two, the maximum tail probability can be used to
bound the best match in the current subtree, limiting the amount of branch-
ing.

Backtracking is exponential in the length of the pattern and in the number
of errors in the worst case. For small error-levels and errors concentrating on
tails (like in read data typically), the branching is in practice limited, and
the approach is rather efficient.

Due to its practicality with respect to time efficiency, let us focus on
the space issue. The backtracking on suffix tree is easy to simulate using
compressed suffix tree, which means that, with the current implementations,
8.5 GB for human genome is sufficient for the task. However, it is possible
to use much more simplified mechanism to perform backtracking, as we will
learn next.

Recall the Burrows-Wheeler transformed text L and the backward search
algorithm using it: At step i of the algorithm [sp, ep] gives the maximal
interval of suffix array Pos pointing to suffixes prefixed by P [i . . .m]. To
perform backtracking instead of exact search, one can perform a backward
search step with all the alphabets symbols instead of just with P [i − 1]. For
k-mismatches problem, if the chosen alphabet symbol is other than P [i− 1],
mismatch counter is incremented for the path (range) taken, otherwise
the counter stays the same. The procedure is applied recursively until
too many errors have been encountered. The result is a set of suffix array
ranges containing the k-mismatches occurrences. With the added suffix
array samples to form the compressed suffix array, these occurrences can be
reported in O(log1+ε n) time each. The pseudocode is given below. The first
call to the recursive procedure is kmismatches(P,C, L, k,m, 1, n).

Algorithm kmismatches(P,C, L, k, j, sp, ep)
(1) if (j = 0) then
(2) Report occurrences Pos[sp], . . . , Pos[ep]; return ;
(3) for each s ∈ Σ do
(4) sp′ ← C[s] + ranks(L, sp− 1)+1;
(5) ep′ ← C[s] + ranks(L, ep);
(6) if (P [j] 6= s) then k′ ← k − 1; else k′ ← k;
(7) if (k′ ≥ 0) kmismatches(P,C, L, k′, j − 1, sp′, ep′);

Just like with (compressed) suffix tree, the above backtracking / branch-

http://www.cs.helsinki.fi/group/suds/cst
http://www.cs.helsinki.fi/group/suds/cst
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and-bound mechanism can be applied to many other forms of approximate
matching. For example, any dynamic programming algorithm for alignment
can be one transformed to build one column of the dynamic programming
table on each recursive step. The following pseudocode illustrates the idea:

Algorithm kerrors(sp, ep, count, oldcol)
(1) if (sp > ep) return ;
(2) if (oldcol[patlen] ≤ klimit) then
(3) Report occurrences Pos[sp], . . . , Pos[ep]; return ;
(4) for each s ∈ Σ do
(5) sp′ ← C[s] + ranks(L, sp− 1)+1;
(6) ep′ ← C[s] + ranks(L, ep);
(7) curcol[0]← count; minval← count;
(8) for i = 1 to count do
(9) if (P [patlen− count+ 1] = s) then diag ← 0; else diag ← 1;
(10) curcol[i]← min(oldcol[i] + 1, curcol[i− 1] + 1, oldcol[i− 1] + diag);
(11) if (curcol[i] < minval) then minval← curcol[i];
(12) if (minval ≤ klimit) kerrors(sp′, ep′, count+ 1, curcol);

This procedure is first called with kerrors(1, n, 1, firstcol) where
firstcol[i] = i (and we have dropped the static variables from the call).
The arrays oldcol and curcol contain values of two consecutive columns of
the dynamic programming table. The minimum value of the current col-
umn (minval) is calculated to terminate the search if no further matches are
possible.

To get an idea of the practical performance, let us consider some exper-
iments on a compressed suffix array closely analogous to the one described
in Sect. 3.6. The index requires 2.1 GB for human genome. It performs
Algorithm kmismatches() (limited to counting the number of occurrences)
in 0.3,8.2, and 121 milliseconds on average for parameters k = 0, k = 1, and
k = 2, respectively, on a query of length 32. Locating one (e.g. the best)
occurrence takes 0.9 milliseconds. The test was run on a random set of 10000
substrings of the genome on a 3.0 GHz Intel Xeon CPU with 128 GB of main
memory.

Branch-and-bound technique of BWA

The basic backtracking mechanism we studied is not efficient enough for
large error levels. Therefore it is important to look at different search space
pruning techniques.
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Li and Durbin [LD09] use a branch-and-bound technique to limit the
search space. To implement the approach, they need FM-index also for the
reverse text T r = tntn−1 · · · t1. Let us call forward FM-index and reverse
FM-index the FM-index of T and FM-index of T r, respectively.

Then they precompute for each prefix α of the pattern, its splitting to
maximum number of pieces such that no piece occurs in the text. Let us
denote the maximum number of splits κ(α). The computation of κ(α) for all
prefixes α is analogous to the backward search algorithm applied to reverse
pattern on reverse FM-index, and hence works in linear number of steps in
the pattern length [LD09]: Backward search on reverse FM-index is applied
as long as the interval [sp, ep] gets empty. Then the process is repeated with
the remaining suffix of the pattern until the whole pattern is processes. In
detail, if backward step from P [1, i] to P [1, i + 1] results into non-empty
interval [sp, ep] with sp ≤ ep, then κ(P [1, i + 1]) = κ(P [1, i]). Otherwise,
κ(P [1, i + 1]) = κ(P [1, i]) and κ(P [1, i + 2]) = κ(P [1, i + 1]) + 1 and the
backward search is started from beginning with pattern P [i + 2,m], and so
on.

The computation is also possible to do with forward FM-index alone by
simulating the suffix array binary search (with roughly logarithmic slowdown
to the linear preprocessing).

Value κ(α) works as a lower bound for the number of errors that must be
allowed in any approximate match for the prefix α (see exercise for proof).
This estimate can be used to prune the search space of backward backtracking
as follows. Each search state knows the number of errors, say η(β, sp, ep),
between a suffix β of the pattern and the longest common prefix of suffixes
Pos[sp . . . ep]; if κ(α) + η(β, sp, ep) > k, the branch can be ignored.

Case analysis technique of Bowtie

Langmead et al. [LTPS09] extend the standard filtering technique of
splitting pattern into k + 1 pieces [Nav01]: The original idea of pattern
splitting is to be able to search each piece exactly, since k-errors/-mismatches
cannot affect all pieces simultaneosly. Then the surrounding of each exact
occurrence of each piece is checked for possible k-errors/-mismatches match.
This filter is trivial to implement using exact search in FM-index, but for
large error levels too many candidate matches need to be checked.

The extension proposed in [LTPS09] is to consider separately all cases how
k mismatches can be distributed in the k+1 pieces, and perform backtracking
for the whole pattern for each case either from forward or from reverse FM-
index, depending on which one is likely to prune better the search space. Too
see how it works, let us consider the simplest case k = 1 first. Pattern P is
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split into two pieces P = αβ. One error can be either (a) in α or (b) in β. In
case (a), it is preferable to search for P = αβ using backward backtracking
on the forward FM-index, since β must appear exactly and branching is only
needed after reading the |β| first symbols. In case (b), it is affordable to
search for P r = βrαr using backward backtracking on the reverse FM-index,
since αr must appear exactly and branching is only needed after reading the
|α| first symbols. For obvious reasons |α| ≈ |β| is a good choice for pruning
efficiency. Let us then consider k = 2 to see the limitations of the approach.
The different ways to distribute two errors into three pieces are (a) 002, (b)
020, (c) 200, (d) 011, (e) 101, and (f) 110. Obviously in cases (a) and (d)
it makes sense to use backtracking on the reverse FM-index and in cases (c)
and (f) backtracking on the forward FM-index. For cases (b) and (e) either
choice is as good or bad. Obviously for any k, there is always the bad case
where both ends have at least k/2 errors. Hence, there is no strategy to start
the backtracking with 0 errors, other than in case k = 1.

Two-way BWT approach of SOAP2

Li et al. [LYL+09] solve the bottleneck of the case analysis technique:
They develop Two-way BWT method such that the search using forward
and reverse FM-index can be interleaved. For example, on case 101 above,
they are able to start the search, say, with forward FM-index searching
blocks 10︸︷︷︸

←

1, and then continue the search from reverse FM-index with block

10 1︸︷︷︸
→

.

In detail, the technique works as follows. Let [sp(α), ep(α)] denote the
interval of suffix array (or Burrows-Wheeler transform) of T matching α,
and let [sp′(αr), ep′(αr)] denote the interval of suffix array (or Burrows-
Wheeler transform) of T r matching αr. Notice that it holds ep(α)− sp(α) =
ep′(αr) − sp′(αr). Also it holds ep(cα) − sp(cα) = ep′((cα)r) − sp′((cα)r)
for any c ∈ Σ. The goal is to compute interval [sp′((cα)r), ep′((cα)r)] given
[sp′(αr), ep′(αr)] and [sp(cα), ep(cα)], where the latter term is easy to com-
pute from [sp(α), ep(α)] with one backward search step with c on forward
FM-index of T . The trick is to compute [sp(c′α), ep′(c′α)] for all c′ ∈ Σ, c′ ≤ c.
Because of the lexicographic order used for constructing the Burrows-Wheeler
transform, it must hold

sp′((cα)r) = sp′((α)r) +
∑
c′<c

ep(c′α)− sp(c′α)

ep′((cα)r) = sp′((cα)r) + ep(cα)− sp(cα). (4.3)

Hence, it costs a |Σ| multiplicative factor to maintain both forward and
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reverse FM-index simultaneously updated. Moreover, Eq. (4.3) can be im-
plemented also in O(log |Σ|) if the FM-index uses wavelet trees; it is possible
to add less-than counting to wavelet tree as an extension of rank-function.

Now it is easy to see how the two-way approximate search works in SOAP2:
Once a state [sp, ep] is found matching a prefix of the pattern with the fixed
distribution of errors, one can continue the search from the original start
position with the reverse FM-index with the interval [sp′, ep′] that has been
maintained in each step of the backtracking search with forward FM-index.

Suffix filter and overlap matching

Kärkkäinen and Na [KN07] developed an extension of the pattern split-
ting filter. Instead of splitting the pattern into pieces to be searched
for exactly, the suffixes starting from the start positions of the pieces
are considered. More concretely, let pattern P be partitioned into
pieces P = α1α2 · · ·αk+1, then the set of suffixes considered is S =
{α1α2 · · ·αk+1, α2α3 · · ·αk+1, . . . , αk+1}. Then each S ∈ S is searched for
from the text so that zero errors are allowed before reaching the end if first
piece in S, one error is allowed before reaching the end of second piece of
S, and so on. Obviously this search can be done e.g. using backtracking on
FM-index (to be precise, backward backtacking on reverse FM-index in order
to backtrack on suffixes). This idea is implemented in readaligner tool by
[MVLK10]. The benefit of suffix filter compared to other search space prun-
ing methods is that the technique extends easily to finding approximately
matching overlaps between strings [VLM10]9. Such overlap computation is
an important precomputation step for de novo fragment assembly tasks.

4.1.4 RNA-sequencing

Recall that RNA transcript alignment to the genome consists of exons and
introns. Mapping RNA-sequencing reads to the reference genome is otherwise
identical to DNA read mapping except for reads whose prefix overlaps end
of one exon and suffix overlaps the start of next exon. A way to go over
this problem is to align first all reads that map as a whole. With this initial
alignment one can identify the exons. Let T [j′ . . . j] and T [k′ . . . k] be two
nearby exons found this way. One can then align all remaining reads to
T [j−m. . . j]T [k′ . . . k′+m], and get coverage of this splice variant candidate.
To do this efficiently, one can in fact concatenate all such exon pairs into one
long sequence (adding a special marker in between the pairs), create FM-
index (and reverse FM-index) for the concatenation, and proceed to read

9http://www.cs.helsinki.fi/group/suds/sfo/

http://www.cs.helsinki.fi/group/suds/sfo/
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mapping as normally. The result is the coverage counts for all splice variant
candidates [TPS09]. This approach has two weaknesses: (1) exon boundaries
may not be accurately identifiable from initial alignment, and (2) one cannot
afford to take distant splice variant candidates into account as there would
be too many pairs to be consider.

One can also approach the splice variant alignment problem by directly
extending the backtracking methods studied above [MVLK10]. Again us-
ing both forward and reverse FM-index turns out to be crucial: Any read
spanning two exons splits into two parts where one is at least of length
m/2. Hence, given a read P [1 . . .m], search P [1 . . . i] from reverse FM-
index and P [i′ . . .m] from forward FM-index, where i ≥ m/2 and i′ ≤ m/2.
Consider now an occurrence of P [1 . . . i] with k′ ≤ k errors in T [j′ . . . j]
found using the approach (where one could limit to occurrences such that
T [j + 1 . . . j + 2] = GT, e.g. an intron starting dinucleotide). It is suffi-
cient to search for P [i + 1 . . .m] in T [j . . . j + α], where α is the maximum
intron length. For example, using Myers’ bitparallel algorithm, this takes
O(αm/w) time (again one could speed-up by considering only candidate oc-
currences preceding intron ending dinucleotide AG). It is also possible to do
the same computation inside the backtracking algorithm without repeating
the same computation for each occurrence, but this requires a different dy-
namic programming speed-up technique (Cartesian tree) [MVLK10], which
we omit here. The problem with the approach is that the search pattern
length is not fixed and not all pruning mechanisms studied above work. In
fact, only the branch-and-bound of BWA extends easily.

To go over the problem of non-fixed pattern length, one could directly
search for patterns P [1 . . .m/2] and P [m/2 . . .m] using any of the pruning
mechanisms. This will not yield exact exon/intron boundary locations, but
the extension is easy to do once an occurrence of P [1 . . .m/2] or P [m/2 . . .m]
is given. Then the search for the remaining part of the pattern in another
exon can be done as above.

The key question for the usefulness of this approach is that how many
occurrences one is expected to be found for the half of the pattern, and what
are the odds for finding the correct occurrence of the tail, say P [i+ 1 . . .m]?
Let us consider exact occurrences. The probability of P [i . . .m/2] matching

a random string with each symbol equally likely in every position is
(

1
|Σ|

)m/2
.

Expected number of occurrences in string of length n is less than n
(

1
|Σ|

)m/2
.

To have this value smaller than 1, m should be at least 2 log|Σ| n which is
33 in the case of human genome and its reverse complement. The same
reasoning gives that to have expected number of occurrences for the tail
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P [i + 1 . . .m] in area of length α, one should have m − i > log|Σ| α, which
is 9 when α = 100000. When allowing errors in the search, the expected
number of occurrences grows, but with small error levels reasonable m is
still sufficient (see exercises). Nowadays even length 150 reads are provided,
and this is clearly sufficient length even when halved in this RNA-sequencing
read alignment approach.

Let us finally consider the remaining bottleneck of locating the tail P [i+
1 . . .m]. With high-enough coverage, one could limit to reads that split
nearby the midpoint; then P [i+1 . . .m] is long enough to be unlikely to have
random occurrences. With the above calculations, m− i > 16 is enough, but
to allow errors in the search, higher limit should be used (see exercises). For
curiosity, let us consider if it is possible to find an occurrence of P [i+1 . . .m]
in a given range T [j + 1 . . . j +α] any faster than online scanning. This kind
of search is known as position-restricted substring searching and for example
an efficient O(m+log log n) solution exist [MN06] for exact pattern matching
with the cost of much bigger index structure; it is not known if this problem
can be solved efficiently in o(n log n) bits of space. However, the solution
extends to the backtracking / search space pruning techniques we studied
above, to support approximate search in an interval. If one is willing to use
e.g. n log n(1 + o(1)) bits of extra space, then there is a relatively easy-to-
implement solution that slows down the backtracking solutions at most by
log n factor (see exercises).

4.1.5 Paired end mapping

Aligning pair end reads is typically done using straighforward intersection
approach: map each end separately, sort the occurrence positions, and choose
the occurrence pair with span closest to the expectation. This is obviously
not time efficient when there are many occurrences for each end separately.

The alternative is to use any of the approaches discussed above for RNA-
sequencing. The difference is that now the task is much easier since patterns
are fixed. Also the span between the two reads in the pair is more accurately
known. Therefore it makes sense to use the following concrete scheme: Let
P 1 and P 2 be the paired end read pair. Assume that P 1 has less occurrences
in T (the other case is symmetric). For each occurrence position j of P 1,
check whether P 2 appears in T [j+ c−β . . . j+ c+β], where c is the average
span and β is a parameter depending on the variance of the spans. Again, if
space permits, one can support the search in T [j + c− β . . . j + c+ β] faster
using the position-restricted search techniques [MN06] (see exercises for an
easy implementation).

When studying rearrangements in genomes (like somatic mutations



CHAPTER 4. SEQUENCE MAPPING AND ANALYSIS 55

caused by tumors), paired end mapping is used in a completely different
way. Then one is especially interested in anomalies in paired end mapping.
For example P 1 mapping to different chromosome than P 2. For this problem,
the approach is just to find all occurrences of P 1 and P 2 separately. When
this is done for all pairs, one can analyse the mutual evidence for specific
rearrangements.

4.2 Lower level sequence analysis

High-throughput sequence analysis can be separated in two categories:
(1) lower level analysis tasks and (2) higher level analysis tasks. First cate-
gory consists of general properties one can compute from the sequence, which
can be an input for the second category tasks. For example, searching for
maximal exact matches (MEMs) between two sequences can be considered a
lower level analysis task. Maximal exact match is a substring in sequence A
that also occurs as a substring in sequence B and has the property that it
cannot be extended left or right without loosing occurrences in A or B. The
amount and length of maximal exact matches can work as a simple similar-
ity measure between sequences, but more often MEMs and their variants are
used as a first step of some higher level task, such as whole genome align-
ment. We will next explore problems in the two categories in the context
of high-throughput sequencing. For first category problems compressed data
structures are essential since the analysis starts from the sequence level. For
second category, the inputs are already smaller as they are outputs of se-
quence level analysis, and we can concentrate more on the biological aspects.

For sequence mapping we ended up observing that compressed suffix array
is enough for the task.

For the more complex sequence analysis tasks, the situation is slightly
different, as we will learn next.

4.2.1 Maximal repeats

Let us first consider the maximal repeats problem, which is a special case
of maximal exact matches problem: Find substrings of A that occur at least
twice in A and cannot be extended to the left or right such they would
not loose any occurrences. This problem can be solved using suffix tree in
many ways. First notice that paths ending at suffix tree nodes correspond to
right-maximal repeats, i.e., substrings that cannot be extended to the right so
that they would not loose any occurrences. Analogously, buiding suffix tree
for the reverse of A will give all left-maximal repeats. Maximal repeats are
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then the intersection of right-maximal and left-maximal repeats. There are
linear number of both kind of repeats, but finding the intersection in linear
time is not quite trivial. However, this basic idea gives us a tool to develop
a simple algorithm exploiting two-way BWT: Let [sp(α), ep(α)] denote the
interval in suffix array (or Burrows-Wheeler transform) of A matching α, and
let [sp′(αr), ep′(αr)] denote the interval in suffix array (or Burrows-Wheeler
transform) of Ar matching αr. Let ep(α) − sp(α) = ep′(αr) − sp′(αr) > 1.
If ep(aα) − sp(aα) = ep(aα) − sp(aα) for some a ∈ Σ, then α is not left-
maximal, otherwise it is. If ep′((αb)r) − sp′((αb)r) = ep′(αr) − sp′(αr) for
some b ∈ Σ, then α is not right-maximal, otherwise it is. That is, given
[sp(α), ep(α)] and [sp′(αr), ep′(αr)], we can test in one backward step in both
forward and reverse FM-index whether α is maximal or not! It remains to
backtrack all candidates for α and maintain the intervals. The pseudocode
of the resulting algorithm is given below.
Algorithm maximalRepeatsTwoWayBWT(P,C, L, L′, sp, ep, sp′, ep′)
(1) if (ep− sp < 2) then
(2) return ;
(3) for each s ∈ Σ do
(4) sp(s)← C[s] + ranks(L, sp− 1)+1;
(5) ep(s)← C[s] + ranks(L, ep);
(6) sp′(s)← C[s] + ranks(L

′, sp′ − 1)+1;
(7) ep′(s)← C[s] + ranks(L

′, ep′);
(8) if (ep(s)− sp(s) 6= ep− sp and ep′(s)− sp′(s) 6= ep′ − sp′ for all s) then
(9) P is a maximal repeat
(10) for each s ∈ Σ do
(11) sp′(s)← sp′ + LessThans(L, ep)− LessThans(L, sp− 1);
(12) ep′(s)← sp′(s) + ep(s)− sp(s);
(13) maximalRepeatsTwoWayBWT(sP,C, L, L′, sp(s), ep(s), sp′(s), ep′(s));

First call to the algorithm is maximalRepeatsTwoWayBWT("",C,L, L′, 1,m, 1,m)

on string A[1,m], where L is the BWT of A, L′ is the BWT of Ar, and
C the corresponding count array. At line (11), LessThans(L, i) gives the
number of symbols smaller than s in L[1, i] and implements the elements of
the sum at Eg. 4.3. This function can be implemented in O(log |Σ|) time on
wavelet tree of L.

It is easy to see that the algorithm takes linear time in the overall length
of all maximal repeats (ignoring alphabet-factors, which could be improved).
Yet, this not optimal, as there could be an algorithm working in linear time in
the number of maximal repeats; each repeat can be represented as an interval
in A. Such algorithm exists using suffix tree: Let v be a node representing
right-maximal repeat α. If there are two nodes v′ and v′′ with suffix links
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sl(v′) = sl(v′′) = v, then α is also left-maximal. This follows from the
same observation we used above with the two-way BWT; if there are two
suffix links, then there are at least two occurrences of α preceded by some
characters a, b ∈ Σ such that a 6= b. The algorithm is then trivial. Build
suffix tree of A (with suffix links). Initialize counter rsl(v) = 0 to each node.
For all nodes v′ apply rsl(sl(v′)) = rsl(sl(v′)) + 1. Nodes with rsl(v) > 1
represent maximal repeats. Total running time is linear, as the suffix tree
can be computed in linear time [Gus97].

The above optimal algorithm is trivial to make space efficient just by using
a compressed suffix tree [NM07] as a black box. However, it is instructive to
see the connection to the above version with the two-way BWT. Consider
the optimal algorithm on suffix tree of Ar. Essentially the optimal algorithm
is able to directly skip all recursion steps of maximalRepeatsTwoWayBWT that
have ep(s)− sp(s) = ep− sp for some s, that is, all cases where there is only
one character to follow in the backtracking step. These cases correspond to
edges of the suffix tree. Hence, the essential feature exploited in the optimal
algorithm is to be able to visit only nodes of the suffix tree, and to retrieve the
corresponding suffix array interval [sp′, ep′], so that intervals [sp′(s), ep′(s)]
can be computed as in lines (6-7).

4.2.2 Maximal exact matches and variants

The algorithms for maximal repeats considered above can be modi-
fied to solve maximal exact matches problem. We will discuss the mod-
ification required for the two-way BWT version as the modifications to
the other algorithms are analogous. For example, one can concatenate
A and B into A#B, store an indicator vector I such that I[i] = 1 iff
Pos[i] > |A| + 1, that is, mark the suffixes of B in suffix array Pos of
the concatenation. Then the condition (ep− sp < 2) at line (1) in Algorithm
maximalRepeatsTwoWayBWT can be changed to (rank(I, ep) − rank(I, sp −
1) = 0 or rank(I, ep)−rank(I, sp−1) = ep−sp+1). Line (9) can be changed
to form sets Q = {(Pos[i], Pos[i] + |P | − 1) | Pos[i] ≤ |A|, sp ≤ i ≤ ep} and
R = {(Pos[i], Pos[i] + |P |− 1) | Pos[i] > |A|+ 1, sp ≤ i ≤ ep} and to output
all tuples (P, q, r) for q ∈ Q and r ∈ R.

One can also extend the algorithms for maximal unique matches (MUM)
problem. A unique match is a substring that appears only once in both A and
B. Maximal unique match is a unique match that cannot be extended left
or right without removing any occurrence. This problem naturally extends
to a set of sequences. Let us consider how to solve it with two sequences A
and B. Make the same modification to condition at line (1) in Algorithm
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maximalRepeatsTwoWayBWT as with MEMs. In addition, add condition ep−
sp = 2 to the condition at line (8). With d strings A1, A2, . . . , Ad, the latter
condition at line (8) becomes ep−sp = d, but the former condition at line (1)
becomes more complicated. One approach is to replace the indicator vector I
with an array D such that D[i] = j iff Pos[i] belongs to the suffix of Aj in the
concatenation A1#A2# · · ·Ad. Wavelet tree of D can be used for computing
RangeColorCount(sp, ep) = |{D[j] | sp ≤ j ≤ ep}| (see exercises for an
analogous operation). We can then replace the condition at line (1) with
RangeColorCount(sp, ep) < d. This test will take O(log d) time. However,
space is the real bottleneck in this approach, as wavelet tree of D occupies
n log d(1+o(1)) bits, which can be much larger than the O(n log |Σ|) required
for compressed suffix tree that is able to simulate the optimal algorithm.
Using a mechanism by [Hui92], one can obtain all the RangeColorCount
values in overall O(n) time with no dependency on the number d of sequences
in the collections. This requires additional storage, but it turns out that the
values can be computed on-the-fly during the construction of compressed
suffix tree in O(n log n log |Σ|) time using O(n log |Σ|+ d log n) bits of space
[FMV08]. We omit the details here.

4.2.3 Overlap computation

The overlap-layout-consensus approach to fragment assembly starts by
finding all overlaps between fragments. With high-throughput sequencing,
we have huge number of relatively short reads, making this task enormous.
For this reasons k-mer / de Bruijn -based approaches have been more popular
recently. However, one can use BWT-based indexes to solve the problem of
exact overlap computation efficiently, as we will learn next.

Let r1, r2, . . . rn be set of reads of total length N . We wish to find all
pairs (ri, rj) such that they can be decomposed as ri = αβ and rj = βη with
|β| ≥ K, where K is the minimum overlap length threshold. In addition, we
would like to find maximal such β for each pair.

Consider the following algorithm to solve the problem. Build a com-
pressed suffix array for sequence T = #r1#r2# · · ·#rn. For all suffixes
starting with # associate the corresponding read number i following it. Then
do backward search for each ri separately. After K steps, check if one could
proceed with #. If so, report the overlap(s) and proceed with backward
search repeating the same check at every step. This way one obtains all
overlaps of length at least K.

The problem with the above approach is that we may report some re-
dundant overlaps; we would like to report only the maximal ones. A better
algorithms exists [Gus97], using suffix trees. We will now review it, and



CHAPTER 4. SEQUENCE MAPPING AND ANALYSIS 59

leave as an exercise to think about possible problems in implementing this
algorithms with a compressed suffix tree instead.

Consider a suffix tree built on T = r1#1r2#2 · · ·#n−1rn#n. Initialize an
empty stack for each read. Make a depth-first search on suffix tree and when
visiting node v first time add its string depth (if it is at least K) to all stacks i
such that there an edge from v starting with symbol #i. When visiting node
v last time, reverse the situation by popping from the corresponding stacks.
Now, when visiting a leaf node corresponding to suffix ri#i · · · , the top-most
values in the non-empty stacks give the longest overlaps (those that are at
least of length K). Non-emtpty stacks can be maintained in double-linked
lists during the traversal, and with a table of pointers P [1 . . . n] such that
P [i] gives the pointer to the corresponding stack in the double-linked list
one can update the list of stacks in constant time when stacks get empty or
non-empty.

It is also possible to extend the above approaches to compute the transi-
tive closure of the overlap/string graph directly [SD10].

4.3 Higher level sequence analysis

4.3.1 Variation calling

Read mapping alignments provide information about SNPs in donor
genome; if position j in T is covered by rj reads of which p percent say
that there is nucleotide a and rest say there is nucleotide b = T [j], one can
reason whether this is because of heterozygous polymorphism or because of
a measument error. However, measurement errors are easy to rule out; they
are independent events, so probability of observing many in the same po-
sition decreases exponentially. Say q is the measurement error probability,
then the probability that there is no polymorphism at position j is qrjp/100.

Hence, using sequencing with high enough coverage, one can easily obtain
the SNP profile of donor genome with reasonable accuracy.

The same straightforward idea can basically be applied to short indels,
but some more care needs to be taken here. Reads are aligned independently
of each others, so in case of indel areas the alignments can disagree on the
exact location; same alignment score can be obtained with slight variations
of the alignment. To go over this problem, take the rj reads covering position
j and compute the optimal multiple alignment. Then indels will be assigned
to same columns. Computing optimal multiple alignment is plausible using
the Carillo & Lipman approach [CL88, LAK89], bacause it is sufficient to
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Figure 4.2: Read mapping behaviour on insertions (left) and deletions (right).

Figure 4.3: Paired end read mapping behaviour on insertions (left) and dele-
tions (right).

extract only small region surrounding the indel cluster.
Larger variations are more difficult to detect. If there is a deletion in

the donor genome, then there should be an uncovered region in the reference
of the length of the deletion. If there is an insertion in the donor genome,
then there should be a pair of consecutive positions (j, j+ 1) in the reference
such that j and j + 1 are not covered by any same read r (see Fig. 4.2).
Moreover, there should be reads whose prefix matches tj′...j and reads whose
suffix matches tj+1...j′′ ; in case of deletions, both conditions should hold for
some reads. To fill the inserted regions, one can apply fragment assembly:
Consider all reads that have not mapped anywhere in the genome as well as
tj−m...j and tj+1...j+m+1. Try to create a contig that starts with tj−m...j and
ends with tj+1...j+m+1. The above is a simplistic view of indel detection; in
practice one must prepare for background noise.

Another approach to large scale variation calling is to use
paired end or mate pair reads. Consider paired end read pairs
(L1, R1), (L2, R2), . . . , (Lr, Rr) such that reads Li cover position j in the ref-
erence. The average distance of Li and Ri should be k with some known
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variance. Now one can compute the average k′ and variance of the observed
distances of all Li and Ri, and by comparing the observed distribution to
the given one can decide whether the deviation is statistically significant.
The expected indel length is |k − k′| (see Fig. 4.3). Notice that now the
length of the insertions can also been observed. This information is use-
ful for the fragment assembly approach above since it gives a constraint to
the contig to be constructed. In detail, consider an overlap graph with un-
mapped reads, tj−m...j and tj+1...j+m+1 as nodes, and with edges representing
the overlap lengths of the reads. Then the task is to find a path from tj−m...j
to tj+1...j+m+1 with length (counted as total length of the reads encountered
minus the overlaps) close to the given estimate. Like many tasks related to
fragment assembly, this is NP-hard [NU02]. However, the task is in practice
not hopeless since the overlap graph contains only the unmapped reads; a
(birectional) level-wise search may work fast enough.

4.3.2 Transcript expression and splice-site detection

Recall that from RNA-sequencing read alignment we obtain not only
coverage counts for each position in the genome, but also for each splice-
site alternative. Given a gene annotation (chains of exon locations for each
transcript of each gene), we can easily count the average coverage for each
gene and hence derive gene expression values analogous to microarray gene
regulation experiments. With the positional and splice-site coverage counts,
it is possible to go deeper in the analysis. First, we can count the average
coverage C(e) for each exon e ∈ E and the average coverage C(e′, e) for each
splice-site alternative (e′, e), where e′ ∈ E and e ∈ E are two exons getting
votes from split reads, and e ∈ E is the set of all exons. Let us denote by T the
set of annotated transcripts. Denote e ∈ t if exon e belongs to the transcript
t ∈ T , and (e′, e) ∈ t if e′ ∈ T and e ∈ T . A reasonable assumption on how
transcript sequencing should behave is that the coverage does not depend
on the position inside the transcript. We could hence assume that each
transcript has an unknown average coverage C(t). We obtain the Annotated
Transript Expression problem: Estimate average coverages ct, t ∈ T , that
best explain the measured coverages C(e) and C(e′, e), e′, e ∈ E . One way to
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solve this is to use least squares method: minimize

∑
e∈E

(
C(e)−

∑
t∈T :e∈t

ct

)2

+
∑

e′,e∈E:C(e′,e)>0

C(e′, e)−
∑

t∈T :(e′,e)∈t

ct

2

with the conditions ct ≥ 0, t ∈ T [KBD10, Hon11]. Least squares has
standard closed form matrix-algebraic solutions that are out of the scope of
this course.

The gene annotation was used here just to define the set of transcripts.
One could be more ambitious by defining the possible transcripts from the
data, that is, to solve Unannotated Transcript Expression problem. Consider
the exon chaining graph implicit above, where exons are nodes, and exon-
exon pairs corresponding to split reads are the directed edges. Then any path
from an exon containing a start codon to an exon containing a stop codon
is a possible transcript. Nodes and edges have weights C(e) and C(e′, e),
respectively. For simplicity of exposition, we assume that different genes
share no exons (like above). As this is a directed acyclic graph, some path
problems on it can be solved by simple dynamic programming. For example,
heaviest path from exon e′ to exon e is easy to compute, but the result is more
like a greedy choice for a transcript that explains maximally the coverage. A
better way to model the problem is to fix the number of transcripts k and
search for k paths in the exon chaining graph and an average coverage for
each such that the least squares estimate gets minimized. This is a hard
optimization problem, but can be solved efficiently under some assumptions
on the input (see exercises).

Trapnell et al. [Tea10] use a graph similar to the exon chaining graph,
with one significant difference; they construct the graph directly from read
alignments. The graph is then overlap graph and is constructed by assigning
reads to nodes and having an edge between two reads if their alignment to
the reference overlaps and is compatible, i.e., reads split to different exons
do not have an edge. Then they seek for minimum path cover (minimal set
of paths that cover all reads) in this overlap graph, which can be solved in
polynomial time by reducing the problem to maximum matching on bipartite
graph. These paths are in principle the proposed transcripts; the actual
computations are much more involved [Tea10]. The major difference to the
exon chaining approach we studied above is that the objective is not directly
to optimize squared error of expression levels. However, they do assign costs
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to the edges based on the proportion of compatible overlapping reads versus
incompatible overlapping reads, and therefore the resulting minimum weight
minimum path cover may well be resulting to transcripts that implicitly
minimize closely the same criteria.

More recently, the problem has been approached using lasso-regression
modeling [LFJ11]. Let us number nodes and edges of the exon chaining
graphs with unique numbers from 1 to M , and all possible paths (transcripts)
from 1 to N . One can write the optimization problem as follows:

min f(X) = min
M∑
i=1

(
ci −

N∑
j=1

ajixj

)2

(4.4)

s.t. xj ≥ 0, 1 ≤ j ≤ N
N∑
j=1

xj ≤ δ,

where ci’s are the coverage values of nodes and edges, aji = 1 if node/edge
i belongs to path number j, otherwise aji = 0, and xj’s are the coverage
values of the paths (transcripts). The idea is that setting parameter δ small
restricts the choice of xj’s; the hypothesis is that the optimal solutions then
choose couple of non-zero xj’s and set other to zero. This formulation can
be solved using any standard quadratic programming (QP) solver (e.g. using
matlab). The problem with the approach is that one still needs to enumerate
all paths and also the the λ-restriction does not directly minimize the size of
the non-zero assigned paths.

We have omitted here the statistical corrections required for doing robust
gene regulation studies based on the transcript expression levels. However,
such corrections are analogous to the microarray gene expression level studies
(out of the scope of this course), yet dedicated analysis methods have been
developed taking into account the characteristics of RNA-seq data [ORY10].

4.3.3 Co-linear chaining

Consider the Unlabeled Transcript Expression problem above, where no
gene annotation is given as input for estimating the transcript coverages.
A possible alternative way to solve it is to do de novo fragment assembly
with the reads, hope that the resulting contigs represent the transcripts,
and align the predicted transcripts to the genome using the approach in
Sect. 2.5. There are two bottlenecks: (1) fragment assembly of short reads
from (almost identical) transcripts is likely to result into misassemblies; (2)
alignment of transcripts to genome using the simple dynamic programming
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algorithms is not a high-throughput approach. For (1), the partial solution is
to use longer reads; these are called Expressed sequence tags (ESTs), and are
produced using e.g. Sanger sequencing. However, this is much more costly
and is not used in practice for high-throughput studies but for studying e.g.
genomes whose reference sequence is unknown. For (2), the solution is to use
co-linear chaining studied next.

Co-linear chaining exploits the fact that pieces of RNA should match
almost perfectly the corresponding genomic DNA. Therefore one can first
compute quickly all good local alignments and proceed to collecting the global
alignment. For example, one could start from the list of MEMs between RNA
and genome. Let us assume that such local alignment has been done, and we
have a set of tuples V = {(x, y, c, d)} such that T [x, y] matches P [c, d], where
T [1, n] is the genome and P [1,m] the RNA transcript. The goal is to find a
sequence of tuples S = s1s2 · · · sp ∈ V p such that sj.y > sj−1.y, sj.d > sj−1.d,
for all 1 ≤ j ≤ p, and coverage(P, S) = |{i | i ∈ [sj.c, sj.d] for some 1 ≤ j ≤
p}| is maximized. That is, find tuples preserving order in both T and P such
that the coverage of P is maximized. In short, we call this ordered coverage
of P . The solution uses dynamic programming and the invariant technique
we learned in Sect. 2. First sort tuples in V by the coordinate y into sequence
v1v2 · · · vN . Then fill a table C[1 . . . N ] such that C[j] gives the maximum
ordered coverage of P [1, vj.d] using any subset of tuples from {v1, v2, . . . vj}.
Hence maxj C[j] gives the total maximum ordered coverage of P . It remains
to derive the recurrence for computing C[j]. There are two cases: (a) Either
the previous tuple does not overlap vj in P ; or (b) the previous tuple overlaps
vj in P . For (a) we can see that the recurrence is

Ca[j] = max
j′:vj′ .d<vj .c

C[j′] + (vj.d− vj.c+ 1). (4.5)

For (b) we can see that the recurrence is

Cb[j] = max
j′:vj .c≤vj′ .d≤vj .d

C[j′] + (vj.d− vj′ .d), (4.6)

which works correctly unless there is a tuple vj′ satisfying the condition
such that vj′ .c > vj.c. Such containments can however be ignored when
computing the final value C[j] = max(Ca[j], Cb[j]), because case (a) gives
always a better result (exercise). Now we can use the invariant technique to
obtain range maximum queries, which can be solved using the search tree in
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Lemma 2.2.6 (or its dual version with minimum replaced by maximum):

Ca[j] = (vj.d− vj.c+ 1) + max
j′:vj′ .d<vj .c

C[j′]

= (vj.d− vj.c+ 1) + T .Maximum(0, vj.c− 1),

Cb[j] = vj.d+ max
j′:vj .c≤vj′ .d≤vj .d

C[j′]− vj′ .d

= vj.d+ I.Maximum(vj.c, vj.d),

C[j] = max(Ca[j], Cb[j]).

For these to work correctly, we need to have updated the trees T and I prop-
erly for j′ : 1 ≤ j′ < j: T .Insert(C[j′], vj′ .d) and I.Insert(C[j′]−vj′ .d, vj′ .d).
Running time is O(N logN). The pseudocode is given below.

Algorithm CoLinearChaining(V sorted by y-coordinate: v1, v2, . . . , vN)
(1) T .Insert(0, 0); I.Insert(0, 0);
(2) for j ← 1 to N do
(3) Ca[j]← (vj .d− vj .c+ 1) + T .Maximum(0, vj .c− 1);
(4) Cb[j]← vj .d+ I.Maximum(vj .c, vj .d);
(5) C[j]← max(Ca[j], Cb[j]);
(6) T .Insert(C[j], vj .d);
(7) I.Insert(C[j]− vj .d, vj .d);
(8) return maxj C[j];

4.3.4 Whole genome alignment

Pair-wise global alignment of two complete genomes is an enermous task
using optimal dynamic programming algorithms. Let us consider a high-
throughput algorithm exploiting the maximal unique matches (MUMs) stud-
ied earlier, and directly the case of having multiple genomes to be aligned.
Let A1, A2, . . . , Ad be the sequences of length ni for 1 ≤ i ≤ d. The algorithm
uses divide and conquer strategy: Find the maximum length MUM, say α,
shared by all sequences. This MUM has exactly one location in each sequence,
say ji for 1 ≤ i ≤ d, so it can be used for splitting the set into two indepen-
dent parts: A1

1...j1
, A2

1...j2
, . . . , Ad1...jd and A1

j1+|α|...n1
, A2

j2+|α|...n2
, . . . , Adjd+|α|...nd

.
Now apply the same recursively for each part until getting sufficiently short
sequences in each part; then apply optimal multiple alignment algorithm for
each part. The MUMs calculated this way work as anchors for the multiple
alignment.
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4.4 Exercises

1. Some mate pair sequencing techniques work by having an adapter
where the two tails of a long DNA fragment bind to, forming a circle.
This circle is cut in one random place and then X nucleotides apart
from it again, forming one long fragment and another shorter one (as-
suming X much smaller than circle length). The fragments containing
the adapter are fished out from the pool (together with some back-
ground noise). Then these adapter containing fragments are sequenced
from both ends to form the mate pair. Because of the random process
of cutting, some of the mate pair reads may overlap the adapter. Such
overlaps should be cut before using the reads any further.

a) Give an algorithm to cut the adapter from the reads. Take into ac-
count that short overlaps may appear by chance and that the read
positions have the associated quality values denoting the measure-
ment error probability.

b) How can you use the information about how many reads overlap
the adapter to estimate the quality of fishing?

2. Construct the Burrows-Wheeler transform of ACATGATCTGCATT and
simulate backward search on it with pattern CAT.

3. Construct the Burrows-Wheeler transform of ACATGATCTGCATT and
simulate 1-mismatch backward backtracking search on it with pattern
CAT.

4. Show that the values κ(α) are computed correctly with the backward
search on reverse FM-index algorithm variation described in the context
of BWA, i.e. the values the algorithm computes have the property that
there is no splitting of α to more pieces such that no piece would occur
in the text.

5. Give pseudocode for k-mismatches search using two-way BWT. You
may assume that a partitioning of the pattern is given together with
the number of errors allowed in each piece. Start the search from a
piece allowed to contain fewest errors.

6. What the read length m should be so that there is expected to be
no occurrences of the read in a random sequence of length n, when
allowing k mismatches?
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7. What the read length m should be so that there is expected to be
no occurrences of the read in a random sequence of length n, when
allowing k errors? (use approximation, the exact formula is difficult)

8. Consider different large scale variations in genome, like gene dublica-
tion, copy number variation, inversions, translocations, etc. How they
can be identified using read mapping? Is there an advantage of using
paired end reads?

9. Consider an array A[1, n] and a query A.RangeCount(l, r, i, j) = |{k |
i ≤ A[k] ≤ j, l ≤ k ≤ r}|.

a) Show that the balanced wavelet tree of Sect. 3.4 build on A can
support the RangeCount query in O(log n) time.

b) How can this query be exloited in RNA-sequencing read alignment
and in paired end read alignment? Hint. Use the structure on
suffix array of the reference genome.

10. Consider the overlap computation with stacks and suffix tree as de-
scribed in Sect. 4.2.3. Assume you have a compressed suffix tree rep-
resenting the concatenation of reads in small space, and it support
depth-first travelsal, retrieval of string depth, etc. common suffix tree
operations efficiently. How much extra space you need in the worst
case for the stacks, doubly-linked lists, etc. structures to implement
the overlap computation on top of the given compressed suffix tree?
Do you find any compression methods to improve the extra space re-
quirement? Hint. There are dynamic bit-vectors taking O(N) bits
space to represent a bit-vector of length N allowing logarithmic time
inserts and deletions. One can imagine representing stacks (whose val-
ues are increasing) with them, and concatenation of stacks with another
boundary vector.

11. Prove that the co-linear chaining algorithm works correctly even when
there are tuples containing other tuples in T or in P , i.e., tuples of
type (x, y, c, d) and (x′, y′, c′, d′) such that either x < x′ ≤ y′ < y or
c < c′ ≤ d′ < d (or both).

12. Modify the co-linear chaining algorithm to solve the following variations
of the ordered coverage problem.

a) Find the maximum ordered coverage of P such that all the tuples
involved in the coverage must overlap in P .
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b) Find the maximum ordered coverage of P such that the distance
in P between two consecutive tuples involved in the coverage is at
most a given threshold value α.

b) Find the maximum ordered coverage of P such that the distance
in T between two consecutive tuples involved in the coverage is at
most a given threshold value β.

13. Show that the values κ(α) in BWA are correct lower-bounds, i.e., there
cannot be any occurrence missed when using the rule k′ + κ(α) > k to
prune search space.
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