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Abstract. Jigsaw puzzles were originally constructed by painting a pic-
ture on a rectangular piece of wood and further cutting it into smaller
pieces with a jigsaw. The Jigsaw Puzzle Problem is to find an arrangement
of these pieces that fills up the rectangle in such a way that neighboring
pieces have “matching” boundaries with respect to color and texture.
While the general Jigsaw Puzzle Problem is NP-complete [6], we dis-
cuss its simpler version (called Rectangle Puzzle Problem) and study the
rectangle graphs, recently introduced by Bankevich et al., 2012 [3], for
assembling such puzzles. We establish the connection between Rectangle
Puzzle Problem and the problem of assembling genomes from read-pairs,
and further extend the analysis in [3] to real challenges encountered in ap-
plications of rectangle graphs in genome assembly. We demonstrate that
addressing these challenges results in an assembler SPAdes+ that im-
proves on existing assembly algorithms in the case of bacterial genomes
(including particularly difficult case of genome assemblies from single
cells).

SPAdes+ is freely available from http://bioinf.spbau.ru/spades.

1 Introduction

The recent proliferation of next generation sequencing technologies has enabled
new experimental opportunities and, at the same time, raised formidable com-
putational challenges. When the length of a repeat in the genome exceeds the
read length, it becomes difficult to “span” the flanking regions of this repeat in
the assembly. To alleviate this problem, sequencing technologies were extended
to produce read-pairs, pairs of reads separated by an estimated insert length. Be-
cause insert length is longer than the read length, read-pairs span longer repeats
and could potentially result in better assemblies. However, while assembling
single reads can be elegantly modeled by de Bruijn graphs [7], equally elegant
models for assembling read-pairs remain unknown [6].

Pevzner and Tang, 2001 [11] addressed this challenge by constructing the de
Bruijn graph and further checking if a path between two reads within a read-pair
satisfies the constraint imposed by the insert length. If only one such path exists,
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the read-pair is transformed into a virtual long read where the gap between reads
is filled in with the nucleotide sequence representing the found path.

While this and similar methods [9, 13] had a large impact on genome assem-
bly, they fail in repeat-rich regions, where there are multiple paths between the
reads within read-pairs. Recently, Medvedev et al., 2011 [10] introduced paired
de Bruijn graphs that directly incorporate read-pairs into the graph structure
and bypass the problem of multiple paths in previous approaches. However, the
paired de Bruijn graph concept was introduced as a theoretical framework and
is mainly aimed at an unrealistic case when the distance between reads within
read-pairs is exactly d for all read-pairs. To address this bottleneck, Bankevich
et al., 2012 [3] introduced the rectangle graph by generalizing the problem of a
string reconstruction from its paired substrings to a variation of a jigsaw puz-
zle problem. While fragment assembly is usually modeled as a 1-dimensional
overlapping puzzle (pieces correspond to individual reads), Bankevich et al. [3]
modeled assembly as a 2-dimensional non-overlapping puzzle (pieces correspond
to pairs of paths in the de Bruijn graph). However, while Bankevich et al. [3]
sketched the rectangle graph idea, the various questions arising in applications
of rectangle graphs to fragment assembly remained unaddressed.

The jigsaw puzzles were originally constructed by painting a picture on a
rectangular piece of wood and further cutting it into smaller pieces with a jigsaw.
The Jigsaw Puzzle Problem is to find an arrangement of these pieces that fills up
the rectangle in such a way that neighboring pieces have “matching” boundaries
with respect to color and texture. This paper extends the previous algorithmic
studies of the Jigsaw Puzzle Problem (that were motivated by the restoration
of archaeological artifacts [8]) to the problem of genome assembly from read-
pairs. In section 2, we describe a class of simple jigsaw puzzles (called rectangle
puzzles) and define the rectangle graph to assemble such puzzles. In section 3, we
establish the relation between the rectangle puzzle and genome assembly from
read-pairs and address the algorithmic challenges of “missing rectangles” (that
often arise in genome assembly) in the rectangle puzzle problem. In Section 4,
we apply the rectangle graph to bacterial genome assembly for both standard
(multicell) and more difficult single cell datasets.

2 Rectangle Puzzles

Consider n + 1 points x0 = 0 < x1 < . . . < xn on x-axis and m + 1 points
y0 = 0 < y1 < . . . < ym on y-axis. Points (xi, yj) form a 2-dimensional grid
consisting of n ·m rectangles filling up the grid with corners (0, 0), (0, ym), (xn, 0)
and (xn, ym). By analogy with the jigsaw puzzle assembly, we assume that the
grid is “painted” and the goal is to assemble small rectangles into the painted
grid in such a way that rectangles fully fill up the grid and that the colors at the
sides of neighboring rectangles match (valid assembly). To simplify the matters,
we will assume that the “orientation” of each rectangle is known.

Assembling the Ha Long Bay puzzle in Fig. 1a is trivial (for every rectangle,
there exists an unambiguous choice of neighboring rectangles). Fig. 1b shows
9 rectangles from this puzzle with 12 blue dotted lines connecting the unique
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matching sides of these rectangles. Fig. 1c shows a more difficult “frogs and
butterflies” puzzle (for every rectangle, there are multiple choices of neighboring
rectangles). Fig. 1d shows 9 rectangles from this puzzle with 6 dotted connections
showing all rectangles that match the upper side of the lower-left rectangle. Even
a seasoned puzzle enthusiast may have difficult time assembling this puzzle and
may end up with a wrong assembly shown in Fig. 1e 1. Below we introduce
a simpler type of puzzles (shown in Fig. 1f and called rectangle puzzles with
traversing curves) and discuss algorithms for their assembly.

Consider a continuous non-self-intersecting curve from (0, 0) to (xn, ym) in the
grid that crosses the sides of the rectangles at points p0 = (0, 0), p1, . . . , pN =
(xn, ym) (in their order along the curve). For convenience, we assume that points
on this curve are painted “red” and no other points in the puzzle is painted red.
The curve is called traversing 2 if pi and pi+1 belong to different sides of a
rectangle (for 0 ≤ i ≤ N − 1) and if there are exactly two red points on the sides
of each rectangle. For simplicity we assume that the direction of the traversing
curve within each rectangle is known and that the curve does not pass through
the corners of rectangles except for the points p0 = (0, 0) and pN = (xn, ym).

In the Rectangle Puzzle Problem we assume that red points in the grid form
a traversing curve and the goal is to assemble the grid from rectangles. More
precisely, we want to generate all valid assemblies of the rectangles into the grid.
Fig. 1g shows 9 rectangles from this puzzle with blue dotted lines connecting all
matching sides of these rectangles and illustrates that the number of matching
sides is reduced as compared to Fig 1d.

The red curve enters and leaves each rectangle R through sides that we call
source(R) and sink(R) correspondingly. We assume that every side S of a rect-
angle is assigned a label label(S) (that encodes the painting of this side) and
that differently painted sides are assigned different labels. We represent a rect-
angle R by a directed edge edge(R) from vertex label(source(R)) to vertex
label(sink(R)). For convenience, we assign identical and unique labels to the
sides of rectangles containing the first and the last points (0, 0) and (xn, ym) on
the red curve. It corresponds to closing the traversing curve as shown in Fig. 1g.

The concept of the traversing curve turns out to be useful for bringing the de
Bruijn graph concept in the domain of puzzle assembly. Below, we describe an
application of this concept for assembling rectangle puzzles.

Rectangle Graphs. The concept of rectangle graphs was first described in [3].
Given a rectangle puzzle, its rectangle graph is constructed as follows:

– Define a graphG with n·m isolated edges (on 2·n·m vertices) by introducing
a directed edge edge(R) for each rectangle R. Starting and ending vertices of
edge(R) are labeled as label(source(R)) and label(sink(R)), correspondingly.

– The rectangle graph is formed by gluing identically labeled vertices in G
(Fig. 1h).

1 Polynomial algorithms for assembling such puzzles remain unknown.
2 Intuitively, a traversing curve is a curve that “visits” every rectangle exactly once.
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Fig. 1. Rectangle puzzles and rectangle graphs. a) A simple puzzle on the background
image of Ha Long Bay. Points x0, . . . , x3 on x-axis and y0, . . . , y3 on y-axis form a
3× 3 grid. (b) Nine rectangles with twelve matching sides in the Ha Long bay puzzle
(shown by blue dotted connections) illustrate that there exists an unambiguous choice
of matching sides. (c) A more difficult “frogs and butterflies” puzzle with multiple
ambiguous choices of matching sides. (d) Nine rectangles with multiple matching sides
(only some of them are shown) illustrate ambiguities in the selection of matching sides.
(e) Failed attempt at the “frogs and butterflies” puzzle assembly. (f) The traversing
curve in the “frogs and butterflies” puzzle makes the assembly easier. (g) Gluing sides
of the rectangles in the “frogs and butterflies” puzzle. (h) The rectangle graph with
2 Eulerian cycles: R1R2R3R6R5R4R7R8R9 and R1R8R3R6R5R4R7R2R9 where only
the first represents a valid solution. (i) Traversing line and subgrid assembly. The red
traversing curve is replaced by a line. We are interested in assembling the subgrid
formed by all rectangles crossed by the red line.
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Obviously, the rectangle graph is the de Bruijn graph on strings of length 2 in
the alphabet of labels (each label encodes a side of a rectangle). Each rectangle
assembly corresponds to an Eulerian cycle in the rectangle graph. All Eulerian
cycles can be generated using the BEST [1] theorem thus reducing the rectangle
puzzle assembly to enumerating Eulerian cycles in the rectangle graph [2]. How-
ever, not every Eulerian cycle corresponds to a valid solution of the rectangle
puzzle since some solutions may correspond to: (i) an assembly where rectangles
overlap, (ii) an assembly that does not form a rectangular grid, (iii) an assem-
bly where some sides of rectangles do not match. While the number of Eulerian
cycles may be large, it is easy to check if a given Eulerian cycle corresponds to
a valid rectangle puzzle assembly in linear time.

Below we limit attention to traversing lines (rather than curves) and relax
the condition of visiting all rectangles (Fig. 1i): The traversing line y = x + d
visits some (not necessary all) rectangles. In this case we are only interested
in assembling rectangles into a subgrid formed by rectangles crossed by the red
line, rather than assembling all rectangles into the full grid. For d �= 0, the
traversing line does not necessarily starts at (0, 0) or ends at (xn, ym). In this
case, every Eulerian cycle corresponds to a valid subgrid assembly. It is easy
to see that in the case of the traversing line (in difference from the traversing
curve) no additional checks are needed to verify that the assembly (given by an
Eulerian cycle) is valid. Below we continue using the term “rectangle puzzle”
while referring to the case of traversing lines (rather than traversing curves).

3 Rectangle Puzzles and Genome Assembly

Generating a Rectangle Puzzle from a Genome
We represent a genome as a circular string over the alphabet of nucleotides
{A, T,C,G}. A k-mer is a string of length k in the alphabet of nucleotides.

Given a k-mer s = s1 . . . sk, we define prefix(s) = s1 . . . sk−1 and suffix(s) =
s2 . . . sk. Given a Genome, the de Bruijn graph DB(Genome, k) is defined on
the set of vertices representing all (k− 1)-mers from Genome and has a directed
edge (prefix(s), suffix(s)) for each k-mer s appearing in Genome. It is easy to
see that Genome defines an Eulerian cycle in its de Bruijn graph.

A vertex v in a graph precedes (follows) a vertex w if there exists an edge
from v to w (from w to v). The indegree (outdegree) of a vertex is the number of
vertices preceding (following) it. A vertex is called a branching vertex if either
its indegree or its outdegree is larger than 1. A path in a graph is called a non-
branching path if all vertices in this path (with exception of the first and the last
ones) have indegree and outdegree both equal to 1.

The de Bruijn graph DB(Genome, k) partitions (k − 1)-mers from Genome
into branching (if they correspond to branching vertices in DB(Genome, k)) and
non-branching. Similarly, all positions in Genome are partitioned into branch-
ing (if the (k− 1)-mer starting at this position is branching) and non-branching.
For example, ACG, CGT, GTT, and TCT are the branching 3-mers in Genome
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(shown as red points in Fig. 2a) while 0, 1, 7, 9, 13, 14, 19, 21, 24 are branching
positions (shown as red points in Fig. 2b). For convenience, we assume that the
circular genome “starts” at a branching position 0 and “ends” at the branching
position N .3

We denote the branching positions in Genome as x0 = 0 < x1 < . . . xn = N
and define the grid consisting of n · n rectangles formed by points x0 = 0 <
x1 < . . . < xn = N on x axis and the same list of points on y-axis. The segment
of Genome between positions xi and xi+1 corresponds to a non-branching path
in the de Bruijn graph. Thus, every rectangle corresponds to a pair of non-
branching paths. The red line is defined by the equation y = x + d 4. Given an
integer d, we define Puzzle(Genome, k, d) as a set of rectangles crossed by the
red line. Each rectangle in this set is uniquely defined by a pair of non-branching
paths and the position of a red line segment within the rectangle.

Given a position x in Genome we define ¯(x) as the (k − 1)-mer starting at
this position. Thus, each integer 2D coordinate (x, y) defines a paired (k − 1)-
mer (a|b), where a = ¯(x) and b = ¯(y). The label (“paint”) of position (x, y) in
the grid is defined as ( ¯(x), ¯(y), color). where color is “red” or “white” depending
on whether (x, y) is located on the red line or not. The label of a side of a
rectangle is defined as an ordered list of all labels of (integer) points located on
this side. It is easy to see that there exists an alternative simpler representation
of this label, i.e., by a paired (k − 1)-mer corresponding to the red position on
the corresponding side 5. A rectangle formed by a pair of non-branching paths
(p, p′) together with the red line segment on it can be represented as a triple
(p, p′, t) where t is the position of the red line in the rectangle relative to the
low left corner of the rectangle. See Fig. 2b for an example of rectangle puzzle
constructed from a genome.

We mention that since the labels along the red line completely define the
genome, assembling the red line from the rectangles results in assembling the
genome. However, this puzzle may appear useless for genome assembly tasks
since the puzzle itself was originally created from the genome that we are trying
to assemble in the first place! Below we show that the rectangle puzzle can be
created from read-pairs without knowing the genome.

Generating a Rectangle Puzzle from Exact-Distance Read-Pairs
A (k, d)-mer is a pair of k-mers separated by d in the genome. If two reads
r′1 . . . r′n and r′′1 . . . r′′n within a read-pair are separated by an exact distance d,
one can extract (k, d)-mers (r′i . . . r

′
i+k−1|r′′i . . . r′′i+k−1) from them (for 1 ≤ i ≤

n− k + 1). Iterating over all read-pairs results in a large set of (k, d)-mers. For
simplicity, we unrealistically assume that the resulting set contains all and only
(k, d)-mers from the genome. Before showing that the Puzzle(Genome, k, d) can
be constructed only from the (k, d)-mers set without knowing the genome, we

3 Since the genome is circular, these two positions represent the same site in the
genome and the same vertex in the de Bruijn graph.

4 Below we will define d as the median distance between reads within a read-pair.
5 Since it uniquely defines the label of all other points on the side.
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introduce multirectangle — a different but equivalent representation of rectangle
pieces in the rectangle puzzle 6 (Fig. 3a).

Given r rectangles: (p, p′, t1), . . . , (p, p′, tr) formed by the same pair of non-
branching paths (p, p′) but having different positions of their red line segments,
we define a multirectangle R∗ as a rectangle that is formed by the same pair of
non-branching paths (p, p′) (with horizontal edges p and vertical edges p′) but
with r red line segments and represent the multirectangle as (p, p′, {t1, . . . , tr}).

Let Puzzle∗(Genome, k, d) denote a set of multirectangles by transforming
rectangles in Puzzle(Genome, k, d) that are formed by the same pairs of non-
branching paths into single multirectangles. Within each multirectangle R∗ =
(p, p′, {t1, . . . tr}) ∈ Puzzle∗(Genome, k, d), the red (integer) points on these r
line segments represent all (k − 1, d)-mers (a|b) of the genomes such that a ∈ p
and b ∈ p′ 7. Additionally, each (k − 1, d)-mer (a|b) such that a ∈ p and b ∈ p′,
corresponds to a unique position in the multirectangle. These two observations
lead to a simple approach for constructing the Puzzle∗(Genome, k, d) from the
(k, d)-mers set: (1) Construct the de Bruijn graph DB(ReadPairs, k) from indi-
vidual reads in read-pairs; (2) For each pair of non-branching paths (p, p′) in the
de Bruijn graph that are connected by (k, d)-mers (i.e., there exists at least one
(k − 1, d)-mer (a|b) such that a ∈ p and b ∈ p′), we draw a multirectangle with
horizontal edges p and vertical edges p′, together with red points corresponding
to (k − 1, d)-mer that connect p and p′. These points form a single or multiple
red line segments within the multirectangle.

From the set of multirectangles, we further transform it into the rectangle
puzzle by replacing each multirectangle by separated rectangles, each containing
a single red line segment (see Fig. 3a).

Generating a Rectangle Puzzle from Inexact-Distance Read-Pairs
We now show how to construct the rectangle puzzle in a more realistic case
of read-pairs with inexact distances between reads. Given integers d and Δ,8 a
pair of k-mers (a|b) is called a (k, d,Δ)-mer in Genome if it is a (k, d0)-mer of
Genome for some d0 ∈ [d−Δ, d+Δ]. While the set of all (k−1, d)-mer ofGenome
forms a line (d) : y = x + d in the 2D grid, a set of (k − 1, d,Δ)-mers fills up a
band of width Δ around (d), called a Δ-cloud. In this case, the rectangle puzzle
needs to be redefined since: (1) red line segments in rectangles are substituted
by red Δ-clouds, making it difficult to infer the position of the red line segments
within the rectangles; (2) some new rectangles with red points are added into
the original set of rectangles crossed by the red line (false rectangles); (3) some
rectangles crossed by the red line are now missing (missing rectangles). Below
we address these complications.

6 While introducing the multirectangle concept does not have any analogy to the
jigsaw puzzle assembly, it simplifies the proof that the Puzzle(Genome, k, d) can be
constructed only from the set of all (k, d)-mers of the unknown genome.

7 With a minor exception for points that lie on the edges of the multirectangles.
8 Integer d refers to the median distance between reads within a read-pair while integer
Δ refers to the maximum deviation of the distance between the reads within a read-
pair.
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Fig. 2. The rectangle puzzle and the rectangle graph of the genome Genome =
ACGTCAAGTTCTGACGTGGGTTCT . (a) De Bruijn graph DB(Genome, k) with
k = 4 can be constructed from Genome or individual reads generated from Genome.
The graph has 4 branching vertices (ACG, CGT, GTT, TCT) colored red that cor-
respond to 8 branching positions in Genome. (b) Generating rectangle puzzle when
Genome is known. Genome is represented as a sequence of 3-mers in both vertical and
horizontal axes. The 3-mers corresponding to the branching vertices in the de Bruijn
graph are colored red. The set of all (3, 5)-mers (pair of 3-mers separated by 5 nu-
cleotides in the genome) forms a line (d) : y = x+ 5 on the grid. (c) Rectangle graph
is obtained by gluing sides of rectangle with the same labels. (d) The same as figure
(b) but with rectangles in the dash box (R5, R6, R7) removed. R5, R6, R7 represent
3 missing rectangles. (e) The same as figure (c) but with rectangles in the dash box
(R5, R6, R7) missing. This results in two dead-ends vertices (sides of R4 and R8) in the
rectangle graph.

For each pair of non-branching path (p, p′) in the de Bruijn graph that is con-
nected by (k−1, d,Δ)-mers, we form a multirectangle with horizontal edge p and
vertical edge p′ together with red points corresponding to the (k− 1, d,Δ)-mers
(a, b) where a ∈ p and b ∈ p′. While in the case of the exact distance and perfect
coverage, red points define a collection of line segments in the multirectangle, in
the case of inexact distance these points fall into a band of width Δ around these
(unknown) red line segments. Thus, red points in each multirectangle should be
somehow transformed into the red line segments, a difficult task. Below, we intro-
duce the notion of (k−1, d)-tuple, which enables us to draw all possible positions
of the red line segments, and later, using the red points in the multirectangle to
classify these segments into correct/incorrect red line segments.

Given the de Bruijn graph DB, we define a (k−1, d)-tuple as a pair of (k−1)-
mers (a|b) such that there exists a path of length d between vertex a and vertex
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b in DB. Obviously, every (k− 1, d)-mer in Genome corresponds to a (k− 1, d)-
tuple in DB (but not vice versa).

Given a multirectangle formed by a pair of paths (p, p′) and a collection of
red points within it, we generate all possible 9 (k − 1, d)-tuples (a|b) such that
a ∈ p and b ∈ p′. These (k − 1, d)-tuples define 45 degree line segments within
this multirectangle. Those (k − 1, d)-tuples that are also (k, d)-mers, form cor-
rect red line segments, while tuples that are not (k, d)-mers, form incorrect line
segments. However, such a classification is unknown and we attempt to infer
the correct/incorrect red line segments by the red points (corresponding to the
(k − 1, d,Δ-mers) in the multirectangle.

Intuitively, correct line segments usually lie close to the “center” of red Δ-
clouds, while the incorrect ones have few red points surrounding them. However,
correctly classifying these segment into correct/incorrect segments still remains
a difficult problem10, since in the case of closely located red line segments, it is
difficult to rule out which of them is correct (or whether they both are correct)
and often forces us to combine such segments into a a cluster (see Fig. 3b) within
an assumption that at least one of red line segments in the cluster represents a
correct red segment. Below we describe the rectangle graph approach in the case
when we deal with clusters of red segments.

In this case, we still represent each rectangle R as a single edge edge(R) but
use multiple labels for its starting and ending vertices (in the past we labeled
these vertices by a single label). Specifically, we label its starting (ending) vertex
by a multiset of all starting (ending) points of red segments. The multilabeled
rectangle graph is defined as follows:

– Form a directed edge edge(R) for each rectangleR. Starting (ending) vertices
of edge(R) are labeled by a set of labels of all starting (ending) points of the
red segment within this rectangle.

– The rectangle graph is formed by gluing vertices in G if their sets of labels
overlap.

Given a multirectangle R, SPAdes+ identifies T clusters of line segments that are
supported by ReadPairs using a variation of the approach from [3]. It further
generates T rectangles (each rectangle with a single cluster of red segments as in
Fig. 3b) and applies the multilabeled rectangle graph to assemble the resulted
rectangles.

Missing Rectangles. We now consider the case when some rectangles are miss-
ing and ask whether the missing rectangles can be somehow reconstructed to
complete the puzzle. Fig. 2d illustrates the case of 3 missing rectangles (R5, R6,
and R7) resulting in a “gap” in the rectangle graph between vertices (GTT |GAG)
and (ACG|GGT ) in Fig. 2e. These dead-ends vertices (i.e., vertices with indegree
or outdegree zero) provide a clue that some rectangles are missing and, as we
show below, often allow one to recover the missing rectangles.

9 If no such (k − 1, d)-tuple exists, we remove the multirectangle.
10 A similar problem was addressed in [3,12].
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Fig. 3. Rectangles and red line segments. a) Multirectangle: an equivalent represen-
tation of multiple rectangles that are formed by the same non-branching paths but
have different positions of the red line segments. b) A multirectangle is transformed
into 2 rectangles (one of them represents a cluster of two closely positioned red line
segments). Note that one segment (the longest) in the multirectangle was classified as
incorrect (there is no red point around this segment) and further being removed.

Consider two points with integer coordinates (x, x + d) and (x + t, x + d +
t) in the grid located at the intersection of the red line with the sides of the
rectangles. We refer to labels of these points as (a|b) and (a′|b′), correspondingly.
For example, points (7,11) and (13,17) in Fig 2d correspond to paired (k−1)-mers
(GTT |GAG) and (ACG|GGT ). Given Genome, we define Rectangles((x, y) →
(x′, y′)) as the set of all rectangles crossed by the segment of the red line between
points (x, x + d) and (x + t, x + d + t). For example, Rectangles((7, 11) →
(13, 17)) = {R5, R6, R7}.

Fig. 2c presents an idealized case when Genome as well as the points (7,11)
and (13,17) (that contain vertices from some missing rectangles) are known. In
reality, this information is not available in genome assembly projects. However,
one knows the de Bruijn graph and can guess the labels of the points (7,11) and
(13,17) (as labels of the dead-ends vertices in the rectangle graph in Fig. 2e). This
raises the question whether the missing rectanglesRectangles((7, 11)→ (13, 17))
can be inferred from the paired (k − 1)-mers (GTT |GAG) and (ACG|GGT )
(that represent labels of points (7,11) and (13,17)) without knowing the coor-
dinates of these points. Given paired (k − 1)-mers (a|b) and (a′|b′), below we
define the set of rectangles Rectangles((a|b) → (a′|b′)) that often approximates
Rectangles((x, y) → (x′, y′)) well.

Given an integer t, paired (k−1)-mers (a|b) and (a′|b′) are called t-tied if there
exist instances of a, b, a′, b′ located, respectively, at positions x, y, x+ t, y + t in
Genome. Labels of every two red points in the grid represent t-tied paired (k−1)-
mers. Below we relax the definition of t-tied paired (k−1)-mers for the case when
Genome is unknown and only the de Bruijn graph of Genome is given.

Given an integer t and a de Bruijn graph DB, paired (k− 1)-tuples (a|b) and
(a′|b′) are called t-linked if there exists a path p = p0 . . . pt of length t between
a and a′ and a path q = q0 . . . qt of the same length between b and b′ in the
de Bruijn graph DB. Obviously, every t-tied paired k-mers is also t-linked, but
not vice versa. Paths p and q define t+ 1 paired (k − 1)-tuples (pi|qi) that may
potentially belong to the red line (since the notion of “t-linked” is a relaxation
of the notion of “t-tied”). We define Rectanglesp,q((a|b) → (a′|b′)) as the set of
all rectangles that contain at least one point (pi|qi) (for 0 < i < t). We will often
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refer to Rectanglesp,q((a|b) → (a′|b′)) as simply Rectangles((a|b) → (a′|b′))
when it does not cause a confusion.

For example, (GTT |GAG) and (ACG|GGT ) are 6-linked since there exists
a path p (q) of length 6 from GTT to ACG (from GAG to GGT) in the de
Bruijn graph in Fig. 2a. The vertices of the path p(q) are located on 2 (3) non-
branching paths in the de Bruijn graph thus contributing to 2×3 = 6 rectangles.
Only 3 of these 6 rectangles (R5, R6, and R7) contain red points implying that
Rectangles((GTT |GAG) → (ACG|GGT )) = {R5, R6, R7}.

This example illustrates that one can close the gap between the dead-ends ver-
tices (a|b) and (a′|b′) in the rectangle graph by simply finding t-linked dead-ends
in the rectangle graph (for small values of t), generating the set of missing rect-
angles Rectangles((a|b) → (a′|b′)), and adding these missing rectangles to the
pool of previously generated rectangles. Finally, one can construct the rectangle
graph from the resulting enlarged set of rectangles.

4 Results

Assembly Datasets. To evaluate rectangle graph algorithm for genome as-
sembly, we assembled two paired-end datasets from [5]. All these datasets are
Illumina short reads with 100bp read length, 600× coverage. The first dataset is

Table 1. Comparison of assemblies for single-cell (ECOLI-SC) and standard (ECOLI-
MC) datasets

Assembler #
c
o
n
ti
g
s

N
G
5
0
(b

p
)

L
a
rg

e
st

(b
p
)

T
o
ta

l
(b

p
)

C
o
v
e
re
d

(%
)

M
is
a
ss
e
m
-

b
li
e
s

M
is
m
a
tc
h
e
s

(p
e
r
1
0
0
k
b
p
)

C
o
m
p
le
te

g
e
n
e
s

Single-cell E. coli (ECOLI-SC)

EULER-SR 1344 26662 126616 4369634 87.8 21 11.0 3457
SOAPdenovo 1240 18468 87533 4237595 82.5 13 99.5 3059
Velvet 428 22648 132865 3533351 75.8 2 1.9 3117
Velvet-SC 872 19791 121367 4589603 93.8 2 1.9 3654
E+V-SC 501 32051 132865 4570583 93.8 2 6.7 3809
SPAdes-single 1164 42492 166117 4781576 96.1 1 6.2 3888
SPAdes 1024 49623 177944 4790509 96.1 1 5.2 3911
SPAdes+ 509 56842 209690 4550761 95.5 0 3.6 3975

Normal multicell sample of E. coli (ECOLI-MC)

EULER-SR 295 110153 221409 4598020 99.5 10 5.2 4232
SOAPdenovo 192 62512 172567 4529677 97.7 1 26.1 4141
Velvet 198 78602 196677 4570131 99.9 4 1.2 4223
Velvet-SC 350 52522 166115 4571760 99.9 0 1.3 4165
E+V-SC 339 54856 166115 4571406 99.9 0 2.9 4172
SPAdes-single 445 59666 166117 4578486 99.9 0 0.7 4246
SPAdes 195 86590 222950 4608505 99.9 2 3.7 4268
SPAdes+ 192 91893 221829 4593658 99.9 2 3.5 4274

The best assembler by each criteria is indicated in bold. EULER-SR 2.0.1, Velvet 0.7.60, Velvet-
SC, and E+V-SC were run with vertex size 55. SOAPdenovo 1.0.4 was run with vertex size 27–31.
SPAdes-single refers to SPAdes without repeat resolution, (without using read-pairs information) for
comparison with E+V-SC, which does not use read-pairs information. SPAdes, SPAdes-single and
SPAdes-rectangle iterated over edge sizes k = 22, 34, 56.



260 N. Vyahhi et al.

the multiple cell E.coli dataset with average insert size 215 bp, and denoted as
ECOLI-MC. The second dataset is single cell E.coli dataset with average insert
size 266 bp.

Benchmarking. We compare our SPAdes+ algorithm with EULER-SR [4],
SOAPdenovo [9], Velvet [13], Velvet-SC [5], E+V-SC [5] and SPAdes [3]. See
Table 1. Our rectangle graph algorithm outperforms other assemblers in most
metrics. Improvement is more significant for single cell dataset. On ECOLI-SC
dataset, SPAdes+ produces contigs with higher N50 (56,842 bp vs 49,623 by
SPAdes), with higher largest contig (209,690 bp vs 177,944 by SPAdes) and
no misassemblies, also captures 64 additional E. coli genes (3975 vs 3911 by
SPAdes).

For both E. coli datasets, the rectangle graph module works for less than 10
seconds and using less than 100 MB RAM given (1) the de Bruijn graph has
been already constructed and (2) mapping information of all paired-end reads
to the de Bruijn graph has been calculated (using other modules in [3].

5 Conclusion

In this paper, we modeled the problem of genome assembly using read-pairs
as a simple jigsaw puzzle and reintroduced the notion of rectangle graph [3]
in a more intuitive way. We further addressed algorithmic challenges that arise
in the application of rectangle graphs that have not been addressed in [3]. We
demonstrated that by addressing these algorithmic challenges, the quality of
the assembly significantly improves for both single cell and multicell bacterial
datasets.
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