Algorithms in Genome Research Winter 2012/2013

Exercises

Number 1, Discussion: 26. October 2012

- 1. Remember physical mapping by clone-probe hybridization.
 - (a) What are the main assumptions when the problem is modelled as the consecutive ones problem?
 - (b) Discuss experimental reasons why the assumptions do not hold in practice.
- 2. Solve the consecutive-ones problem for the following clone-probe hybridization matrix M (if possible).

		$\begin{pmatrix} 0 \end{pmatrix}$	1	1	0	0	0	0	0
		0	0	0	1	1	1	0	0
		0	0	0	1	1	1	0	0
		0	1	0	0	0	1	1	0
М	_	1	0	0	1	0	0	0	1
IVI	=	0	1	1	0	1	1	1	0
		0	1	0		1		1	0
		1	0	0	1	1	0	0	1
		0	1	1			0	1	0
		1	0	0	1	1	1	1	0 /

- 3. Apply the Lander-Waterman statistics to fill out the following table for
 - (a) Human Whole Genome Shotgun Sequencing $(G = 3 \times 10^9, L = 500)$
 - (b) Human BAC sequencing (G = 300000, L = 500)

Coverage	#reads	#nt	%genome	mean	mean
		sequences	sequenced	#contigs	contig length
a	N = aG/L	aG	$(1 - e^{-a})$	$(G/L)ae^{-a}$	$(e^{-a}-1)L/a$
0.5					
1.0					
2.0					
5.0					
7.0					
10.0					
15.0					

(Hint: of course, you can also write a short program to calculate a more detailed table or plot the function as a graph!)

4. Find the shortest common superstring of the following sequences:

ATAGCC
ATATAT
ATATCG
CGGGAC
GACATA
GACTAT
GCCGGT
GGTATA
TATATA
TATCGG

Is the coverage uniform? If not, find a layout with a more uniform coverage.