
5.6 Score and Cost Variations for Alignments

S(v) =

0 if v = (i, 0) for 0 ≤ i ≤ |x|,

0 if v = (0, j) for 0 ≤ j ≤ |y|,

max

0,

S
(

(i− 1, j − 1)
)

+ score(x[i], y[j]),

max0≤i′<i

{

S
(

(i− i′, j)
)

− g(i− i′)
}

,

max0≤j′<j

{

S
(

(i, j − j′)
)

− g(j − j′)
}

if v = (i, j) for

{

1 ≤ i ≤ |x|,

1 ≤ j ≤ |y|

}

,

max
0≤i≤|x|
0≤j≤|y|

{

S
(

(i, j)
)}

if v = v•.

Table 5.4: Smith-Waterman algorithm for local alignment with general gap costs

the framework of general gap costs. We shall see, however, that a quadratic-time algorithm
(O(mn) time) exists; the idea is due to Gotoh (1982). We explain it for global alignment;
the required modifications for the other alignment types are easy.

Recall that S
(

(i, j)
)

is the alignment score for the two prefixes x[1 . . . i] and y[1 . . . j]. In
general, such a prefix alignment can end with a match/mismatch, a deletion, or an insertion.
In the indel case, either the gap is of length ℓ = 1, in which case its cost is g(1) = d, or its
length is ℓ > 1, in which case its cost can recursively be computed as g(ℓ) = g(ℓ− 1) + e.

The main idea is to additionally keep track of (i.e., to tabulate) the state of the last alignment
column. In order to put this idea into an algorithm, we define the following additional two
matrices:

V
(

(i, j)
)

:= max

{

score(A)

∣

∣

∣

∣

A is an alignment of the prefixes x[1 . . . i] and y[1 . . . j]
that ends with a gap character in y

}

,

H
(

(i, j)
)

:= max

{

score(A)

∣

∣

∣

∣

A is an alignment of the prefixes x[1 . . . i] and y[1 . . . j]
that ends with a gap character in x

}

.

Then

S
(

(i, j)
)

= max
{

S
(

(i− 1, j − 1)
)

+ score(x[i], y[j]), V
(

(i, j)
)

, H
(

(i, j)
)}

,

which gives us a method to compute the alignment matrix S, given the matrices V and H. It
remains to explain how V and H can be computed efficiently. Consider the case of V

(

(i, j)
)

:
A gap of length ℓ ending at position (i, j) is either a gap of length ℓ = 1, in which case we
can easily compute V

(

(i, j)
)

as V
(

(i, j)
)

= S
(

(i− 1, j)
)

− d. Or, it is a gap of length ℓ > 1,
in which case it is an extension of the best scoring vertical gap ending at position (i− 1, j),
V
(

(i, j)
)

= V
(

(i− 1, j)
)

− e. Together, we see that for 1 ≤ i ≤ m and 0 ≤ j ≤ n,

V
(

(i, j)
)

= max
{

S
(

(i− 1, j)
)

− d, V
(

(i− 1, j)
)

− e
}

.

Similarly, for horizontal gaps we obtain for 0 ≤ i ≤ m and 1 ≤ j ≤ n,

H
(

(i, j)
)

= max
{

S
(

(i, j − 1)
)

− d, H
(

(i, j − 1)
)

− e
}

.

The border elements are initialized in such a way that they do not contribute to the maximum
in the first row or column, for example:

V
(

(0, j)
)

= H
(

(i, 0)
)

= −∞.

53

