
Algorithmica (1995) 14:249-260 Algorithmica
�9 1995 Springer-Verlag New York Inc.

On-Line Construction of Suffix Trees I

E. Ukkone n z

Abstract. An on-line algorithm is presented for constructing the suffix tree for a given string in time
linear in the length of the string. The new algorithm has the desirable property of processing the string
symbol by symbol from left to right. It always has the suffix tree for the scanned part of the string
ready. The method is developed as a linear-time version of a very simple algorithm for (quadratic size)
suffix tries. Regardless of its quadratic worst case this latter algorithm can be a good practical method
when the string is not too long. Another variation of this method is shown to give, in a natural way,
the well-known algorithms for constructing suffix automata (DAWGs).

Key Words. Linear-time algorithm, Suffix tree, Suffix trie, Suffix automaton, DAWG.

1. Introduction. A s u f f i x t r e e is a trie-like data structure representing all suffixes
of a string. Such trees have a central role in many algori thms on strings, see, e.g.,
[3], [7], and [2]. It is quite c o m m o n l y felt, however, that the linear-time suffix
tree algori thms presented in the literature are rather difficult to grasp.

The main purpose of this paper is an a t tempt to develop an understandable
suffix tree construct ion based on a natural idea that seems to complete our picture
of suffix trees in an essential way. The new algori thm has the impor tan t proper ty
of being on-line. It processes the string symbol by symbol f rom left to right, and
always has the suffix tree for the scanned par t of the string ready. The algori thm
is based on the simple observat ion that the suffixes of a string T i = t 1 . " ti can
be obtained from the suffixes of string T ~-~ = t~ . . . t i_ 1 by catenating symbol t i at
the end of each suffix of T ~- 1 and by adding the empty suffix. The suffixes of the
whole string T = T" = q t 2 " " t , can be obtained by first expanding the suffixes
of T O into the suffixes of T 1 and so on, until the suffixes of T are obtained from
the suffixes of T"-1.

This is in contrast with the method by Weiner [13] that proceeds right to left
and adds the suffixes to the tree in increasing order of their length, starting from
the shortest suffix, and with the method by McCreight [9] that adds the suffixes
to the tree in decreasing order of their length. It should be noted, however, that
despite the clear difference in the intuitive view on the problem, our a lgori thm
and McCreight 's a lgori thm are in their final form functionally rather closely
related.

1 This research was supported by the Academy of Finland and by the Alexander von Humboldt
Foundation (Germany).
2 Department of Computer Science, University of Helsinki, P.O. Box 26 (Teollisuuskatu 23), FIN-00014
University of Helsinki, Finland. ukkonen@cs.Helsinki.FI.

Received March 4, 1993; revised December 8, 1993. Communicated by K. Mehlhorn.

250 E. Ukkonen

Our algorithm is best understood as a linear-time version of another algorithm
from [12] for (quadratic-size) suffix tries. The latter very elementary algorithm,
which resembles the position tree algorithm in [8], is given in Section 2. Un-
fortunately, it does not run in linear t ime--i t takes time proportional to the size
of the suffix trie which can be quadratic. However, a rather transparent modifica,
tion, which we describe in Section 4, gives our on-line, linear-time method for
suffix trees. This also offers a natural perspective which makes the linear-time
suffix tree construction understandable.

We also point out in Section 5 that the suffix trie augmented with the
suffix links gives an elementary characterization of the suffix automata (also known
as directed acyclic word graphs or DAWGs). This immediately leads to an
algorithm for constructing such automata. Fortunately, the resulting method is
essentially the same as already given in [4]-[6]. Again it is felt that our new
perspective is very natural and helps in understanding the suffix automata
constructions.

2. Constructing Suffix Tries. Let T = t i t 2 . . . t, be a string over an alphabet E.
Each string x such that T = uxv for some (possibly empty) strings u and v is a
substring of T, and each string T~ = t i . . . t, where 1 _< i ___ n + 1 is a suffix of T;
in particular, T~ +1 = e is the emp ty suffix. The set of all suffixes of T is denoted
a(T). The suffix trie of T is a trie representing a(T).

More formally, we denote the suffix trie of T as S T r i e (T) = (Q • {/} , root,
F, g, f) and define such a trie as an augmented DFA (deterministic finite-state
automaton) which has a tree-shaped transition graph representing the trie for a(T)
and which is augmented with the so-called suffix function f and auxiliary state
/ . The set.Q of the states of STrie(T) can be put in a one-to-one correspondence
with the substrings of T. We denote by s the state that corresponds to a substring x.

The initial state root corresponds to the empty string e, and the set F of the
final states corresponds to a(T). The transition function g as defined as g(2, a) = y
for all 2, y in Q such that y = xa, where a ~ E.

The suffix funct ion f is defined for each state ~ e Q as follows. Let ~ ~ root. Then
x = ay for some a ~ E, and we set f (2) = Y. Moreover, f (root) = _1_.

Auxiliary state _1_ allows us to write the algorithms in what follows such that
an explicit distinction between the empty and the nonempty suffixes (or, between
root and the other states) can be avoided. State _L is connected to the trie by
g(L, a) = root for every a ~ E. We leave f (• undefined. (Note that the transitions
from _1_ to root are defined consistently with the other transitions: State L
corresponds to the inverse a - 1 of all symbols a ~ E. Because a - la - e, we can set
g(• a) = root as root corresponds to e.)

Following [-9] we call f i r) the suffix link of state r. The suffix links are utilized
during the construction of a suffix tree; they also have many uses in the
applications (e.g., [11] and [,12]).

Automaton STrie(T) is identical to the Aho-Corasick string matching auto-
maton ['1] for the key-word set {Till < i _ n + 1} (the suffix links are called
failure transitions in [1]).

On-Line Construction of Suffix Trees

e: _1_ c : _1_ ca : .I_ cac :

c a c a

a c

251

caca: ~ cacao: ~/~

c a

Fig. 1. Construction of STrie(cacao): state transitions are shown by bold arrows, failure transitions
by thin arrows. Note: Only the last two layers of suffix links are shown explicitly.

I t is easy to cons t ruc t STrie(T) on-line, in a lef t - to-r ight scan over T, as follows.
Let T ~ denote the prefix t 1 . . . t~ of T for 0 < i < n. As in te rmedia te results the
cons t ruc t ion gives STrie(T ~) for i = 0, 1 , n. F igu re 1 shows the different phases
of cons t ruc t ing STrie(T) for T = cacao.

The key obse rva t ion expla in ing how STrie(T i) is ob ta ined f rom STrie(T ~- 1) is
tha t the suffixes of T i can be ob ta ined by ca tena t ing t~ to the end of each suffix
of T ~- 1 and by add ing an empty suffix. Tha t is,

a(T i) = a(T i- x)t i w {~}.

By definit ion, STrie(T I-1) accepts o'(Ti-1). To make it accept a(Ti), we mus t
examine the final s tate set F i_ 1 of STrie(T ~- 1). If r e F~_ 1 does not a l ready have
a t i - t ransi t ion, then such a t rans i t ion f rom r to a new state (which becomes a new
leaf of the trie) is added. The states to which there is an o ld o r new q- t rans i t ion
f rom some state in F~_ 1 cons t i tu te toge ther with root the final states F~ of STrie(T~).

252 E. Ukkonen

The states r ~ Fi_ 1 that get new transitions can be found using the suffix links
as follows. The definition of the suffix function implies that r ~ F~_ ~ if and only
if r = i f (t1 "'" t~_ 1) for some 0 < j < i - 1. Therefore, all states in F~_ 1 are on the
path of suffix links that starts from the deepest state tl "'" t i- 1 of STrie(T ~- 1) and
ends at _1_. We call this important path the boundary path of STrie(T i- 1).

The boundary path is traversed. If a state ~ on the boundary path does no t
have a transition on tl yet, a new state zt~ and a new transition g(2, t~) = zt~ are
added. This gives updated g. To get updated f , the new states zt~ are linked
together with new suffix links that form a path starting from state t l " " t ~ .
Obviously, this is the boundary path of STrie(T~).

The traversal over Fi_ ~ along the bou__ndary path can be stopped immediatel___y
the first state ~ is found such that state zti (and hence also transition g(~, q) = zt~)
already exists. To see this, let zt---~ already be a state. Then STrie(T ~- 1) has to contain
state z't--] and transition g(z -7, ti) = z't--~ for all ~7 = fj(~), j > 1. In other words, if zt i
is a substring of T *- 1, then every suffix of zt~ is a substring of T i- 1. Note that
always exists because 3_ is the last state on the boundary path and J_ has a
transition for every possible t i.

When the traversal is stopped in this way, the procedure creates a new state
for every suffix link examined during the traversal. This implies that the whole
procedure takes time proport ional to the size of the resulting automaton.

Summarized, the procedure for building STrie(T i) from STrie(T i- 1) is as follows
[12]. Here top denotes the state tx ".. tl-1.

Algorithm 1
r ~- top;
while g(r, ti) is undefined do

create new state r' and new transition g(r, ti) = r';
if r ~ top then create new suffix link f(oldr') = r';
oldr' ~ r';
r ~ f(r);

create new suffix link f(oldr') = g(r, ti);
top ~- 9(top, ti).

Starting from STrie(e), which consists only of root and • and the links
between them, and repeating Algorithm 1 for t i = t~, t 2 t,, we obviously get
STrie(T). The algorithm is optimal in the sense that it takes time proportional to
the size of its end result STrie(T). This in turn is proportional to [QI, that is,
to the number of different substrings of T. Unfortunately, this can be quadratic in
IT[, as is the case, for example, if T = a"b".

THEOREM 1. Suffix trie STrie(T) can be constructed in time proportional to the
size of STrie(T) which, in the worst case, is O(I TIE).

3. Suffix Trees. Suffix tree STree(T) of T is a data structure that represents
STrie(T) in space linear in the length I TI of T. This is achieved by representing
only a subset Q' u {_1_} of the states of STrie(T). We call the states in Q ' u {_1_}

On-Line Construction of Suffix Trees 253

the expl ici t states. Set Q' consists of all branchin9 s ta tes (states from which there
are at least two transitions) and all leaves (states from which there are no
transitions) of STr ie (T) . By definition, root is included in the branching states.
The other states of S T r i e (T) (the states other than root and • from which
there is exactly one transition) are called implici t s ta tes as states of STree (T) ; they
are not explicitly present in STree (T) .

The string w spelled out by the transition path in STr i e (T) between two explicit
states s and r is represented in S T r e e (T) as generalized transition g'(s, w) = r. To
save space the string w is actually represented as a pair (k, p) of pointers (the lef t
po in ter k and the rioht po in ter p) to T such that t k ' ' " tp = W. In this way the
generalized transition gets the form 9'(s, (k, p)) = r.

Such pointers exist because there must be a suffix T~ such that the transition
path for T i in STr i e (T) goes through s and r. We could select the smallest such i,
and let k and p point to the substring of this T~ that is spelled out by the transition
path from s to r. A transition 9'(s, (k, p)) = r is called an a-transi t ion if t k = a. Each
s can have at most one a-transition for each a ~ E.

Transitions g(• a) = root are represented in a similar fashion as follows. Let
Z = {al, a2 am}. Then 9(1, a~) = root is represented as 9 (/ , (- j , - j)) = root
for j = 1 m.

Hence suffix tree S T r e e (T) has two components: the tree itself and the string T.
It is of linear size in I T[because Q' has at most I T I leaves (there is at most one
leaf for each nonempty suffix) and therefore Q' has to contain at most [TI - 1
branching states (when I TJ > 1). There can be at most 2 1 T J - 2 transitions
between the states in Q', each taking a constant space because of the use of pointers
instead of an explicit string. (Here we have assumed the standard RAM model in
which a pointer takes constant space.)

We again augment the structure with the suffix function f ' , now defined only
for all branching states s ~ root as f '(~) = ~ where y is a branching state such
that x = ay for some a ~ Z, and f ' (roo t) = 1 . Such an f ' is well defined: if ff is a
branching state, then f '(~) is also a branching state. These suffix links are
explicitly represented. It is sometimes helpful to speak about implici t suffix links,
i.e., imaginary suffix links between the implicit states.

The suffix tree of T is denoted as S T r e e (T) = (Q' u {_/_}, root, g', f ') .
We refer to an explicit or implicit state r of a suffix tree by a reference pair

(s, w) where s is some explicit state that is an ancestor of r and w is the s t r ing
spelled out by the transitions from s to r in the corresponding suffix trie. A reference
pair is canonical if s is the closest ancestor of r (and, hence, w is the shortest
possible). For an explicit r the canonical reference pair obviously is (r, e). Again,
we represent string w as a pair (k, p) of pointers such that t k ' ' " tp = W. In this way
a reference pair (s, w) gets the form (s, (k, p)). Pair (s, E) is represented as
(s, (p + 1, p)).

It is technically convenient to omit the final states in the definition of a suffix tree.
When explicit final states are needed in some application, they are obtained
gratuitously by adding to T an end marking symbol that does not occur
elsewhere in T. The leaves of the suffix tree for such a T are in one-to-one
correspondence with the suffixes of T and constitute the set of the final states.

254 E, Ukkonen

Another possibility is to traverse the suffix link path from leaf T to root and make
all states on the path explicit; these states are the final states of STree(T). In many
applications of STree(T), the start location of each suffix is stored with the
corresponding state. Such an augmented tree can be used as an index for finding
any substring of T.

4. On-Line Construction of Suffix Trees. The algorithm for constructing STree(T)
is patterned after Algorithm 1. What has to be done is for the most part
immediately clear. Figure 2 shows the phases of constructing STree(cacao); for
simplicity, the strings associated with each transition are shown explicitly in the
figure. However, to get a linear-time algorithm some details need more careful
examination.

We first make more precise what Algorithm 1 does. Let sl = t l " ' " ti-1,
s2, s3 s i = root, s~+ 1 = _1_ be the states of STrie(T i- 1) on the boundary path.
Let j be the smallest index such that sj is not a leaf, and let j ' be the smallest index
such that s j, has a ti-transition. As s~ is a leaf and l is a nonleaf that has a
ti-transition, both j and j ' are well defined and j _< j'. Now the following lemma
should be obvious.

LEMMA 1. Algorithm 1 adds to STrie(T i- 1) a ti-transition for each of the states sh,
1 < h < j' , such that, for 1 < h < j, the new transition expands an old branch of
the trie that ends at leaf Sh, and, for j < h < j' , the new transition initiates a new
branch from s h. Algorithm 1 does not create any other transitions.

We call state sj the activepoint and sj, the endpoint of STrie(T i- 1). These states
are present, explicitly or implicitly, in STree(T ~- 1), too. For example, the active
points of the last three trees in Figure 2 are (root, c), (root, ca), (root, ~).

1 2. .1_ _1_

c/ c cac

3_ 3-

caca/~~aca ca ~k~a ''~

c a ~ c--~a 0
Fig. 2. Construction of STree(cacao).

On-Line Construction of Suffix Trees 255

Lemma 1 says that Algorithm 1 inserts two different groups of ti-transitions
into S T r i e (T i - 1):

(i) The states on the boundary path before the active point s i get a transition.
These states are leaves, hence each such transition has to expand an existing
branch of the trie.

(ii) The states from the active point s i to the endpoint s j , , the endpoint is
excluded, get a new transition. These states are not leaves, hence each new
transition has to initiate a new branch.

We next interpret this in terms of suffix tree S T r e e (T ~- 1). The first group of
transitions that expand an existing branch could be implemented by updating the
right pointer of each transition that represents the branch. Let g'(s, (k, i - 1)) = r
be such a transition. The right pointer has to point to the last position i - 1 of
T i- 1. This is because r is a leaf and therefore a path leading to r has to spell out
a suffix of T i- 1 that does not occur elsewhere in T ~- 1. Then the updated transition
must be g'(s, (k, i)) = r. This only makes the string spelled out by the transition
longer but does not change the states s and r. Making all such updates would
take too much time. Therefore, we use the following trick.

Any transition of S T r e e (T i - 1) leading to a leaf is called an open t rans i t ion . Such
a transition is of the form g'(s, (k, i - 1)) = r where, as stated above, the right
pointer has to point to the last position i - 1 of T ~- 1. Therefore it is not necessary
to represent the actual value of the right pointer. Instead, open transitions are
represented as g'(s, (k, ~)) = r where ~ indicates that this transition is "open
to grow." In fact, g'(s, (k, oo)) = r represents a branch of a n y length between state
s and the imaginary state r that is "in infinity." An explicit updating of the right
pointer when t~ is inserted into this branch is not needed. Symbols ~ can be
replaced by n = I TI after completing S T r e e (T) . In this way the first group of
transitions is implemented without any explicit changes to S T r e e (T ~- 1).

We still have to describe how to add the second group of transitions to
S T r e e (T i - 1). These create entirely new branches that start from states s h, j < h < j ' .

Finding such states sn needs some care as they need not be explicit states at the
moment. They are found along the boundary path of S T r e e (T ~- 1) using reference
pairs and suffix links.

Let h = j and let (s, w) be the canonical reference pair for Sh, i.e., for the active
point. As s h is on the boundary path of S T r i e (T ~- 1), w has to be a suffix of T i - 1.

Hence (s, w) = (s, (k, i - 1)) for some k < i.
We wa n t to create a new branch starting from the state represented by

(s, (k, i - 1)). However, first we test whether or not (s, (k, i - 1)) already refers to
the endpoint s j, . If it does, we are done. Otherwise a new branch has to be created.
To this end the state s h referred to by (s, (k, i - 1)) has to be explicit. If it is not,
an explicit state, denoted s h, is created by splitting the transition that contains the
corresponding implicit state. Then a tl-transition from Sh is created. It has to be
an open transition g'(s h, (i, oo)) = s~, where s~, is a new leaf. Moreover, the suffix link
f ' (Sh) is added if sh was created by splitting a transition.

Next the construction proceeds to Sh+l. As the reference pair for s h was
(s, (k, i - 1)), the canonical reference pair for Sh+l is c a n o n i z e (f '(s), (k, i - 1)) where

256 E. Ukkonen

canonize makes the reference pair canonical by updating the state and the left
pointer (note that the right pointer i - 1 remains unchanged in canonization). The
above operations are then repeated for Sh+ 1, and so on until the endpoint s j, is
found:

In this way we obtain the procedure update, given below, that transforms
S T r e e (T i - 1) into S T r e e (T i) by inserting the ti-transitions in the second group. The
procedure uses procedure canonize mentioned above, and procedure test-and-split
that tests whether or not a given reference pair refers to the endpoint. If it does
not, then the procedure creates and returns an explicit state for the reference pair
provided that the pair does not already represent an explicit state. Procedure
update returns a reference pair for the endpoint s j, (actually only the state and the
left pointer of the pair, as the second pointer remains i - 1 for all states on the
boundary path).

procedure update(s, (k, /)):
(s, (k, i - 1)) is the canonical reference pair for the active point;

1. oldr *-- root; (end-point, r) ~ test-and-split(s, (k, i - 1), ti);
2. while not(end-point) do
3. create new transition g'(r, (i, oe)) = r' where r' is a new state;
4. if oldr r root then create new suffix link f ' (oldr) = r;
5. oldr ~- r;
6. (s, k) ~ canon i ze (f '(s), (k, i - 1));
7. (end-point, r) ~ test-and-split(s, (k, i - 1), tl);
8. if oldr r root then create new suffix link f ' (o ldr) -- s;
9. return (s, k).

Procedure test-and-split tests whether or not a state with canonical reference
pair (s, (k, p)) is the endpoint, that is, a state that in S T r i e (T i-1) would have a
tl-transition. Symbol t i is given as input parameter t. The test result is returned
as the first output parameter. If (s, (k, p)) is not the endpoint, then state (s, (k, p))
is made explicit (if not already so) by splitting a transition. The explicit state is
returned as the second output parameter.

procedure test-and-split(s, (k, p), t):
1. i f k _ ~ p t h e n
2. let g'(s, (k', p')) = s' be the tk-transition from s;
3. if t = t k, , p_ k + 1 then return(true, s)
4. else
5. replace the tk-transition above by transitions

g ' (s , (k ' , k ' + p - k)) = r and g ' (r , (k ' § 1, p '))=s '
where r is a new state;

6. return(false, r)
7. else
8. if there is no t-transition from s then return(false, s)
9. else return(true, s).

On-Line Construction of Suffix Trees 257

This procedure benefits f rom the fact that (s, (k, p)) is canonical : the answer to the
endpoint test can be found in constant t ime by considering only one transi t ion
f rom s.

Procedure canonize is as follows. Given a reference pair (s, (k, p)) for some state
r, it finds and returns state s' and left link k' such that (s', (k', p)) is the canonical
reference pair for r. State s' is the closest explicit ancestor of r (or r itself if r is
explicit). Therefore the string tha t leads f rom s' to r must be a suffix of the string
tk "'" tp that leads f rom s to r. Hence the right link p does not change but the left
link k can become k', k' > k.

procedure canonize(s, (k, p));
1. if p < k then return (s, k)
2. else
3. find the tk-transition g'(s, (k', p')) = s' f rom s;
4. while p' - k' <_ p - k do
5. k , , - k + p ' - k ' + l ;
6. s~-s ' ;
7. if k < p then find the tk-transition g'(s, (k', p')) = s' f rom s;
8. return (s, k).

To be able to cont inue the construct ion for the next text symbol ti+ 1, the active
point of STree(T i) has to be found. T o this end, note first that s~ is the active point
of ST~ree(T ~- 1) if and only if sj = t j . . . t~_ l where t i ' " t~_ 1 is the longest suffix of
T i - 1 that occurs at least twice in T ~- 1. Second, note that s j, is the endpoint of
STree(T I-1) if and only if sj., = t j , ' " t~_~ where t j , ' " t g _ l i s the longest suffix of
T z- 1 such that tj, . . . t~_ ltl is a substr ing of T ~- 1. However , this means that if sj, is
the endpoint of STree(T ~- ~), then tj, . - . t~_ lti is the longest suffix of T z that occurs
at least twice in T ~, that is, then state g(sj,, ti) is the active point of STree(T~).

We have shown the following result.

LEMMA 2. Let (s, (k, i - 1)) be a reference pair of the endpoint sj, of STree(Ti-1).
Then (s, (k, i)) is a reference pair of the active point of STree(Ti).

The overall a lgor i thm for construct ing STree(T) is finally as follows. String T is
processed symbol by symbol in one left-to-righ t scan. Wri t ing Z = {t_ ~ t_,,}
makes it possible to present the transi t ions f rom _1_ in the same way as the other
transitions.

Algori thm 2. Cons t ruc t ion of STree(T) for string T = r i t z . . " ~ in
a lphabet Z = {t_l t-m}; #e is the end marke r not appear ing
elsewhere in T.
1. create states root and •
2. for j , - 1 m do create transi t ion g ' (Z, (- j , - j)) = root;
3. create suffix link f '(root) = _1_;
4. s ~ r o o t ; k~- 1; i ~ - 0 ;
5. while t~+ ~ r #e do
6. i ~ - i + 1;
7. (s, k) ~ update(s, (k, i));
8. (s, k) ~ canonize(s, (k, i)).

258 E. Ukkonen

Steps 7-8 are based on Lemma 2: after step 7 pair (s, (k, i - 1)) refers to
the endpoint of STree(Ti-1), and, hence, (s, (k, i)) refers to the active point of
STree(Ti).

THEOREM 2. Algorithm 2 constructs the suffix tree STree(T) for a string T =
tl :'" t, on-line in time O(n).

PROOF. The algorithm constructs STree(T) through intermediate trees STree(T~
STree(T1), . . . , STree(T '~) = STree(T). It is on-Iine because to construct STree(T i)
it only needs access to the first i symbols of T.

For the running-time analysis we divide the time requirement into two compo-
nents, both turn out to be O(n). The first component consists of the total time for
procedure canonize. The second component consists of the rest: the time for
repeatedly traversing the suffix link path from the present active point to the
endpoint and creating the new branches by update and then finding the next active
point by taking a transition from the endpoint (step 8 of Algorithm 2). We call
the states (reference pairs) on these paths the visited states.

The second component takes time proportional to the total number of the visited
states, because the operations (create an explicit state and a new branch, follow
an explicit or implicit suffix link, test for the endpoint) at each such state can be
implemented in constant time as canonize is excluded. (To be precise, this also
requires that I EI is bounded independently of n.) Let r~ be the active point of
Stree(T i) for 0 < i < n. The visited states between r~_ 1 and r~ are on a path that
consists of some suffix links and one ti-transition. Taking a suffix link decreases
the depth (the length of the string spelled out on the transition path from root) of
the current state by one, and taking a t~-transition increases it by one. The
number of the visited states (including r~_ 1, excluding r~) on the path is therefore
depth(r i_O-depth(r i)+2, and their total number is ~,7=l(depth(ri_x)-
depth(r~) + 2) = depth(ro) - depth(r,) + 2n < 2n. This implies that the second time
component is O(n).

The time spent by each execution of canonize has an upper bound of the form
a + bq where a and b are constants and q is the number of executions of the body
of the loop in steps 5-7 of canonize. The total time spent by canonize has therefore
a bound that is proportional to the sum of the number of the calls of canonize
and the total number of the executions of the body of the loop in all calls. There
are O(n) calls as there is one call for each visited state (either in step 6 of update
or directly in step 8 of Algorithm 2). Each execution of the body deletes a nonempty
string from the left end of string w = t k ' ' ' t p represented by the pointers in
reference pair (s, (k, p)). String W can grow during the whole process only in step
8 of Algorithm 2 which catenates t~ for i = 1 n to the right end of w. Hence
a nonempty deletion is possible at most n times. The total time for the body of
the loop is therefore O(n), and altogether canonize or our first component needs
time O(n). []

On-Line Construction of Suffix Trees 259

REMARK 1 (due to J. Kfirkk/iinen). In its final form our algorithm is a rather
close relative of McCreight's method [9]. The principal technical difference seems
to be that each execution of the body of the main loop of our Algorithm 2 consumes
one text symbol t i, whereas each execution of the body of the main loop of
McCreight's algorithm traverses one suffix link and consumes zero or more text
symbols.

REMARK 2. It is not hard to generalize Algorithm 2 for the following dynamic
version of the suffix tree problem (cf., the adaptive dictionary matchin9 problem of
[2]): Maintain a generalized linear-size suffix tree representing all suffixes of strings
T~ in set { T1 Tk} under operations that insert or delete a string T~. The resulting
algorithm will make such updates in time O(I T~I).

5. Constructing Suffix Automata. The suffix automaton SA(T) of a string T =
tl " " t, is the minimal DFA that accepts all the suffixes of T.

As our STrie(T) is a DFA for the suffixes of T, SA(T) could be obtained by
minimizing STrie(T) in the standard way. Minimization works by combining the
equivalent states, i.e., states from which STrie(T) accepts the same set of strings.
Using the suffix links we obtain a natural characterization of the equivalent states
as follows.

A state s of STrie(T) is called essential if there is at least two different suffix
links pointing to S or s = t 1 "" t k for some k.

THEOREM 3. Let s and r be two states of STrie(T). The set of strinos accepted
from s is equal to the set of strings accepted from r i f and only i f the suffix link
path that starts from s contains r (the path from r contains s) and the subpath
from s or r (from r to s) does not contain any other essential states than
possibly s (r).

PROOF. The theorem is implied by the following observations.
The set of strings accepted from some state of STrie(T) is a subset of the suffixes

of T and therefore each accepted string is of different length.
A string of length i is accepted from a state s of STrie(T) if and only if the suffix

link path that starts from state tl " " t . - i contains s.
The suffix links form a tree that is directed to its root root. []

This suggests a method for constructing SA(T) with a modified Algorithm 1.
The new feature is that the construction should create a new state only if the state
is essential. An unessential state s is merged with the first essential state that is
before s on the suffix link path through s. This is correct as, by Theorem 3, the
states are equivalent.

As there are O(I TI) essential states, the resulting algorithm can be made to work
in linear time. The algorithm turns out to be similar to the algorithms in [4]-[6] .
We therefore omit the details.

260 E. Ukkonen

Acknowledgments . J. K / i r k k g i n e n p o i n t e d o u t some inaccurac ies in the earl ier

ve rs ion 1-10] of this work. T h e a u t h o r is also i n d e b t e d to E. Su t inen , D. W o o d ,
and , in pa r t i cu la r , S. K u r t z a n d G. A. S tephen for several useful c o m m e n t s .

References

[1] A. Aho and M. Corasick, Efficient string matching: an aid to bibliographic search, Comm. A CM,
18 (1975), 333-340.

[2] A. Amir and M. Farach, Adaptive dictionary matching, Proc. 32nd IEEE Ann. Symp. on
Foundations of Computer Science, 1991, pp. 760-766.

[3] A. Apostolico, The myriad virtues of subword trees, in Combinatorial Algorithms on Words
(A. Apostolico and Z. Galil, eds.), Springer-Verlag, New York, 1985, pp. 85-95.

[4] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas, The smallest
automaton recognizing the subwords of a text, Theoret. Comput. Sci., 40 (1985), 31-55.

1-5] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci., 45 (1986), 63-86.
[6] M. Crochemore, String matching with constraints, in Mathematical Foundations of Computer

Science 1988 (M. P. Chytil, L. Janiga and V. Koubek, eds.), Lecture Notes in Computer Science,
vol. 324, Springer-Verlag, Berlin, 1988, pp. 44-58.

I-7] Z. Galil and R. Giancarlo, Data structures and algorithms for approximate string matching,
J. Complexity, 4 (1988), 33-72.

I-8] M. Kempf, R. Bayer, and U. G/intzer, Time optimal left to right construction of position trees,
Acta Inform., 24 (1987), 461-474.

[9] E. McCreight, A space-economical suffix tree construction algorithm, J. Assoc. Comput. Mach.,
23 (1976), 262-272.

[10] E. Ukkonen, Constructing suffix trees on-line in linear time, in Algorithms, Software, Archi-
tecture. Information Processing 92, vol. I (J. van Leeuwen, ed.), Elsevier, Amsterdam, 1992,
pp. 484-492.

[11] E. Ukkonen, Approximate string-matching over suffix trees, in Combinatorial Pattern Matching,
CPM '93 (A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, eds.), Lecture Notes in
Computer Science, vol. 684, Springer-Verlag, Berlin 1993, pp. 228-242.

[12] E. Ukkonen and D. Wood, Approximate string matching with suffix automata, Algorithmica,
10 (1993), 353-364.

[13] P. Weiner, Linear pattern matching algorithms, Proc. IEEE 14th Ann. Symp. on Switching and
Automata Theory, 1973, pp. 1-11.

