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On-Line Construction of Suffix Trees I 

E. Ukkone n  z 

Abstract. An on-line algorithm is presented for constructing the suffix tree for a given string in time 
linear in the length of the string. The new algorithm has the desirable property of processing the string 
symbol by symbol from left to right. It always has the suffix tree for the scanned part of the string 
ready. The method is developed as a linear-time version of a very simple algorithm for (quadratic size) 
suffix tries. Regardless of its quadratic worst case this latter algorithm can be a good practical method 
when the string is not too long. Another variation of this method is shown to give, in a natural way, 
the well-known algorithms for constructing suffix automata (DAWGs). 
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1. Introduction. A s u f f i x  t r e e  is a trie-like data  structure representing all suffixes 
of a string. Such trees have a central role in many  algori thms on strings, see, e.g., 
[3], [7], and [2]. It  is quite c o m m o n l y  felt, however, that  the linear-time suffix 
tree algori thms presented in the literature are rather difficult to  grasp. 

The main purpose of  this paper  is an a t tempt  to develop an understandable  
suffix tree construct ion based on a natural  idea that  seems to complete our  picture 
of  suffix trees in an essential way. The new algori thm has the impor tan t  proper ty  
of  being on-line. It processes the string symbol by symbol f rom left to right, and 
always has the suffix tree for the scanned par t  of  the string ready. The algori thm 
is based on the simple observat ion that the suffixes of  a string T i = t 1 . "  ti can 
be obtained from the suffixes of  string T ~-~ = t~ . . .  t i_ 1 by catenating symbol  t i at 
the end of  each suffix of T ~- 1 and by adding the empty suffix. The suffixes of  the 
whole string T = T" = q t  2 " "  t ,  can be obtained by first expanding the suffixes 
of T O into the suffixes of  T 1 and so on, until the suffixes of T are obtained from 
the suffixes of  T"-1.  

This is in contrast  with the method  by Weiner [13] that  proceeds right to left 
and adds the suffixes to the tree in increasing order  of  their length, starting from 
the shortest  suffix, and with the method  by McCreight  [9] that  adds the suffixes 
to the tree in decreasing order  of  their length. It should be noted, however, that  
despite the clear difference in the intuitive view on the problem, our  a lgori thm 
and McCreight 's  a lgori thm are in their final form functionally rather closely 
related. 

1 This research was supported by the Academy of Finland and by the Alexander von Humboldt 
Foundation (Germany). 
2 Department of Computer Science, University of Helsinki, P.O. Box 26 (Teollisuuskatu 23), FIN-00014 
University of Helsinki, Finland. ukkonen@cs.Helsinki.FI. 

Received March 4, 1993; revised December 8, 1993. Communicated by K. Mehlhorn. 



250 E. Ukkonen 

Our algorithm is best understood as a linear-time version of another algorithm 
from [12] for (quadratic-size) suffix tries. The latter very elementary algorithm, 
which resembles the position tree algorithm in [8], is given in Section 2. Un- 
fortunately, it does not run in linear t ime--i t  takes time proportional to the size 
of the suffix trie which can be quadratic. However, a rather transparent modifica, 
tion, which we describe in Section 4, gives our on-line, linear-time method for 
suffix trees. This also offers a natural perspective which makes the linear-time 
suffix tree construction understandable. 

We also point out in Section 5 that the suffix trie augmented with the 
suffix links gives an elementary characterization of the suffix automata (also known 
as directed acyclic word graphs or DAWGs). This immediately leads to an 
algorithm for constructing such automata. Fortunately, the resulting method is 
essentially the same as already given in [4]-[6].  Again it is felt that our new 
perspective is very natural and helps in understanding the suffix automata 
constructions. 

2. Constructing Suffix Tries. Let T = t i t  2 . . .  t,  be a string over an alphabet E. 
Each string x such that T = uxv for some (possibly empty) strings u and v is a 
substring of T, and each string T~ = t i . . .  t, where 1 _< i ___ n + 1 is a suffix of T; 
in particular, T~ +1 = e is the emp ty  suffix. The set of all suffixes of T is denoted 
a(T). The suffix trie of T is a trie representing a(T). 

More formally, we denote the suffix trie of T as S T r i e ( T ) =  (Q • {/} ,  root, 
F, g, f )  and define such a trie as an augmented DFA (deterministic finite-state 
automaton) which has a tree-shaped transition graph representing the trie for a(T) 
and which is augmented with the so-called suffix function f and auxiliary state 
/ .  The set.Q of the states of STrie(T)  can be put in a one-to-one correspondence 
with the substrings of T. We denote by s the state that corresponds to a substring x. 

The initial state root corresponds to the empty string e, and the set F of the 
final states corresponds to a(T). The transition function g as defined as g(2, a) = y 
for all 2, y in Q such that y = xa, where a ~ E. 

The suffix funct ion f is defined for each state ~ e Q as follows. Let ~ ~ root. Then 
x = ay for some a ~ E, and we set f (2 )  = Y. Moreover, f (root)  = _1_. 

Auxiliary state _1_ allows us to write the algorithms in what follows such that 
an explicit distinction between the empty and the nonempty suffixes (or, between 
root and the other states) can be avoided. State _L is connected to the trie by 
g(L, a) = root for every a ~ E. We leave f ( •  undefined. (Note that the transitions 
from _1_ to root are defined consistently with the other transitions: State L 
corresponds to the inverse a -  1 of all symbols a ~ E. Because a -  la - e, we can set 
g(• a) = root as root corresponds to e.) 

Following [-9] we call f i r )  the suffix link of state r. The suffix links are utilized 
during the construction of a suffix tree; they also have many uses in the 
applications (e.g., [11] and [,12]). 

Automaton STrie(T)  is identical to the Aho-Corasick string matching auto- 
maton ['1] for the key-word set {Till < i _  n +  1} (the suffix links are called 
failure transitions in [1]). 
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e:  _1_ c :  _1_ ca : .I_ cac : 

c a c a 

a c 
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caca: ~ cacao: ~/~ 

c a 

Fig. 1. Construction of STrie(cacao): state transitions are shown by bold arrows, failure transitions 
by thin arrows. Note: Only the last two layers of suffix links are shown explicitly. 

I t  is easy to cons t ruc t  STrie(T) on-line, in a lef t - to-r ight  scan over  T, as follows. 
Let  T ~ denote  the prefix t 1 . . .  t~ of T for 0 < i < n. As in te rmedia te  results the 
cons t ruc t ion  gives STrie(T ~) for i = 0, 1 . . . .  , n. F igu re  1 shows the different phases  
of cons t ruc t ing  STrie(T) for T = cacao.  

The  key  obse rva t ion  expla in ing  how STrie(T i) is ob ta ined  f rom STrie(T ~- 1) is 
tha t  the suffixes of  T i can be ob ta ined  by  ca tena t ing  t~ to  the end of  each suffix 
of  T ~- 1 and  by  add ing  an empty  suffix. Tha t  is, 

a(T i) = a(T i- x)t i w {~}. 

By definit ion,  STrie(T I-1) accepts  o'(Ti-1). To make  it accept  a(Ti), we mus t  
examine  the final s tate set F i_ 1 of STrie(T ~- 1). If r e F~_ 1 does not  a l ready  have 
a t i - t ransi t ion,  then such a t rans i t ion  f rom r to a new state  (which becomes  a new 
leaf of the  trie) is added.  The  states to which there is an o ld  o r  new q- t rans i t ion  
f rom some state in F~_ 1 cons t i tu te  toge ther  with root the final states F~ of STrie(T~). 
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The states r ~ Fi_ 1 that get new transitions can be found using the suffix links 
as follows. The definition of the suffix function implies that r ~ F~_ ~ if and only 
if r = i f ( t1  "'" t~_ 1) for some 0 < j < i - 1. Therefore, all states in F~_ 1 are on the 
path of suffix links that starts from the deepest state tl "'" t i-  1 of STrie(T ~- 1) and 
ends at _1_. We call this important  path the boundary path of STrie(T i- 1). 

The boundary path is traversed. If a state ~ on the boundary path does no t  
have a transition on tl yet, a new state zt~ and a new transition g(2, t~) = zt~ are 
added. This gives updated g. To get updated f ,  the new states zt~ are linked 
together with new suffix links that form a path starting from state t l " " t ~ .  
Obviously, this is the boundary path of STrie(T~). 

The traversal over Fi_ ~ along the bou__ndary path can be stopped immediatel___y 
the first state ~ is found such that state zti (and hence also transition g(~, q) = zt~) 
already exists. To see this, let zt---~ already be a state. Then STrie(T ~- 1) has to contain 
state z't--] and transition g(z -7, ti) = z't--~ for all ~7 = fj(~), j > 1. In other words, if zt i 
is a substring of T *- 1, then every suffix of zt~ is a substring of T i- 1. Note that 
always exists because 3_ is the last state on the boundary path and J_ has a 
transition for every possible t i. 

When the traversal is stopped in this way, the procedure creates a new state 
for every suffix link examined during the traversal. This implies that the whole 
procedure takes time proport ional  to the size of the resulting automaton.  

Summarized, the procedure for building STrie(T i) from STrie(T i- 1) is as follows 
[12]. Here top denotes the state tx ".. tl-1. 

Algorithm 1 
r ~- top; 
while g(r, ti) is undefined do 

create new state r' and new transition g(r, ti) = r'; 
if r ~ top then create new suffix link f(oldr') = r'; 
oldr' ~ r'; 
r ~ f(r);  

create new suffix link f(oldr') = g(r, ti); 
top ~- 9(top, ti). 

Starting from STrie(e), which consists only of root and • and the links 
between them, and repeating Algorithm 1 for t i = t~, t 2 . . . . .  t,, we obviously get 
STrie(T). The algorithm is optimal in the sense that it takes time proportional  to 
the size of its end result STrie(T). This in turn is proportional  to [QI, that is, 
to the number of different substrings of T. Unfortunately, this can be quadratic in 
IT[, as is the case, for example, if T = a"b". 

THEOREM 1. Suffix trie STrie(T) can be constructed in time proportional to the 
size of STrie(T) which, in the worst case, is O(I TIE). 

3. Suffix Trees. Suffix tree STree(T) of T is a data structure that represents 
STrie(T) in space linear in the length I TI of T. This is achieved by representing 
only a subset Q' u {_1_} of the states of STrie(T). We call the states in Q ' u  {_1_} 
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the expl ici t  states.  Set Q' consists of all branchin9 s ta tes  (states from which there 
are at least two transitions) and all leaves (states from which there are no 
transitions) of STr ie (T) .  By definition, root  is included in the branching states. 
The other states of S T r i e ( T )  (the states other than root and • from which 
there is exactly one transition) are called implici t  s ta tes  as states of STree (T ) ;  they 
are not explicitly present in STree (T) .  

The string w spelled out by the transition path in STr i e ( T )  between two explicit 
states s and r is represented in S T r e e ( T )  as generalized transition g'(s, w) = r. To 
save space the string w is actually represented as a pair (k, p) of pointers (the lef t  
po in ter  k and the rioht  po in ter  p) to T such that t k ' ' "  tp = W. In this way the 
generalized transition gets the form 9'(s, (k, p)) = r. 

Such pointers exist because there must be a suffix T~ such that the transition 
path for T i in STr i e (T )  goes through s and r. We could select the smallest such i, 
and let k and p point to the substring of this T~ that is spelled out by the transition 
path from s to r. A transition 9'(s, (k, p)) = r is called an a-transi t ion if t k = a. Each 
s can have at most one a-transition for each a ~ E. 

Transitions g(• a) = root  are represented in a similar fashion as follows. Let 
Z = {al,  a2 . . . . .  am}. Then 9(1, a~) = root  is represented as 9 ( / ,  ( - j ,  - j ) )  = root  
for j =  1 . . . . .  m. 

Hence suffix tree S T r e e ( T )  has two components: the tree itself and the string T. 
It is of linear size in I T[ because Q' has at most I T I leaves (there is at most one 
leaf for each nonempty suffix) and therefore Q' has to contain at most [TI - 1 
branching states (when I TJ > 1). There can be at most 2 1 T J -  2 transitions 
between the states in Q', each taking a constant space because of the use of pointers 
instead of an explicit string. (Here we have assumed the standard RAM model in 
which a pointer takes constant space.) 

We again augment the structure with the suffix function f ' ,  now defined only 
for all branching states s ~ root as f '(~) = ~ where y is a branching state such 
that x = ay  for some a ~ Z, and f ' ( roo t )  = 1 .  Such an f '  is well defined: if ff is a 
branching state, then f '(~) is also a branching state. These suffix links are 
explicitly represented. It is sometimes helpful to speak about implici t  suffix links, 
i.e., imaginary suffix links between the implicit states. 

The suffix tree of T is denoted as S T r e e ( T )  = (Q' u {_/_}, root, g', f ' ) .  
We refer to an explicit or implicit state r of a suffix tree by a reference pair  

(s, w) where s is some explicit state that is an ancestor of r and w is the s t r ing 
spelled out by the transitions from s to r in the corresponding suffix trie. A reference 
pair is canonical  if s is the closest ancestor of r (and, hence, w is the shortest 
possible). For  an explicit r the canonical reference pair obviously is (r, e). Again, 
we represent string w as a pair (k, p) of pointers such that t k ' ' "  tp = W. In this way 
a reference pair (s, w) gets the form (s, (k, p)). Pair (s, E) is represented as 
(s, (p + 1, p)). 

It is technically convenient to omit the final states in the definition of a suffix tree. 
When explicit final states are needed in some application, they are obtained 
gratuitously by adding to T an end marking symbol that does not occur 
elsewhere in T. The leaves of the suffix tree for such a T are in one-to-one 
correspondence with the suffixes of T and constitute the set of the final states. 
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Another possibility is to traverse the suffix link path from leaf T to root and make 
all states on the path explicit; these states are the final states of STree(T).  In many 
applications of STree(T), the start location of each suffix is stored with the 
corresponding state. Such an augmented tree can be used as an index for finding 
any substring of T. 

4. On-Line Construction of Suffix Trees. The algorithm for constructing STree(T) 
is patterned after Algorithm 1. What has to be done is for the most part 
immediately clear. Figure 2 shows the phases of constructing STree(cacao); for 
simplicity, the strings associated with each transition are shown explicitly in the 
figure. However, to get a linear-time algorithm some details need more careful 
examination. 

We first make more precise what Algorithm 1 does. Let sl = t l " ' "  ti-1, 
s2, s3 . . . . .  s i = root, s~+ 1 = _1_ be the states of STrie(T i-  1) on the boundary path. 
Let j be the smallest index such that sj is not a leaf, and let j '  be the smallest index 
such that s j, has a ti-transition. As s~ is a leaf and l is a nonleaf that has a 
ti-transition, both j and j '  are well defined and j _< j'. Now the following lemma 
should be obvious. 

LEMMA 1. Algorithm 1 adds to STrie( T i-  1) a ti-transition for each of  the states sh, 
1 < h < j' ,  such that, for 1 < h < j, the new transition expands an old branch of  
the trie that ends at leaf Sh, and, for j < h < j' ,  the new transition initiates a new 
branch from s h. Algorithm 1 does not  create any other transitions. 

We call state sj the activepoint  and sj, the endpoint of STrie(T i-  1). These states 
are present, explicitly or implicitly, in STree(T  ~- 1), too. For  example, the active 
points of the last three trees in Figure 2 are (root, c), (root, ca), (root, ~). 

_1_ 2. .1_ _1_ 

c/ c cac 

3_ 3- 

caca/~~aca ca ~k~a ''~ 

c a ~ c--~a 0 
Fig. 2. Construction of STree(cacao). 
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Lemma 1 says that Algorithm 1 inserts two different groups of ti-transitions 
into S T r i e ( T  i -  1): 

(i) The states on the boundary path before the active point s i get a transition. 
These states are leaves, hence each such transition has to expand an existing 
branch of the trie. 

(ii) The states from the active point s i to the endpoint s j , ,  the endpoint is 
excluded, get a new transition. These states are not leaves, hence each new 
transition has to initiate a new branch. 

We next interpret this in terms of suffix tree S T r e e ( T  ~- 1). The first group of 
transitions that expand an existing branch could be implemented by updating the 
right pointer of each transition that represents the branch. Let g'(s, (k, i - 1)) = r 
be such a transition. The right pointer has to point to the last position i - 1 of 
T i- 1. This is because r is a leaf and therefore a path leading to r has to spell out 
a suffix of T i- 1 that does not occur elsewhere in T ~- 1. Then the updated transition 
must be g'(s, (k,  i)) = r. This only makes the string spelled out by the transition 
longer but does not change the states s and r. Making all such updates would 
take too much time. Therefore, we use the following trick. 

Any transition of S T r e e ( T  i -  1) leading to a leaf is called an open  t rans i t ion .  Such 
a transition is of the form g'(s, (k, i - 1)) = r where, as stated above, the right 
pointer has to point to the last position i - 1 of T ~- 1. Therefore it is not necessary 
to represent the actual value of the right pointer. Instead, open transitions are 
represented as g'(s, (k,  ~ ) ) =  r where ~ indicates that this transition is "open 
to grow." In fact, g'(s, (k, oo)) = r represents a branch of a n y  length between state 
s and the imaginary state r that is "in infinity." An explicit updating of the right 
pointer when t~ is inserted into this branch is not needed. Symbols ~ can be 
replaced by n = I TI after completing S T r e e ( T ) .  In this way the first group of 
transitions is implemented without any explicit changes to S T r e e ( T  ~- 1). 

We still have to describe how to add the second group of transitions to 
S T r e e ( T  i -  1). These create entirely new branches that start from states s h, j < h < j ' .  

Finding such states sn needs some care as they need not be explicit states at the 
moment. They are found along the boundary path of S T r e e ( T  ~- 1) using reference 
pairs and suffix links. 

Let h = j and let (s, w) be the canonical reference pair for Sh, i.e., for the active 
point. As s h is on the boundary path of S T r i e ( T  ~- 1), w has to be a suffix of T i -  1. 

Hence (s, w) = (s, (k, i - 1)) for some k < i. 
We wa n t  to create a new branch starting from the state represented by 

(s, (k, i - 1)). However, first we test whether or not (s, (k, i - 1)) already refers to 
the endpoint s j, .  If it does, we are done. Otherwise a new branch has to be created. 
To this end the state s h referred to by (s, (k, i - 1)) has to be explicit. If it is not, 
an explicit state, denoted s h, is created by splitting the transition that contains the 
corresponding implicit state. Then a tl-transition from Sh is created. It has to be 
an open transition g'(s h, (i, oo)) = s~, where s~, is a new leaf. Moreover, the suffix link 
f ' (Sh)  is added if sh was created by splitting a transition. 

Next the construction proceeds to Sh+l. As the reference pair for s h was 
(s, (k, i - 1)), the canonical reference pair for Sh+l is c a n o n i z e ( f  '(s), (k, i - 1)) where 
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canonize makes the reference pair canonical by updating the state and the left 
pointer (note that the right pointer i - 1 remains unchanged in canonization). The 
above operations are then repeated for Sh+ 1, and so on until the endpoint s j, is 
found: 

In this way we obtain the procedure update,  given below, that transforms 
S T r e e ( T  i -  1) into S T r e e ( T  i) by inserting the ti-transitions in the second group. The 
procedure uses procedure canonize mentioned above, and procedure test-and-split  
that tests whether or not a given reference pair refers to the endpoint. If it does  
not, then the procedure creates and returns an explicit state for the reference pair 
provided that the pair does not already represent an explicit state. Procedure 
update  returns a reference pair for the endpoint s j, (actually only the state and the 
left pointer of the pair, as the second pointer remains i -  1 for all states on the 
boundary path). 

procedure update(s, (k, /)): 
(s, (k, i - 1)) is the canonical reference pair for the active point; 

1. oldr *-- root; (end-point, r) ~ test-and-split(s, (k, i - 1), ti); 
2. while not(end-point) do 
3. create new transition g'(r, (i, oe)) = r' where r' is a new state; 
4. if oldr r root then create new suffix link f ' (oldr)  = r; 
5. oldr ~- r; 
6. (s, k) ~ canon i ze ( f  '(s), (k, i - 1)); 
7. (end-point, r) ~ test-and-split(s, (k, i - 1), tl); 
8. if oldr r root  then create new suffix link f ' (o ldr)  -- s; 
9. return (s, k). 

Procedure test-and-split  tests whether or not a state with canonical reference 
pair (s, (k, p)) is the endpoint, that is, a state that in S T r i e ( T  i-1)  would have a 
tl-transition. Symbol t i is given as input parameter t. The test result is returned 
as the first output parameter. If (s, (k, p)) is not the endpoint, then state (s, (k, p)) 
is made explicit (if not already so) by splitting a transition. The explicit state is 
returned as the second output parameter. 

procedure test-and-split(s, (k, p), t): 
1. i f k _ ~ p t h e n  
2. let g'(s, (k', p')) = s' be the tk-transition from s; 
3. if t = t k, , p_ k + 1 then return(true, s) 
4. else 
5. replace the tk-transition above by transitions 

g ' ( s , ( k ' , k ' + p - k ) ) = r  and g ' ( r , ( k ' §  1, p ' ) )=s '  
where r is a new state; 

6. return(false, r) 
7. else 
8. if there is no t-transition from s then return(false, s) 
9. else return(true, s). 
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This procedure  benefits f rom the fact that  (s, (k, p)) is canonical :  the answer to the 
endpoint  test can be found in constant  t ime by considering only one transi t ion 
f rom s. 

Procedure  canonize is as follows. Given a reference pair  (s, (k, p)) for some state 
r, it finds and returns state s' and  left link k' such that  (s', (k', p)) is the canonical  
reference pair  for r. State s' is the closest explicit ancestor  of  r (or r itself if r is 
explicit). Therefore  the string tha t  leads f rom s' to r must  be a suffix of  the string 
tk "'" tp that  leads f rom s to r. Hence  the right link p does not  change but  the left 
link k can become k', k' > k. 

procedure canonize(s, (k, p)); 
1. if p < k then return (s, k) 
2. else 
3. find the tk-transition g'(s, (k', p')) = s' f rom s; 
4. while p'  - k'  <_ p - k do 
5. k , , - k + p ' - k ' + l ;  
6. s~-s ' ;  
7. if  k < p then find the tk-transition g'(s, (k', p')) = s' f rom s; 
8. return (s, k). 

To be able to cont inue the construct ion for the next text symbol  ti+ 1, the active 
point  of  STree(T i) has to be found. T o  this end, note  first that  s~ is the active point  
of ST~ree(T ~- 1) if and only if sj = t j . . .  t~_ l where t i ' "  t~_ 1 is the longest  suffix of  
T i -  1 that  occurs at  least twice in T ~- 1. Second, note that  s j, is the endpoint  of  
STree(T I-1) if and only if sj., = t j , ' " t~_~  where t j , ' " t g _ l i s  the longest  suffix of  
T z- 1 such that  tj, . . .  t~_ ltl is a substr ing of T ~- 1. However ,  this means  that  if sj, is 
the endpoint  of  STree(T ~- ~), then tj, . - .  t~_ lti is the longest  suffix of T z that  occurs 
at  least twice in T ~, that  is, then state g(sj,, ti) is the active point  of  STree(T~). 

We have shown the following result. 

LEMMA 2. Let (s, (k, i - 1)) be a reference pair of  the endpoint sj, of  STree(Ti-1).  
Then (s, (k, i)) is a reference pair of  the active point of  STree(Ti). 

The overall  a lgor i thm for construct ing STree(T) is finally as follows. String T is 
processed symbol  by symbol  in one left-to-righ t scan. Wri t ing Z = {t_ ~ . . . . .  t_,,} 
makes  it possible to present  the transi t ions f rom _1_ in the same way as the other  
transitions. 

Algori thm 2. Cons t ruc t ion  of STree(T) for string T = r i t z . . "  ~ in 
a lphabet  Z =  {t_l  . . . . .  t-m}; #e is the end marke r  not  appear ing  
elsewhere in T. 
1. create states root and •  
2. for j , -  1 . . . . .  m do create transi t ion g ' (Z,  ( - j ,  - j ) )  = root; 
3. create suffix link f '(root) = _1_; 
4. s ~ r o o t ;  k~-  1; i ~ - 0 ;  
5. while t~+ ~ r #e do 
6. i ~ - i  + 1; 
7. (s, k) ~ update(s, (k, i)); 
8. (s, k) ~ canonize(s, (k, i)). 
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Steps 7-8 are based on Lemma 2: after step 7 pair (s, (k, i - 1 ) )  refers to 
the endpoint of STree(Ti-1), and, hence, (s, (k, i)) refers to the active point of 
STree(Ti). 

THEOREM 2. Algorithm 2 constructs the suffix tree STree(T) for a string T = 
tl :'" t, on-line in time O(n). 

PROOF. The algorithm constructs STree(T) through intermediate trees STree(T~ 
STree(T1), . . . ,  STree( T '~) = STree( T). It is on-Iine because to construct STree( T i) 
it only needs access to the first i symbols of T. 

For the running-time analysis we divide the time requirement into two compo- 
nents, both turn out to be O(n). The first component consists of the total time for 
procedure canonize. The second component consists of the rest: the time for 
repeatedly traversing the suffix link path from the present active point to the 
endpoint and creating the new branches by update and then finding the next active 
point by taking a transition from the endpoint (step 8 of Algorithm 2). We call 
the states (reference pairs) on these paths the visited states. 

The second component takes time proportional to the total number of the visited 
states, because the operations (create an explicit state and a new branch, follow 
an explicit or implicit suffix link, test for the endpoint) at each such state can be 
implemented in constant time as canonize is excluded. (To be precise, this also 
requires that I EI is bounded independently of n.) Let r~ be the active point of 
Stree(T i) for 0 < i < n. The visited states between r~_ 1 and r~ are on a path that 
consists of some suffix links and one ti-transition. Taking a suffix link decreases 
the depth (the length of the string spelled out on the transition path from root) of 
the current state by one, and taking a t~-transition increases it by one. The 
number of the visited states (including r~_ 1, excluding r~) on the path is therefore 
depth(r i_O-depth(r i )+2,  and their total number is ~,7=l(depth(ri_x)- 
depth(r~) + 2) = depth(ro) - depth(r,) + 2n < 2n. This implies that the second time 
component is O(n). 

The time spent by each execution of canonize has an upper bound of the form 
a + bq where a and b are constants and q is the number of executions of the body 
of the loop in steps 5-7 of canonize. The total time spent by canonize has therefore 
a bound that is proportional to the sum of the number of the calls of canonize 
and the total number of the executions of the body of the loop in all calls. There 
are O(n) calls as there is one call for each visited state (either in step 6 of update 
or directly in step 8 of Algorithm 2). Each execution of the body deletes a nonempty 
string from the left end of string w = t k ' ' ' t p  represented by the pointers in 
reference pair (s, (k, p)). String W can grow during the whole process only in step 
8 of Algorithm 2 which catenates t~ for i = 1 . . . . .  n to the right end of w. Hence 
a nonempty deletion is possible at most n times. The total time for the body of 
the loop is therefore O(n), and altogether canonize or our first component needs 
time O(n). [] 
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REMARK 1 (due to J. Kfirkk/iinen). In its final form our algorithm is a rather 
close relative of McCreight's method [9]. The principal technical difference seems 
to be that each execution of the body of the main loop of our Algorithm 2 consumes 
one text symbol t i, whereas each execution of the body of the main loop of 
McCreight's algorithm traverses one suffix link and consumes zero or more text 
symbols. 

REMARK 2. It is not hard to generalize Algorithm 2 for the following dynamic 
version of the suffix tree problem (cf., the adaptive dictionary matchin9 problem of 
[2]): Maintain a generalized linear-size suffix tree representing all suffixes of strings 
T~ in set { T1 . . . . .  Tk} under operations that insert or delete a string T~. The resulting 
algorithm will make such updates in time O(I T~I). 

5. Constructing Suffix Automata. The suffix automaton SA(T) of a string T = 
tl " "  t, is the minimal DFA that accepts all the suffixes of T. 

As our STrie(T) is a DFA for the suffixes of T, SA(T) could be obtained by 
minimizing STrie(T) in the standard way. Minimization works by combining the 
equivalent states, i.e., states from which STrie(T) accepts the same set of strings. 
Using the suffix links we obtain a natural characterization of the equivalent states 
as follows. 

A state s of STrie(T) is called essential if there is at least two different suffix 
links pointing to S or s = t 1 ""  t k for some k. 

THEOREM 3. Let s and r be two states of STrie(T). The set of strinos accepted 
from s is equal to the set of  strings accepted from r i f  and only i f  the suffix link 
path that starts from s contains r (the path from r contains s) and the subpath 
from s or r (from r to s) does not contain any other essential states than 
possibly s (r). 

PROOF. The theorem is implied by the following observations. 
The set of strings accepted from some state of STrie(T) is a subset of the suffixes 

of T and therefore each accepted string is of different length. 
A string of length i is accepted from a state s of STrie(T) if and only if the suffix 

link path that starts from state tl " "  t . - i  contains s. 
The suffix links form a tree that is directed to its root root. [] 

This suggests a method for constructing SA(T) with a modified Algorithm 1. 
The new feature is that the construction should create a new state only if the state 
is essential. An unessential state s is merged with the first essential state that is 
before s on the suffix link path through s. This is correct as, by Theorem 3, the 
states are equivalent. 

As there are O(I TI) essential states, the resulting algorithm can be made to work 
in linear time. The algorithm turns out to be similar to the algorithms in [4]-[6] .  
We therefore omit the details. 
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