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The Densek-Subgraph Problemt
U. Feige? G. KortsarZ and D. Peleg

Abstract.  This paper considers the problem of computing the dé&rsertex subgraph of a given graph,
namely, the subgraph with the most edges. An approximation algorithm is developed for the problem, with
approximation ratidd(n®), for somes < %
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1. Introduction. We study thedense k-subgrapfDkS) maximization problem, of
computing the densk-vertex subgraph of a given graph. That is, on input a graph
G and a parametek, we are interested in finding a set lofvertices with maximum
average degree in the subgraph induced by this set. As this problem is NP-hard (say,
by reduction from Clique), we consider approximation algorithms for this problem. We
obtain a polynomial time algorithm that on any ing@, k) returns a subgraph of sike
whose average degree is within a factor of at nmd$tom the optimum solution, where
n is the number of vertices in the input gra@h ands < % is some universal constant.
Unfortunately, we are unable to present a complementary negative result giving evidence
that, for somes > 0, achieving an approximation ratio @(n°) is NP-hard. In fact,
we do not even know whether achieving an approximation ratid ef ¢) is NP-hard,
though we conjecture that this is indeed the case.

Our problem is related to several other problems. We mention two of them:

e TheDensest SubgraplDS) problem concerns choosing a subsetof arbitrary size)
such that the vertex induced subgraph has maximum average degree. This problem
can be solved polynomially using flow techniques (see Chapter 4 of [L]). The fastest
algorithm known for DS is given in [GGT] and runs in tin@mnlog(n?/m)). One
may hope that some algorithmic techniques used in solving the DS problem can
help approximate the DkS problem, but there seem to be major difficulties involved.
Consider for example the case of regular graphs. The densest subgraph of a regular
graph is the graph itself, and hence no algorithmic ideas are involved in solving this
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DS problem. On the other hand, finding the dekseibgraph remains NP-hard (proof
omitted).

e TheMinimum Flux Cut{(FLUX) problem concerns choosing a ddtwith minimum
ratio between the number of edges that cross the cut and the number of vertices in
the smaller side of the cut. This is a measure of the edge expansion of the graph. The
FLUX problem onregular graphs is related to the DkS problem in the following sense:
by solving the DkS problem optimally for all values lofn a regular graph, one can
deduce the optimal solution to the FLUX problem on this graph. The FLUX problem
can be approximated within a factor 6f(logn) [LR].

We mention two special cases of the DkS problem that make it easier to approximate.
First, ifk = €(n) and the number of edgesis(n?), then the problem has a polynomial
time approximation scheme (PTAS) [AKK]. Secondly, if the input graph is a complete
graph with edge weights that obey the triangle inequality, then itis shown in [RRT] that a
greedy algorithm achieves an approximation ratio of 4 fodiepersiorproblem, which
asks for thek-vertex subgraph of maximum total edge weight, and an approximation
ratio of 2 is given in [HRT].

Recently, Goemans (private communication) showed that using semidefinite pro-
gramming (SDP) one can obtain an approximation ratio arbitrarily closgkdor DKS.

For some graphs and large valuekpthis approximation ratio is better by a constant
factor than that of the greedy algorithm (see Section 3.2). However, for small values
of k, algorithms based on SDP are not known to perform as well as our combinatorial
approximation algorithm. For example, whien- n/3, it appears that the SDP approach
cannot distinguish between graphs that have cliques oksimel graphs that only have
k-vertex subgraphs witl® (k) edges [FS] (in particular, excluding an approximation
ratio better tham?/3).

Our algorithm can be extended to handle the weighted version of the DkS problem,
incurring an additionaD (log n) factor. This is done in Section 5.2.

2. Definitions

DerFINITION 2.1.  Thedensity & of a graphG = G(V, E) is its average degree. That
is,ds = 2|E|/|V|. WhenG is clear from the context, we denote the densitydby

There is a polynomial time algorithm for finding the densest vertex induced subgraph
of an input graph. We study the parameterized version of this problem.

DEerFINITION 2.2. Thedense k-subgrapfDkS) problem has as input a gragh =
G(V, E) (onn vertices) and a parameter The output isG*, a subgraph o6 induced
onk vertices, such thab* is of maximum density. We denote this densitydiyG, k).

Clearly, the problem DKS is NP-hard, by reduction from Clique.

We are interested in polynomial time approximation algorithms for DkS. On input
(G, k), such an algorithm outputs a list bivertices. LetA(G, k) denote the density of
the vertex induced subgraph returned by algorithon input(G, k). We wish to devise
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polynomial time algorithms withA(G, k) as close as possible t5 (G, k). We bound
A(G, k) as a function oh (the number of vertices iG), k, andd* (G, k).

NOTATION. A(G) is the maximum degree of grah dy is the average degree of the
k/2 vertices of highest degree @. Note thatA(G) > dy > d*(G, k). deqv, S) is the
number of edges connecting verteto vertices in the seb. cut(A, B) is the number of
edges connecting vertices in getind vertices in seB. A walk of length¢ is a sequence

of ¢ 4+ 1 vertices in which consecutive vertices are adjacent (hence the walk follows
£ edges). The vertices of a walk need not be disti¥iét.u, v) denotes the number of
walks of length¢ that start at verten and end at vertex. Matrix multiplication (raising

the adjacency matrix of the graph to thién power) can be used in order to compute
W, (vi, vj) for all pairs of vertices simultaneously.

3. An Approximation Ratio of O(n'/3)
THEOREM3.1. There is a polynomial time algorithm A that approximates DKkS within
a factor of 2n'/3, That is for every graph G and every < k < n, A(G,k) >

d*(G, k) /2n%3,

Algorithm A employs three different procedures;( A,, and Az) to select a dense
subgraph, and returns the densest of the three subgraphs that are found.

3.1. A Trivial Procedure Without loss of generality, we can assume tBatontains
at leask/2 edges.

PROCEDUREL. Selectk/2 arbitrary edges fron®. Return the set of vertices incident
with these edges, adding arbitrary vertices to this set if its size is smallekthan

Clearly,
A1(G,k) > 1.

3.2. A Greedy Procedure
PROCEDURE2. Sortthe vertices by order of their degree. Hetlenote thdc/2 vertices
with highest degrees i (breaking ties arbitrarily). Sort the remaining vertices by the
number of neighbors they have k. Let C denote thek/2 vertices inG\H with the
largest number of neighbors . ReturnH U C.

Recall thatdy denotes the average degree (with respe@)tof a vertex inH.

LEmMmA 3.2. Procedure? returns a vertex induced subgraph satisfying

Az(G, k) > de /2n
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PROOF Let m; denote the number of edges both of whose endpoints Ii¢.iThen
cut(H, V\H) = dy|H| — 2m; = dyk/2 — 2m; > 0. By the greedy rule for selecting
C, atleast dC|/|V\H| > k/2n fraction of these edges are containedHru C. Thus
the total number of edges in the subgraph induce#iby C is at least

(duk/2 — 2my)k/2n + my > dyk?/4n

and the proof of the lemma follows. O

As dy > d*(G, k), the greedy procedure approximatEgG, k) within a ratio of
at most 2/k. A different greedy procedure which also has an approximation ratio of
O(n/k) is analyzed in [AITT].

3.3. Walks of Lengtt2. For verticesv, w and integer¢ > 1, recall thatW, (v, w)
denotes the number of walks of lengtlfirom v to w.

PROCEDURE3. ComputéN,(u, v) for all pairs of vertices. Construct a candidate graph
‘HY for every vertexv in G, as follows: Sort the vertices @& by nonincreasing order of
their number of length-2 walks to, Wo(v, w1) > Wa(v, wp) > ---. Let P denote the
set{ws, ..., wy/2}. Compute for every neighbarof v the number of edges connectixng

to PV, degx, PY), and construct a s@&" containing theék/2 neighbors ob with highest
degx, BY). Let’H" denote the subgraph induced B U BY. (If 1" still contains less
thank vertices, then it is completed to sikearbitrarily.) Select the densest candidate
graph" as the output.

We now analyze the approximation ratio of this procedure. We first note that the
number of length-2 walks within the optimum subgraphis at leask(d*(G, k))2. This
is because each € G* contributes(ded (v))? to this sum, an(JZUeG*(degk(v))2 >
k(d*(G, k))? by convexity. (Here we used d&@) to denote the degree ofin G*. See
also the Remark in the Appendix.)

It follows that there is a vertexwhich is the endpoint of at lea@l*(G, k))? length-2
walks inG*. By the greedy construction &, there are at leasti* (G, k))?/2 walks of
length 2 between thisand vertices oPY'. The vertices 0B have atleastd* (G, k))?/2
edges connecting them @) if deg(v) < k/2, and at leastd*(G, k))?k/4 degv)
edges connecting them 1§, otherwise. Since we do not requif§ and B” to be
disjoint, each edge may have been counted twice. Hence, altogdtheontains at least
min[(d*(G, k))?/4, (d*(G, k))?°k/8A(G)] edges, whereA(G) denotes the maximum
degree in the graph.

This guarantees

A3(G, k) = (d*(G, k)?/2 maxk, 2A(G)].
3.4. Algorithm A Algorithm A applies the three procedures described above, and

outputs the densest of the three subgraphs obtained by each of these procedures. Proce-
dures 1 and 2 are applied to the original input gr&iProcedure 3 however is applied
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to the graphG, induced on the vertices &f\H, whereH is the set ok/2 vertices of
highest degree ifs, as defined in procedure 2. HenséG,) < dy (G).

For the following lemma to make sense, we assumekha®n/3. This assumption
can be made without loss of generality, becausekfer 2n/3 the greedy procedure
approximates DkS within a ratio not worse than 3 (see the end of Section 3.2).

LEmmA 3.3. The graph G contains a k-vertex induced subgraph with average degree
at least d'(G, k) — 2d,, where d = Ax(G, k).

PrOOF Let m denote the number of edges Gf with both endpoints irH, and let

¢ denote the number of edges Gf with one endpoint inH. HenceG, contains a
k-vertex induced subgraph with at least(G, k)k/2 — m — ¢ edges. To prove the
lemma, we need to show that procedure 2 returns a solution with at(leaste),/2
edges. In fact, the solution has at lemst ¢/2 edges. This is because it clearly contains
the m edges internal t¢/(G*) N H, and there must be at ledst2 edges between
C and H, since at least one possible choice €roffers this many edges (namely,
taking C to contain thek/2 vertices ofV (G*)\H with the highest number of edges
into H). O

It follows from the performance guarantees on the three procedures that

kdy (d*(G, k) — 2dy)®
AG. k L o
(G, )ZmaX[ » Oa, 2n ' 2maxk, 2d4] ]

To prove Theorem 3.1, we can assume that d*(G, k)/n'/2 (otherwise, the output
of procedure 2 achieves the desired ratio of approximation). Hence, for procedure 3, we
have thatd*(G, k) — 2d, ~ d*(G, k), with a negligible error term. The performance
guarantee of algorithrA is at least the geometric mean of the performance guarantee
of procedures 1-3. Hence

kdy  (d*(G, k)2 )1/3> d*(G, k)

A(G, K 1.4 == -
( )Z< 2n  2maxk, 2dy] 2n1/3

where the last inequality follows from the fact that d*(G, k) anddy > d*(G, k).

4. Improving over O(n*3). The approximation ratio for algorithrA was upper
bounded as a geometric mean of three approximation ratios. In order for algagkithm
to give an approximation ratio as bad@sn®/?), it must hold that all three procedures
give an approximation ratio o®(n*/?). This happens only iti*(G, k) = ®(nY3),
kdy = ©(n), and maxk, dy] = ©(n%3). If any of these three conditions is violated
by as much a®®, then the approximation ratio i®(n*/3-¢/2). The above worst case
conditions are satisfied only in the two cases below:

1. d*(G, k) = O(n3), k = O(nY3), dy = O(n%3).
2. d*(G, k) = ©(nY?), k = ©(n%3), dy = ©(nY3).
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We present two additional procedures, each giving an approximation ratio better
than O(n'/3) in one of the above cases. Together with algoritAnthis guarantees an
approximation ratio oD (nY/3-¢), for somes > 0, for the DkS problem.

THEOREM4.1. There is a polynomial time algorithm B that approximates DkS within
a factor of /3¢, for somes > 0. That is for every graph G and for every < k < n,
B(G, k) > d*(G, k)/n/3-¢,

A unifying theme of the two new procedures is the use of the following lemma. Recall
thatW, (vi, vj) denotes the number of walks of lengtfrom v; to v;.

LEMMA 4.2. Let G be a graph with n vertices and average degreg&liere exist two
verticesv;, v; € V such that

dZ
W[(Uh v]) 2 F

A proof of Lemma 4.2 appears in the Appendix.
In Section 4.1 we treat case 1. In Section 4.2 we treat case 2. In both cases, we assume
that the following step has been performed:

RemoveH, the set ok/2 vertices of highest degree, and remain with the g@ph

We use the fact thak (G,) < dy. We further assume thdt (G, k) remains virtually
unchanged by the step above. This assumption can be made without loss of generality,
because it fails to hold only if procedure 2 achieves an approximation ratio better than
n%/3-¢ (see Lemma 3.3 and the discussion that follows it). W&|étdenote thé-vertex
induced subgraph of highest densityGan.

4.1. Walks of Length3. We first present a procedure that handles case 1 above
(d*(G, k) = O(nY3), k = ©(n/3), dy = O(n?¥?)). Its analysis is based on the follow-
ing lemma.

LEMMA 4.3. There exist two verticggot necessarily distinft;, v; € V such that the
subgraph of G* induced by Nv;) U N(vj) has at least{d*(G, k))3/2k edges

Proor  Consider Lemma 4.2 with = 3 applied toG,*, and letv;, vj be two vertices
with Ws[vi, vj] > (d*(G, k))3/k. Consider the multiset of middle edges of all length-3
walks betweeny; andvj. An edge may appear in this multiset at most twice (e.g., once
as (v, v¢) and once asvy, vy), if both vx andv, are in N(vi) N N(vj)). The proof
follows. O

We can now present procedure 4.

PROCEDUREA4.

1. For all pairs of vertices;, v; € G, apply algorithmA(N (vi) U N(v;), k).
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2. Return the densest of the subgraph returned by any oOimé) applications of
algorithmA.

LEMMA 4.4. The performance guarantee of proceddigatisfies A(Gy, k) > A(G’, k),
where G is a graph on at most’n= 2dy vertices that contains a k-vertex subgraph of
average degree at least & (d*(G, k))3/k>.

PrOOF Letv; andv; be the two vertices i5,* to which Lemma 4.3 applies. Then
N (vi) U N(vj) contains &-vertex induced subgraph with at legdt (G, k))3/2k edges,
implying average degree at leagd*(G, k))3/k?. Moreover, [N(vi) U N(vj)| <
2dy. O

For case 1, we geds(Gy, k) > A(G/, k) with n’ = O(n??®) andd’ = ®(n'/?) =
©(d*(G, k)). Algorithm A achieves an approximation ratio 6f((n)/3) (and in fact
even better, for these parameters), which is certainly better@tat®).

4.2. Walks of Lengttb. We handle case 2, with parametel§G, k) = ©(n/3),

k = ©(n%3),dy = ®(n%3) (and hence\ (G;) = O(n'/3)). These parameters are fixed
throughout this section. We present an outline of procedure 5 that is used in this case.
We fill in the missing details (how step 1 is performed) later. In what follaws,0 is a

small universal constant.

PROCEDURES.

1. Selectasubgraphinduced o@n??) vertices, with average degrégn?). Remove

it from G, to obtain a new graph.

2. Repeat the above step of selecting subsets of vertices and removing them from the
input graph until one of the following stopping conditions occur:

(a) A total ofn?2 vertices have been selected.

(b) One can deduce (by the fact that Claim 4.5 below fails to hold) that the remaining
graph no longer contains@(n?3)-vertex induced subgraph with average degree
Q(n¥3).

3. Return the subgraph induced on the union of the vertices selected by applications of
step 1 above. If stopping condition 2 occurred, complet@t®vertices in a greedy

way, similar to the selection @ in Section 3.2.

For the parameters of case 2, procedure 5 guarantees an approximation ratio of
O(n3/n®). This is clearly the case if the first stopping condition occurs, because then
the average degree of the subgraph foun@ {g®). The same also applies to the case
that the second stopping condition occurs afité? /2 vertices have been selected. The
only nontrivial case is when the second stopping condition occurs bedGie vertices
are selected, but then the approximation ratio can be shown to be a constant. The reason
is that in this case, all but a small fraction of the edge& gfhave at least one endpoint
in the selected vertices. As long as there @i@) edges ofG,* that do not have both
endpoints in the selected vertices, there must be some ver@x*ahat was not yet
selected and ha3(n%/?) neighbors in the selected vertices. The greedy rule for choosing
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C then ensures that a vertex of degtee®/®) will be chosen. The average degree of
the final subgraph i€ (n%/3).

The main unexplained part of procedure 5 is step 1. It uses analysis based on walks
of length 5. For the parameters of case 2, applying Lemma 4= 'towe obtain:

CLAIM 4.5. There exist two vertices w in G, with

Ws(u, v) > (d*(G, k))°/k = Q(n).

Letu andv be two vertices witlf2 (n) length-5 walks fronu to v. Let N3 (N2, N3, Ng,
respectively) denote the sets of vertices that are first (second, third, fourth, respectively)
along these walks. L&t denote the subgraph induced by the union of these sets.

Note that a vertexv may appear in several of these sets, exgmay be a neighbor
of v but also may lie in a path of length 2 from This fact may cause some edges to be
counted several times and affects the constants in our analysis. This effect is taken care
of by theO, ©, ® notation that we use.

From the assumption thaty = O(n/3), step 1 of procedure 5 is applied on
graphs with maximum degre = O(n'/3). It follows that|N;|, |Ns| = O(n%?) and
IN2|, N3] = O(n?/3).

4.2.1. Some easy subcasesWe make some assumptions regarding the structufe of
Each assumption is justified by the fact that it can either be enforcéd onotherwise
a subgraph of average degi@én®) is found (and hence step 1 is completed).

ASSUMPTIONL. cut(Np, N3) < n?/3te.,
JUSTIFICATION. Otherwise, takéN, U Ns.

ASSUMPTION2. For everyw € Ny, Wa(w,v) < n¥3+¢ and for everyw € N,
Ws(w, U) < nt/3+e,

JUSTIFICATION. Consider the case that € N, andWs(w, v) > n¥3t¢. Observe that
all the length-3 walks betweanandv must pass througN3; andN,. Consider the graph
induced by the neighbors afin N3, and the sell,. Sincew hasO(n*/3) neighbors ifNa,
this graph contain®(n*/3) vertices, and2 (n*/3+¢) edges. Hence step 1 is completed.

AssUMPTION3. Every edge betweel, andN; lies in at least2 (n'/3-%) walks from
vtou.

JUSTIFICATION. Remove any edge betweddy and N3 that lies in less tham/3-2
length-5 walks fronv to u. Since the number of edges betwdénand N3 is less than
n%3+¢ (see assumption 1) we “kill” at mod(n'~¢) walks, maintainingiVs(u, v) =
Q(n).

4.2.2. The remaining subcase Lete = (w, z) be an arbitrary edge betweane N;
andz e N3. By assumption 3 lies in p = Q(n'/3-%) walks fromu to v.



418 U. Feige, G. Kortsarz, and D. Peleg

Clearly,
p = degw, Ny) - degz, Ny).

Thus, eithedegw, N;) > n'/6-¢ ordegz, Ny) > n¥/6~¢. If degz, Ns) > n6-¢ callz
the “good” vertex ofe. Otherwise, call the good vertex.
Now initiate the following process. The process chooses two suBsetsN,, S C
N3 of “good” vertices, i.e., vertices of high degrees. Repeat the following three steps:

1. Choose an edgebetweenN, andNgs. Let w be its good vertex.
2. If w € Np, addw to S, otherwise, addv to .
3. Remove fronF all the edges betwedx, and N3 that touchw.

Observe that in step 3 above, we only discard the length-5 walks frtou in F
thatgo throughw. Assume without loss of generality that € N,. By assumption 2,
Ws(w, v) < nY/3*¢, The number of walks betweenandw (which equalslegw, N1))
is bounded above by/3. Thus, the number of walks betweerandu that go through
w, is bounded byO(nY/3 . nt/3+e) = n?/3+¢,

Since we have& (n) walks between andu, and each iteration removes omiy/ 3+
of them, the number of iterations can be chosen t®@e/n%3+¢) = ©(n'/3-¢). Thus
the total number of “good” vertices found by the algorithn®ign’/3-¢).

Without loss of generality assume th&| > |S;|. Now, consider the subgraph
induced byS, U Nj. It containsO(n*?) vertices, out of whict® (n'/3-¢) vertices have
degree at leastegw, N;) > n¥/6~¢. Thus the average degreesign/¢-%) > n¢, for

& < £. Hence we obtain:

LEMMA 4.6. For the parameters k= @(n%3), d*(G,k) = O(nY%), and dy =
©(n'/3), procedure5 achieves an approximation ratio of (@>/18).

4.3. Algorithm B.  Algorithm B applies algorithmA and procedures 4 and 5. To see
that it obtains an approximation ratio @ (n*/3-¢), for somes > 0, observe that the
analysis of procedures 4 and 5 can withstand small changes in the input parameters. For
example, ifdy < n'~% andd*(G, k) > k/n®/3 (implyingd’ > k/n¢), then procedure 4
has an approximation rati® (n%/3-¢).

We have made no attempt to compute the best valuetbt can be obtained by
algorithm B, other than to verify that > O.

5. Extensions

5.1. Better Approximation when & Q (k). In the case thad*(G, k) = Q(k) itis
possible to alternate between our procedures 2 and 4 and obtain an algorithm that for
any givere finds anO(n?) approximation to DKS, with time complexity®*/#). In each
iteration the algorithm first applies procedure 2, and stops if it produces a subgraph with
average degrde/n®. If procedure 2 fails to produce such a subgraphkit#evertices of
highest degree are removed, and procedure 4 is applied. This resDitaannew DkS
problems to be solved, but in each one of them the number of vertices has been reduced
by afactor of2 (n¢). Atleast one of these smaller problems must contain a vertex induced
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subgraph of density roughl® (d*(G, k)). Now the process can be repeated on each of

the smaller problems. AfteD(1/¢) iterations, we remain with DkS problems on graphs

with k vertices or fewer, and we take the densest of these graphs. The details are omitted.
A simplified version of the above argument is used in [FS] to show tl@atiintains a

cligue onk vertices, then for every > 0 ak-subgraph with average degrde- ¢)(k—1)

can be found in tim@©((1/2)10g/k).

5.2. Arbitrary Edge Weights In the weighted version of the DKS problem, edges have
nonnegative weights, and the goal is to find teertex induced subgraph with the
maximum total weight of edges. This problem can be reduced to the unweighted DkS
problem with a loss of at mo€d (logn) in the approximation ratio. We sketch how this

is done:

1. Scale edge weights such that the maximum edge weight is

2. Round up each edge weight to the nearest (nonnegative) power of 2.

3. Solve two logh DKS problems, one for each edge weight (with all other edges re-
moved).

4. Select the best of th®(logn) solutions.

Appendix. We restate Lemma 4.2 and present its proof.

LEMMA 4.2. Let G be a graph with n vertices and average degre&ltere exist two
verticesv;, v; € V such that W(vi, vj) > d/n.

Before proving the above lemma, we recall without proofs some elementary facts
from linear algebra and its relation to graphs. For a more detailed treatment, see [B] and
[MM].

Let G(V, E) be a graph witmm = |V| vertices andn = |E| edges wherd/ =
{v1, ..., vn}. The adjacency matri(G) is the matrix A(G) = (&;) whereg; is
defined as

la i» Uj € E7
a ::{ (vi, vj)

0, (vh m) ¢ E.

The matrix is a 0—1 symmetric matrix with 0 in the diagonal (as we deal with simple
graphs).

We denote the eigenvalues 8{G) by A, ..., An_1 (SOmMe eigenvalues may have
multiplicity, i.e, the same value may appear many times). SK(€®) is symmetric, all its
eigenvalues are real. Without loss of generality assumeé.thati 1 forO <i < n—2.

For any square matri = (bj;) we denote byrace(B) the sum of elements in the
diagonal ofB, i.e.,trace(B) = Z:j bii. If B has eigenvalueg,, ..., un_1, then

i=0
trace(B) = Z Wi.

i=n—-1

(Hence the sum of the eigenvaluesA(G) equals zero.)
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The largest eigenvalue of the adjacency matrix of a graph satisfies(} " ajj)/n =
d. When raising a square matrixwith eigenvalues., . .., An_1 to some powek, the
values of the eigenvalues & are (1o)X, ..., (An_1)*.

We are now ready to prove Lemma 4.2.

PrROOF  Consider the adjacency matri(G), and putP = A(G)‘ andP = (pij)-
Each entryp;; counts the number of walks of lengtifrom v; to vj, i.e,

pij = Wi, j).

Now consider the matri8 = P?(= A(G)%*) and putB = (bj;). Consider a diagonal
elementb;; . Sinceb;; = Z?:l pi; p;i » and the graph is undirected, we have that=
It follows that

trace(B) = trace(A%)

D Wi, j)?
i
i=n—1

> 00* = () = d*.
i=0

By averaging, there is a paii, j) such thatW,(i, j)> > d%/n? which gives the
proof. O

REMARK. Lemma 4.2 also follows from the fact that the total number of lerigtlalks

in a graph of average degreeis at leastnd’. A proof of this fact, but only for even
values of¢, is presented in [AFWZ]. Unfortunately, we need to use this fact with odd
values of¢. We are not aware of any reference to the corresponding result for odd values
of ¢, except for a recent private communication by Noga Alon.
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