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The Densek-Subgraph Problem1

U. Feige,2 G. Kortsarz,3 and D. Peleg2

Abstract. This paper considers the problem of computing the densek-vertex subgraph of a given graph,
namely, the subgraph with the most edges. An approximation algorithm is developed for the problem, with
approximation ratioO(nδ), for someδ < 1

3 .
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1. Introduction. We study thedense k-subgraph(DkS) maximization problem, of
computing the densek-vertex subgraph of a given graph. That is, on input a graph
G and a parameterk, we are interested in finding a set ofk vertices with maximum
average degree in the subgraph induced by this set. As this problem is NP-hard (say,
by reduction from Clique), we consider approximation algorithms for this problem. We
obtain a polynomial time algorithm that on any input(G, k) returns a subgraph of sizek
whose average degree is within a factor of at mostnδ from the optimum solution, where
n is the number of vertices in the input graphG, andδ < 1

3 is some universal constant.
Unfortunately, we are unable to present a complementary negative result giving evidence
that, for someε > 0, achieving an approximation ratio ofO(nε) is NP-hard. In fact,
we do not even know whether achieving an approximation ratio of(1+ ε) is NP-hard,
though we conjecture that this is indeed the case.

Our problem is related to several other problems. We mention two of them:

• TheDensest Subgraph(DS) problem concerns choosing a subsetV ′ (of arbitrary size)
such that the vertex induced subgraph has maximum average degree. This problem
can be solved polynomially using flow techniques (see Chapter 4 of [L]). The fastest
algorithm known for DS is given in [GGT] and runs in timeO(mnlog(n2/m)). One
may hope that some algorithmic techniques used in solving the DS problem can
help approximate the DkS problem, but there seem to be major difficulties involved.
Consider for example the case of regular graphs. The densest subgraph of a regular
graph is the graph itself, and hence no algorithmic ideas are involved in solving this
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DS problem. On the other hand, finding the densek-subgraph remains NP-hard (proof
omitted).
• TheMinimum Flux Cut(FLUX) problem concerns choosing a cutC with minimum

ratio between the number of edges that cross the cut and the number of vertices in
the smaller side of the cut. This is a measure of the edge expansion of the graph. The
FLUX problem on regular graphs is related to the DkS problem in the following sense:
by solving the DkS problem optimally for all values ofk in a regular graph, one can
deduce the optimal solution to the FLUX problem on this graph. The FLUX problem
can be approximated within a factor ofO(logn) [LR].

We mention two special cases of the DkS problem that make it easier to approximate.
First, if k = Ä(n) and the number of edges isÄ(n2), then the problem has a polynomial
time approximation scheme (PTAS) [AKK]. Secondly, if the input graph is a complete
graph with edge weights that obey the triangle inequality, then it is shown in [RRT] that a
greedy algorithm achieves an approximation ratio of 4 for thedispersionproblem, which
asks for thek-vertex subgraph of maximum total edge weight, and an approximation
ratio of 2 is given in [HRT].

Recently, Goemans (private communication) showed that using semidefinite pro-
gramming (SDP) one can obtain an approximation ratio arbitrarily close ton/k for DkS.
For some graphs and large values ofk, this approximation ratio is better by a constant
factor than that of the greedy algorithm (see Section 3.2). However, for small values
of k, algorithms based on SDP are not known to perform as well as our combinatorial
approximation algorithm. For example, whenk ' n1/3, it appears that the SDP approach
cannot distinguish between graphs that have cliques of sizek and graphs that only have
k-vertex subgraphs withO(k) edges [FS] (in particular, excluding an approximation
ratio better thann1/3).

Our algorithm can be extended to handle the weighted version of the DkS problem,
incurring an additionalO(logn) factor. This is done in Section 5.2.

2. Definitions

DEFINITION 2.1. Thedensity dG of a graphG = G(V, E) is its average degree. That
is, dG = 2|E|/|V |. WhenG is clear from the context, we denote the density byd.

There is a polynomial time algorithm for finding the densest vertex induced subgraph
of an input graph. We study the parameterized version of this problem.

DEFINITION 2.2. Thedense k-subgraph(DkS) problem has as input a graphG =
G(V, E) (on n vertices) and a parameterk. The output isG∗, a subgraph ofG induced
onk vertices, such thatG∗ is of maximum density. We denote this density byd∗(G, k).

Clearly, the problem DkS is NP-hard, by reduction from Clique.
We are interested in polynomial time approximation algorithms for DkS. On input

(G, k), such an algorithm outputs a list ofk vertices. LetA(G, k) denote the density of
the vertex induced subgraph returned by algorithmA on input(G, k). We wish to devise
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polynomial time algorithms withA(G, k) as close as possible tod∗(G, k). We bound
A(G, k) as a function ofn (the number of vertices inG), k, andd∗(G, k).

NOTATION. 1(G) is the maximum degree of graphG. dH is the average degree of the
k/2 vertices of highest degree inG. Note that1(G) ≥ dH ≥ d∗(G, k). deg(v, S) is the
number of edges connecting vertexv to vertices in the setS. cut(A, B) is the number of
edges connecting vertices in setA and vertices in setB. A walkof length` is a sequence
of ` + 1 vertices in which consecutive vertices are adjacent (hence the walk follows
` edges). The vertices of a walk need not be distinct.W`(u, v) denotes the number of
walks of length̀ that start at vertexu and end at vertexv. Matrix multiplication (raising
the adjacency matrix of the graph to the`th power) can be used in order to compute
W`(vi , vj ) for all pairs of vertices simultaneously.

3. An Approximation Ratio of O(n1/3)

THEOREM3.1. There is a polynomial time algorithm A that approximates DkS within
a factor of 2n1/3. That is, for every graph G and every1 ≤ k ≤ n, A(G, k) ≥
d∗(G, k)/2n1/3.

Algorithm A employs three different procedures (A1, A2, andA3) to select a dense
subgraph, and returns the densest of the three subgraphs that are found.

3.1. A Trivial Procedure. Without loss of generality, we can assume thatG contains
at leastk/2 edges.

PROCEDURE1. Selectk/2 arbitrary edges fromG. Return the set of vertices incident
with these edges, adding arbitrary vertices to this set if its size is smaller thank.

Clearly,

A1(G, k) ≥ 1.

3.2. A Greedy Procedure

PROCEDURE2. Sort the vertices by order of their degree. LetH denote thek/2 vertices
with highest degrees inG (breaking ties arbitrarily). Sort the remaining vertices by the
number of neighbors they have inH . Let C denote thek/2 vertices inG\H with the
largest number of neighbors inH . ReturnH ∪ C.

Recall thatdH denotes the average degree (with respect toG) of a vertex inH .

LEMMA 3.2. Procedure2 returns a vertex induced subgraph satisfying

A2(G, k) ≥ kdH/2n.
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PROOF. Let m1 denote the number of edges both of whose endpoints lie inH . Then
cut(H,V\H) = dH |H | − 2m1 = dH k/2− 2m1 ≥ 0. By the greedy rule for selecting
C, at least a|C|/|V\H | > k/2n fraction of these edges are contained inH ∪ C. Thus
the total number of edges in the subgraph induced byH ∪ C is at least

(dH k/2− 2m1)k/2n+m1 ≥ dH k2/4n

and the proof of the lemma follows.

As dH ≥ d∗(G, k), the greedy procedure approximatesd∗(G, k) within a ratio of
at most 2n/k. A different greedy procedure which also has an approximation ratio of
O(n/k) is analyzed in [AITT].

3.3. Walks of Length2. For verticesv,w and integer̀ ≥ 1, recall thatW`(v, w)

denotes the number of walks of length` from v tow.

PROCEDURE3. ComputeW2(u, v) for all pairs of vertices. Construct a candidate graph
Hv for every vertexv in G, as follows: Sort the vertices ofG by nonincreasing order of
their number of length-2 walks tov, W2(v,w1) ≥ W2(v,w2) ≥ · · ·. Let Pv

h denote the
set{w1, . . . , wk/2}. Compute for every neighborx of v the number of edges connectingx
to Pv

h , deg(x, Pv
h ), and construct a setBv containing thek/2 neighbors ofv with highest

deg(x, Pv
h ). LetHv denote the subgraph induced onPv

h ∪ Bv. (If Hv still contains less
thank vertices, then it is completed to sizek arbitrarily.) Select the densest candidate
graphHv as the output.

We now analyze the approximation ratio of this procedure. We first note that the
number of length-2 walks within the optimum subgraphG∗ is at leastk(d∗(G, k))2. This
is because eachv ∈ G∗ contributes(deg∗(v))2 to this sum, and

∑
v∈G∗(deg∗(v))2 ≥

k(d∗(G, k))2 by convexity. (Here we used deg∗(v) to denote the degree ofv in G∗. See
also the Remark in the Appendix.)

It follows that there is a vertexv which is the endpoint of at least(d∗(G, k))2 length-2
walks inG∗. By the greedy construction ofPv

h , there are at least(d∗(G, k))2/2 walks of
length 2 between thisv and vertices ofPv

h . The vertices ofBv have at least(d∗(G, k))2/2
edges connecting them toPv

h if deg(v) ≤ k/2, and at least(d∗(G, k))2k/4 deg(v)
edges connecting them toPv

h otherwise. Since we do not requirePv
h and Bv to be

disjoint, each edge may have been counted twice. Hence, altogether,Hv contains at least
min[(d∗(G, k))2/4, (d∗(G, k))2k/81(G)] edges, where1(G) denotes the maximum
degree in the graph.

This guarantees

A3(G, k) ≥ (d∗(G, k))2/2 max[k,21(G)].

3.4. Algorithm A. Algorithm A applies the three procedures described above, and
outputs the densest of the three subgraphs obtained by each of these procedures. Proce-
dures 1 and 2 are applied to the original input graphG. Procedure 3 however is applied
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to the graphG` induced on the vertices ofV\H , whereH is the set ofk/2 vertices of
highest degree inG, as defined in procedure 2. Hence1(G`) ≤ dH (G).

For the following lemma to make sense, we assume thatk ≤ 2n/3. This assumption
can be made without loss of generality, because fork ≥ 2n/3 the greedy procedure
approximates DkS within a ratio not worse than 3 (see the end of Section 3.2).

LEMMA 3.3. The graph G̀ contains a k-vertex induced subgraph with average degree
at least d∗(G, k)− 2d2, where d2 = A2(G, k).

PROOF. Let m denote the number of edges ofG∗ with both endpoints inH , and let
` denote the number of edges ofG∗ with one endpoint inH . HenceG` contains a
k-vertex induced subgraph with at leastd∗(G, k)k/2 − m − ` edges. To prove the
lemma, we need to show that procedure 2 returns a solution with at least(m+ `)/2
edges. In fact, the solution has at leastm+ `/2 edges. This is because it clearly contains
the m edges internal toV(G∗) ∩ H , and there must be at leastl/2 edges between
C and H , since at least one possible choice forC offers this many edges (namely,
taking C to contain thek/2 vertices ofV(G∗)\H with the highest number of edges
into H ).

It follows from the performance guarantees on the three procedures that

A(G, k) ≥ max

[
1,d2,

kdH

2n
,
(d∗(G, k)− 2d2)

2

2 max[k,2dH ]

]
.

To prove Theorem 3.1, we can assume thatd2 ≤ d∗(G, k)/n1/3 (otherwise, the output
of procedure 2 achieves the desired ratio of approximation). Hence, for procedure 3, we
have thatd∗(G, k) − 2d2 ' d∗(G, k), with a negligible error term. The performance
guarantee of algorithmA is at least the geometric mean of the performance guarantee
of procedures 1–3. Hence

A(G, k) ≥
(

1 · kdH

2n
· (d∗(G, k))2

2 max[k,2dH ]

)1/3

≥ d∗(G, k)
2n1/3

,

where the last inequality follows from the fact thatk ≥ d∗(G, k) anddH ≥ d∗(G, k).

4. Improving over O(n1/3). The approximation ratio for algorithmA was upper
bounded as a geometric mean of three approximation ratios. In order for algorithmA
to give an approximation ratio as bad asÄ(n1/3), it must hold that all three procedures
give an approximation ratio of2(n1/3). This happens only ifd∗(G, k) = 2(n1/3),
kdH = 2(n), and max[k,dH ] = 2(n2/3). If any of these three conditions is violated
by as much asnε, then the approximation ratio isO(n1/3−ε/2). The above worst case
conditions are satisfied only in the two cases below:

1. d∗(G, k) = 2(n1/3), k = 2(n1/3), dH = 2(n2/3).
2. d∗(G, k) = 2(n1/3), k = 2(n2/3), dH = 2(n1/3).
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We present two additional procedures, each giving an approximation ratio better
thanO(n1/3) in one of the above cases. Together with algorithmA, this guarantees an
approximation ratio ofO(n1/3−ε), for someε > 0, for the DkS problem.

THEOREM4.1. There is a polynomial time algorithm B that approximates DkS within
a factor of n1/3−ε, for someε > 0. That is, for every graph G and for every1 ≤ k ≤ n,
B(G, k) ≥ d∗(G, k)/n1/3−ε.

A unifying theme of the two new procedures is the use of the following lemma. Recall
thatW`(vi , vj ) denotes the number of walks of length` from vi to vj .

LEMMA 4.2. Let G be a graph with n vertices and average degree d. There exist two
verticesvi , vj ∈ V such that

W`(vi , vj ) ≥ d`

n
.

A proof of Lemma 4.2 appears in the Appendix.
In Section 4.1 we treat case 1. In Section 4.2 we treat case 2. In both cases, we assume

that the following step has been performed:

RemoveH , the set ofk/2 vertices of highest degree, and remain with the graphG`.

We use the fact that1(G`) ≤ dH . We further assume thatd∗(G, k) remains virtually
unchanged by the step above. This assumption can be made without loss of generality,
because it fails to hold only if procedure 2 achieves an approximation ratio better than
n1/3−ε (see Lemma 3.3 and the discussion that follows it). We letG`

∗ denote thek-vertex
induced subgraph of highest density inG`.

4.1. Walks of Length3. We first present a procedure that handles case 1 above
(d∗(G, k) = 2(n1/3), k = 2(n1/3), dH = 2(n2/3)). Its analysis is based on the follow-
ing lemma.

LEMMA 4.3. There exist two vertices(not necessarily distinct) vi , vj ∈ V such that the
subgraph of G̀∗ induced by N(vi ) ∪ N(vj ) has at least(d∗(G, k))3/2k edges.

PROOF. Consider Lemma 4.2 with̀= 3 applied toG`
∗, and letvi , vj be two vertices

with W3[vi , vj ] ≥ (d∗(G, k))3/k. Consider the multiset of middle edges of all length-3
walks betweenvi andvj . An edge may appear in this multiset at most twice (e.g., once
as (vk, v`) and once as(v`, vk), if both vk and v` are in N(vi ) ∩ N(vj )). The proof
follows.

We can now present procedure 4.

PROCEDURE4.

1. For all pairs of verticesvi , vj ∈ G`, apply algorithmA(N(vi ) ∪ N(vj ), k).



416 U. Feige, G. Kortsarz, and D. Peleg

2. Return the densest of the subgraph returned by any of theO(n2) applications of
algorithmA.

LEMMA 4.4. The performance guarantee of procedure4satisfies A4(G`, k) ≥ A(G′, k),
where G′ is a graph on at most n′ = 2dH vertices that contains a k-vertex subgraph of
average degree at least d′ = (d∗(G, k))3/k2.

PROOF. Let vi andvj be the two vertices inG`
∗ to which Lemma 4.3 applies. Then

N(vi )∪N(vj ) contains ak-vertex induced subgraph with at least(d∗(G, k))3/2k edges,
implying average degree at least(d∗(G, k))3/k2. Moreover, |N(vi ) ∪ N(vj )| ≤
2dH .

For case 1, we getA4(G`, k) ≥ A(G′, k) with n′ = O(n2/3) andd′ = 2(n1/3) =
2(d∗(G, k)). Algorithm A achieves an approximation ratio ofO((n′)1/3) (and in fact
even better, for these parameters), which is certainly better thanO(n1/3).

4.2. Walks of Length5. We handle case 2, with parametersd∗(G, k) = 2(n1/3),
k = 2(n2/3), dH = 2(n1/3) (and hence1(G`) = O(n1/3)). These parameters are fixed
throughout this section. We present an outline of procedure 5 that is used in this case.
We fill in the missing details (how step 1 is performed) later. In what follows,ε > 0 is a
small universal constant.

PROCEDURE5.

1. Select a subgraph induced overO(n2/3) vertices, with average degreeÄ(nε). Remove
it from G` to obtain a new graph.

2. Repeat the above step of selecting subsets of vertices and removing them from the
input graph until one of the following stopping conditions occur:
(a) A total ofn2/3 vertices have been selected.
(b) One can deduce (by the fact that Claim 4.5 below fails to hold) that the remaining

graph no longer contains a2(n2/3)-vertex induced subgraph with average degree
Ä(n1/3).

3. Return the subgraph induced on the union of the vertices selected by applications of
step 1 above. If stopping condition 2 occurred, complete ton2/3 vertices in a greedy
way, similar to the selection ofC in Section 3.2.

For the parameters of case 2, procedure 5 guarantees an approximation ratio of
O(n1/3/nε). This is clearly the case if the first stopping condition occurs, because then
the average degree of the subgraph found isÄ(nε). The same also applies to the case
that the second stopping condition occurs aftern2/3/2 vertices have been selected. The
only nontrivial case is when the second stopping condition occurs beforen2/3/2 vertices
are selected, but then the approximation ratio can be shown to be a constant. The reason
is that in this case, all but a small fraction of the edges ofG`

∗ have at least one endpoint
in the selected vertices. As long as there areÄ(n) edges ofG`

∗ that do not have both
endpoints in the selected vertices, there must be some vertex ofG`

∗ that was not yet
selected and hasÄ(n1/3) neighbors in the selected vertices. The greedy rule for choosing
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C then ensures that a vertex of degreeÄ(n1/3) will be chosen. The average degree of
the final subgraph isÄ(n1/3).

The main unexplained part of procedure 5 is step 1. It uses analysis based on walks
of length 5. For the parameters of case 2, applying Lemma 4.2 toG`

∗, we obtain:

CLAIM 4.5. There exist two vertices u, v in G` with

W5(u, v) ≥ (d∗(G, k))5/k = Ä(n).

Letu andv be two vertices withÄ(n) length-5 walks fromu tov. Let N1 (N2, N3, N4,
respectively) denote the sets of vertices that are first (second, third, fourth, respectively)
along these walks. LetF denote the subgraph induced by the union of these sets.

Note that a vertexw may appear in several of these sets, e.g.,w may be a neighbor
of v but also may lie in a path of length 2 fromv. This fact may cause some edges to be
counted several times and affects the constants in our analysis. This effect is taken care
of by theO, Ä,2 notation that we use.

From the assumption thatdH = O(n1/3), step 1 of procedure 5 is applied on
graphs with maximum degree1 = O(n1/3). It follows that |N1|, |N4| = O(n1/3) and
|N2|, |N3| = O(n2/3).

4.2.1. Some easy subcases. We make some assumptions regarding the structure ofF .
Each assumption is justified by the fact that it can either be enforced onF , or otherwise
a subgraph of average degreeÄ(nε) is found (and hence step 1 is completed).

ASSUMPTION1. cut(N2, N3) < n2/3+ε.

JUSTIFICATION. Otherwise, takeN2 ∪ N3.

ASSUMPTION2. For everyw ∈ N2, W3(w, v) ≤ n1/3+ε, and for everyw ∈ N3,
W3(w,u) ≤ n1/3+ε.

JUSTIFICATION. Consider the case thatw ∈ N2 andW3(w, v) > n1/3+ε. Observe that
all the length-3 walks betweenw andvmust pass throughN3 andN4. Consider the graph
induced by the neighbors ofw in N3, and the setN4. Sincew hasO(n1/3)neighbors inN3,
this graph containsO(n1/3) vertices, andÄ(n1/3+ε) edges. Hence step 1 is completed.

ASSUMPTION3. Every edge betweenN2 andN3 lies in at leastÄ(n1/3−2ε) walks from
v to u.

JUSTIFICATION. Remove any edge betweenN2 and N3 that lies in less thann1/3−2ε

length-5 walks fromv to u. Since the number of edges betweenN2 andN3 is less than
n2/3+ε (see assumption 1) we “kill” at mostO(n1−ε) walks, maintainingW5(u, v) =
Ä(n).

4.2.2. The remaining subcase. Let e = (w, z) be an arbitrary edge betweenw ∈ N2

andz ∈ N3. By assumption 3,e lies in p = Ä(n1/3−2ε) walks fromu to v.
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Clearly,

p = deg(w, N1) · deg(z, N4).

Thus, eitherdeg(w, N1) ≥ n1/6−ε or deg(z, N4) ≥ n1/6−ε. If deg(z, N4) ≥ n1/6−ε, call z
the “good” vertex ofe. Otherwise, callw the good vertex.

Now initiate the following process. The process chooses two subsetsS2 ⊆ N2, S3 ⊆
N3 of “good” vertices, i.e., vertices of high degrees. Repeat the following three steps:

1. Choose an edgee betweenN2 andN3. Letw be its good vertex.
2. If w ∈ N2, addw to S2, otherwise, addw to S3.
3. Remove fromF all the edges betweenN2 andN3 that touchw.

Observe that in step 3 above, we only discard the length-5 walks fromv to u in F
thatgo throughw. Assume without loss of generality thatw ∈ N2. By assumption 2,
W3(w, v) ≤ n1/3+ε. The number of walks betweenu andw (which equalsdeg(w, N1))
is bounded above byn1/3. Thus, the number of walks betweenv andu that go through
w, is bounded byO(n1/3 · n1/3+ε) = n2/3+ε.

Since we haveÄ(n) walks betweenv andu, and each iteration removes onlyn2/3+ε

of them, the number of iterations can be chosen to be2(n/n2/3+ε) = 2(n1/3−ε). Thus
the total number of “good” vertices found by the algorithm is2(n1/3−ε).

Without loss of generality assume that|S2| ≥ |S3|. Now, consider the subgraph
induced byS2 ∪ N1. It containsO(n1/3) vertices, out of which2(n1/3−ε) vertices have
degree at leastdeg(w, N1) ≥ n1/6−ε. Thus the average degree isÄ(n1/6−2ε) ≥ nε, for
ε ≤ 1

18. Hence we obtain:

LEMMA 4.6. For the parameters k= 2(n2/3), d∗(G, k) = 2(n1/3), and dH =
2(n1/3), procedure5 achieves an approximation ratio of O(n5/18).

4.3. Algorithm B. Algorithm B applies algorithmA and procedures 4 and 5. To see
that it obtains an approximation ratio ofO(n1/3−ε), for someε > 0, observe that the
analysis of procedures 4 and 5 can withstand small changes in the input parameters. For
example, ifdH ≤ n1−6ε andd∗(G, k) ≥ k/nε/3 (implying d′ ≥ k/nε), then procedure 4
has an approximation ratioO(n1/3−ε).

We have made no attempt to compute the best value ofε that can be obtained by
algorithmB, other than to verify thatε > 0.

5. Extensions

5.1. Better Approximation when d= Ä(k). In the case thatd∗(G, k) = Ä(k) it is
possible to alternate between our procedures 2 and 4 and obtain an algorithm that for
any givenε finds anO(nε) approximation to DkS, with time complexitynO(1/ε). In each
iteration the algorithm first applies procedure 2, and stops if it produces a subgraph with
average degreek/nε. If procedure 2 fails to produce such a subgraph, thek/2 vertices of
highest degree are removed, and procedure 4 is applied. This results inO(n2) new DkS
problems to be solved, but in each one of them the number of vertices has been reduced
by a factor ofÄ(nε). At least one of these smaller problems must contain a vertex induced
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subgraph of density roughly2(d∗(G, k)). Now the process can be repeated on each of
the smaller problems. AfterO(1/ε) iterations, we remain with DkS problems on graphs
with k vertices or fewer, and we take the densest of these graphs. The details are omitted.

A simplified version of the above argument is used in [FS] to show that ifG contains a
clique onk vertices, then for everyε > 0 ak-subgraph with average degree(1−ε)(k−1)
can be found in timenO((1/ε) log(n/k)).

5.2. Arbitrary Edge Weights. In the weighted version of the DkS problem, edges have
nonnegative weights, and the goal is to find thek-vertex induced subgraph with the
maximum total weight of edges. This problem can be reduced to the unweighted DkS
problem with a loss of at mostO(logn) in the approximation ratio. We sketch how this
is done:

1. Scale edge weights such that the maximum edge weight isn2.
2. Round up each edge weight to the nearest (nonnegative) power of 2.
3. Solve two logn DkS problems, one for each edge weight (with all other edges re-

moved).
4. Select the best of theO(logn) solutions.

Appendix. We restate Lemma 4.2 and present its proof.

LEMMA 4.2. Let G be a graph with n vertices and average degree d. There exist two
verticesvi , vj ∈ V such that Ẁ(vi , vj ) ≥ d`/n.

Before proving the above lemma, we recall without proofs some elementary facts
from linear algebra and its relation to graphs. For a more detailed treatment, see [B] and
[MM].

Let G(V, E) be a graph withn = |V | vertices andm = |E| edges whereV =
{v1, . . . , vn}. The adjacency matrixA(G) is the matrix A(G) = (ai j ) whereai j is
defined as

ai j =
{

1, (vi , vj ) ∈ E,
0, (vi , vj ) /∈ E.

The matrix is a 0–1 symmetric matrix with 0 in the diagonal (as we deal with simple
graphs).

We denote the eigenvalues ofA(G) by λ0, . . . , λn−1 (some eigenvalues may have
multiplicity, i.e, the same value may appear many times). SinceA(G) is symmetric, all its
eigenvalues are real. Without loss of generality assume thatλi ≥ λi+1 for 0≤ i ≤ n−2.

For any square matrixB = (bi j ) we denote bytrace(B) the sum of elements in the
diagonal ofB, i.e.,trace(B) =∑i=1

i=n bii . If B has eigenvaluesµ0, . . . , µn−1, then

trace(B) =
i=0∑

i=n−1

µi .

(Hence the sum of the eigenvalues ofA(G) equals zero.)
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The largest eigenvalue of the adjacency matrix of a graph satisfiesλ0 ≥ (
∑

ai j )/n =
d. When raising a square matrixA with eigenvaluesλ0, . . . , λn−1 to some powerk, the
values of the eigenvalues ofAk are(λ0)

k, . . . , (λn−1)
k.

We are now ready to prove Lemma 4.2.

PROOF. Consider the adjacency matrixA(G), and putP = A(G)` and P = (pi j ).
Each entrypi j counts the number of walks of length` from vi to vj , i.e,

pi j = W`(i, j ).

Now consider the matrixB = P2(= A(G)2`) and putB = (bi j ). Consider a diagonal
elementbii . Sincebii =

∑n
j=1 pi j pji , and the graph is undirected, we have thatbii =∑n

j=1 pi j
2.

It follows that ∑
i, j

W`(i, j )2 = trace(B) = trace(A2`)

=
i=n−1∑

i=0

(λi )
2` ≥ (λ0)

2` ≥ d2`.

By averaging, there is a pair(i, j ) such thatW`(i, j )2 ≥ d2`/n2 which gives the
proof.

REMARK. Lemma 4.2 also follows from the fact that the total number of length-`walks
in a graph of average degreed is at leastnd`. A proof of this fact, but only for even
values of`, is presented in [AFWZ]. Unfortunately, we need to use this fact with odd
values of̀ . We are not aware of any reference to the corresponding result for odd values
of `, except for a recent private communication by Noga Alon.
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