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A Sweepline Algorithm for Voronoi Diagrams 

Steven Fortune ~ 

Abstract. We introduce a geometric transformation that allows Voronoi diagrams to be computed 
using a sweepline technique. The transformation is used to obtain simple algorithms for computing 
the Voronoi diagram of point sites, of line segment sites, and of weighted point sites. All algorithms 
have O(n log n) worst-case running time and use O(n) space. 
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1. Introduction. The Voronoi diagram of a set of sites in the plane partitions 
the plane into regions, called Voronoi regions, one to a site. The Voronoi region 
of a site s is the set of points in the plane for which s is the closest site among 
all the sites. 

The Vor0noi diagram has many applications in diverse fields. One application 
is solving closest-site queries. Suppose we have a fixed set of sites and a query 
point, and would like to know the closest site to the query point. If the Voronoi 
diagram of  the set of sites is constructed, then this problem has been reduced to 
determining the region containing the query point. If in fact the number of query 
points is large relative to the number of sites, then the construction of the Voronoi 
diagram is worthwhile. The papers by Preparata [16] and by Green and Sibson 
[8] contain references to other applications. 

We present simple sweepline algorithms for the construction of Voronoi 
diagrams when sites are points and when sites are line segments. The proposed 
algorithms are based on the sweepline technique [17], [20]. The sweepline 
technique conceptually sweeps a horizontal line upward across the plane, noting 
the regions intersected by the line as the line moves. Computing the Voronoi 
diagram direct ly  with a sweepline technique is difficult, because the Voronoi 
region of  a site may be intersected by the sweepline long before the site itself is 
intersected by the sweepline. Rather than compute the Voronoi diagram, we 
compute a geometric transformation of it. The transformed Voronoi diagram has 
the property that the lowest point of the transformed Voronoi region of a site 
appears at the site itself. Thus the sweepline algorithm need consider the Voronoi 
region of a site only when the site has been intersected by the sweepline. It turns 
out to be easy to reconstruct the real Voronoi diagram from its transformation; 
in fact in practice the real Voronoi diagram would be constructed, and the 
transformation computed only as necessary. The sweepline algorithms compute 
the Voronoi diagram of n sites in time O(n log n) and space usage O(n). 
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Previous algorithms for Voronoi diagrams fall into two categories. First are 
incremental algorithms, which construct the Voronoi diagram by adding a site 
at a time. These algorithms are relatively simple, but have worst-case time 
complexity O(n2). However, the algorithms may have good expected time 
behavior [2], [8], [15]. 

The second category of algorithms are divide-and-conquer algorithms. The set 
of  sites is split into two parts, the Voronoi diagram of each part computed 
recursively, and then the two Voronoi diagrams merged together. I f  the sites are 
points, then they can be split simply by drawing a line that separates the sites 
into halves [18]. I f  the sites are line segments, then more complex partitioning 
is necessary [21]. With care, the divide-and-conquer algorithms can be imple- 
mented in worst-case time O(n log n). The difficulty of  the divide-and-conquer 
algorithms is generally with the merge step that combines two Voronoi diagrams 
together. While the time required for this step is only linear in the number  of 
sites, the details of  the merge are complex and hard to implement. 

The sweepline algorithms presented in this paper  are competitive in simplicity 
with the incremental algorithms. Since they avoid the merge step, they are much 
simpler to implement than the divide-and-conquer algorithms. But they have the 
same worst-case time complexity as the divide-and-conquer algorithms. 

We also present an algorithm to compute the Voronoi diagram of weighted 
point sites, in which each site has an additive weight associated with it. The 
algorithm uses exactly the same sweepline technique, and has time complexity 
O(n log n). The best previously known algorithm for this problem has time 
complexity O(n log 2 n). 

The algorithms in this paper  do not assume that the points are in general 
position. Thus sites can be arbitrarily collinear or cocircular. In order to prove 
that the algorithms are correct, even with degeneracies, we assume that arithmetic 
is performed exactly. An interesting problem is to show that the algorithms 
perform correctly in more reasonable models of  computer  floating-point arith- 
metic. The algorithm for the case of  point sites has been implemented; there are 
no known examples that cause it to fail. 

2. Point Sites. We first consider the case that all sites are points in the plane. 
This simple case has been discussed extensively in the literature. We summarize 
the definitions and elementary properties below; for more details, see, for example, 
[18] or [11]. For a more general situation than point sites, see [14]. 

I f p  c R 2, then Px and py are the x- and y-coordinates of  p, respectively. Points 
p, q ~ R 2 are lexicographically ordered, p < q, if/~v < qy or py = qy and Px < q~. A 
line or segment l is below p ~ R 2 if there is a point q ~ l with p~ = qx and qy <p~. 
For p, q ~ R 2, e(p, q) is the Euclidean distance between p and q. 

Let S be a set of  n points in the plane, called sites. For p c S, dp: R2-~ R is the 
(Euclidean) distance from a point in R 2 to p, and d: R2-~ R is minp~sdp. The 
Voronoi circle at z ~ R 2 is the circle centered at z of  radius d(z).  The bisector Bpq 
of p, q ~ S is {z c R2: d~(z) = dq(z)}; Bpq is of  course a line, the usual perpendicular 
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I t  

Fig. 2.1. Voronoi diagram V. 

Rp, is ("~q~p Rpq. Rp is a convex, possibly u n b o u n d e d  po lygon  containing p. The 
Voronoi diagram V(S ) ,  or V for short, is 

{ZC R2: there is p # q with d ( z )  = dp(z) -= dq(z)}. 
See Figure 2.1. 

V consists o f  the union  of  segments, half-lines, and lines. 2 A vertex of  V is a 
point  o f  V with at least three incident segments or  half-lines; equivalently, a 
vertex is a point  equidistant  f rom at least three sites. An edge of  V is a maximal  
connected segment,  half-line, or  line in V; an edge does not contain any vertices 
in its interior. An edge is either a line, has two vertices as endpoints ,  or is a 
half-line with one vertex as endpoint .  Bpq ~ V is always connected;  if it properly 
contains a point,  then it is an edge, labeled epq. Moreover,  each pair  p, q ~ S label 
at most  one edge of  V. Edge epq forms part  o f  the bounda ry  o f  Rp and R o. There 
are at most  O ( n )  edges and vertices o f  V, since V forms a planar  graph and the 
degree o f  every vertex is at least 3. 

2.1. The Mapping *. The mapp ing  *: R 2 ~  R 2 defined by * ( z ) =  (zx, Zy+ d ( z ) )  
is central to the algorithm. This section develops the properties o f  this mapping;  
Section 5 contains a geometr ic  interpretat ion o f  * that may be helpful. Notice 
that * maps  the point  z c R 2 to the topmost  point  o f  the Voronoi  circle at z. 
Furthermore,  * is cont inuous,  fixes all sites, and maps each vertical line into 
itself. In general we refer to *(B) as B*, for B a subset o f  the plane. To analyze 
�9 , we first consider  the auxiliary funct ion *p: R 2 ~ R  2, defined by *p(Z)= 
(Zx, Zy + dp(z)).  Clearly, * = *p on Rp and z * =  minpc s *p(z). 

LEMMA 2.1. Suppose 1 is a line and is not vertical. Then * p is one-to-one on I and 
�9 p(l) is a hyperbola. 

PROOF. Mapping  * is clearly one- to-one on a nonvertical  line, since it affects 
only the y-coordinate .  Suppose line l has equat ion y = m x + b .  Then 
�9 p(l) = {(x, z): z = mx + b + ( ( m x  + b - p v ) 2 +  (x _px)2)u2}. Thus (z - m x  - b) 2 = 
(rnx+ b _ p y ) 2 +  (x _p~)2 and we see that *p(l) is a conic section. Consider  H = 
{ ( x , y + e ( ( x , y ) ,  r)): ( x , y ) c  l}, where r e  I is the point  o f  l closest to p. H is the 
union of  two half-lines with endpoint  r. The two half-lines constituting H must 

2 V contains lines only if all sites are collinear. 
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Fig. 2.2. Bisectors and transformed bisectors. 

be asymptotes  to *p(l), since for ( x , y ) c  l sufficiently far f rom p, e ( ( x , y ) ,  r) 
approximates  e((x, y) ,  p).  Hence *p(1) is a hyperbola.  []  

Figure 2.2 depicts the mapp ing  * when line 1 is the bisector of  two sites (which 
is the case o f  interest). We must  also consider the case when the line l is vertical. 
The p r o o f  o f  the following proposi t ion is straightforward. 

PROPOSITION 2.2. Suppose line l is vertical. I f  p ~ l then *p is one-to-one on I and 
�9 p(1) is the open half-line above py. I f p  ~ l then *p(l) is the closed half-line above 
p, points below p are mapped to p, and * p is one-to-one above p. 

�9 is a section o f  a hyperbola or a vertical LEMMA 2.3. I f  epq is an edge o f  V, then epq 
line. 

PROOF. Since epq c_ Bpq is an edge of  V, it must  be that d = dp = dq on epq. Since 
Bpq is a line, the claim follows f rom Lemma 2.1 and Proposi t ion 2.2. []  

LEMMA 2.4. Point p is the unique lowest point o f  R~. 

PROOF. Clearly, p ~ Rp and p* = p. By Proposi t ion 2.2, if z c Rp and z is not on 
the vertical line through p, then z* = *p(Z) is above p, and if z is on the vertical 
line th rough  p then z * =  ~p(z) is mapped  to p or above. []  

A consequence o f  Lemma 2.4 is that if edge epq is below p, then p must  lie on 
�9 and in fact must  be the unique lowest point  on it. Thus the edge that lies epq 

below p forms part  o f  the lower boundary  o f  R*. (Notice that there is no edge 
below p exactly if p has minimal y -coord ina te  among  the set of  sites S.) Figure 
2.3 depicts V* for the same set o f  points as depicted in Figure 2.1. 

Fig. 2.3. V* for points in Figure 2.1. 
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LEMMA 2.5. Mapping * is one-to-one on V. 

PROOF. Cons ider  * on a vertical line /. We show that * is one- to-one on 
V c~ Rp n l, and,  fur thermore,  that  if Rp n I is a segment, then *( Rp c~ I) does not 
collapse to a point. Since * is cont inuous,  it preserves the order  o f  points along 
l, and the lemma follows. 

Mapping  *p is one- to-one everywhere except on the vertical half-line below p. 
Since * = *p o n  Rp n l, * fails to be one- to-one o n  Rp ~ I only if p lies o n  Rp ~ l 
and then only on the section o f  Rp c~ l below p. I f  there is no edge of  V below 
p, then trivially * is one- to-one on V c~ Rp ~ 1. Otherwise some edge lies below 
p; it cannot  be vertical, hence there is only a single point  o f  Vc~ Rp n I below p. 
For  the second claim, if Rp ~ l is a segment, either p does not lie on l or there 
is some subsegment  o f  Rp n I above p. In either case there is a segment o f  Rp c~ 1 
on which * is one-to-one,  and *(Rp c~ l) is not  a point. [ ]  

LEMMA 2.6. Suppose v is a vertex of V. Let r and s be the sites on the Voronoi 
circle at v counterclockwise and clockwise of v*, respectively. I f  u* is not a site, then 
edge e*rs extends upward from v* and the rest extend downward. I f  v* is a site, then 
edges er~** and ev*~* extend upward from u* and the rest extend downward. 

PROOF. Every edge epq incident to v is a segment o f  the bisector Bpq of  two 
sites p and q adjacent a round  the Voronoi  circle at v. In fact, Bpq is split into 
two half-lines by v; epq is conta ined in the half-line intersecting Apq, where Apq 
is the arc o f  the circle connect ing p and q not  containing any other  sites. We 

* extends upward  f rom v* iff v*~ A~q; the Lemma follows. establish that epq 
First suppose  that neither p nor  q is v*. N o w  v splits Bpq into two half-lines. 

Let h be the half-line that intersects the arc o f  the circle connect ing p and q that 
contains v*; let h '  be the other. Ifpy ~ qy, say py > qy, then *p(Bpq) is a hyperbola  
through v* with min imum point  p, *p(h) extends upward  from u*, and *p(h') 
extends downward  f rom v* to p. I fpy  = qy, then *p(Bpq) is a section o f  the vertical 
half-line above v, *p(h) is the half-line above v*, and *p(h') is the segment f rom 
the midpoin t  o f  pq to v*. In either case, if Apq is the arc containing v*, then 
epq ~ h, *p = * on epq, and e*q extends upward  f rom v*; if Apq does not contain 

' * extends downward  f rom v*. Finally, if v*, then epq ~ h ,  *p = * on epq, and epq 
one of  p or q is u*, say p, then e*q is a section o f  the hyperbola  with min imum 

* always extends upward  from v*. []  point  p, Apq always contains v*, and epq 

Using Lemma 2.6 we can analyze every point  x in the range o f  *. The following 
cases are mutual ly  exclusive and exhaustive: x is in the interior o f  some region 

* but is neither a site nor  a vertex; x is a site, is not  R*; x lies on some edge epq 
a vertex, and is the min imum point  o f  both  R* and * exp, some p;  x is a vertex, 
not  a site, with at least two edges incident downward  and exactly one incident 
upward;  and x is a vertex and a site, with exactly two edges incident upward  
and at least one incident downward ,  and is the min imum point  of  R*. 

2.2. The Algorithm for Calculating V* and V. A sweeptine algori thm suffices to 
compute  V*. The algori thm conceptual ly  mcves a horizontal  line upward  across  
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the p lane ,  ma in ta in ing  the regions o f  V* in tersec ted  by  the hor izonta l  line. A 
region is encoun te red  for  the  first t ime at a site~ and a region d i sappea r s  at the 
in tersec t ion  o f  two edges.  The  coord ina tes  o f  these two events are easi ly  compu ted ,  
s ince all sites are known ini t ia l ly ,  and  since in tersect ions  o f  edges can be c o m p u t e d  
as these edges become  newly  ad jacen t  a long the sweepline.  

The a lgor i thm is given fo rmal ly  as Algor i thm 1 (F igure  2.4). Algor i thm 1 
p roduces  the Voronoi  d i a g r a m  V* as a list o f  bisectors .  Each b isec tor  is marked  
with the vert ices that  are the  endpo in t s  o f  the co r r e spond ing  Voronoi  edge. I f  a 
b isec tor  is m a r k e d  with only  a single vertex,  then the co r r e spond ing  edge is a 

half- l ine.  

Algorithm 1 : 
Input: 
Output: 
Data structures: 

Computation of V*(S). 
S is a set of n -> t points with unique bottommost point. 
The bisectors and vertices of V*. 
Q: a priority queue of points in the plane, ordered lexicographi- 
cally. Each point is labeled as a site, or labeled as the intersection 
of a pair of boundaries of a single region. Q may contain duplicate 
instances of the same point with distinct labels; the ordering of 
duplicates is irrelevant. 
L: a sequence (r l ,  ct, r2 , . . .  , rk) of regions (labeled by site) and 
boundaries (labeled by a pair of sites). Note that a region can 
appear many times on L. 

1. initialize Q with all sites 
2. p <- extract_rain(Q) 
3. L ~ t h e  list containing Re. 
4. while Q is not empty begin 
5. p ~- extract min(Q) 
6. ease 
7. p is a site: 
8. Find an occurrence of a region Rq* on L containing p. 
9. Create bisector B*pq. 

10. Update list L so that it contains . . . .  R*, Cpq, Rp*, Cpq, Rq*,... in 
place of R*. 

11. Delete from Q the intersection between the left and right boundary 
of R*, if any. 

12. Insert into Q the intersection between C~q and its neighbor to the 
left on L, if any, and the intersection between C+,~ and its neighbor 
to the right, if any. 

13. p is an intersection: 
14. Let p be the intersection of boundaries Cqr and Crs. 
15. Create the bisector B**. 
16. Update list L so it contains Cq, = C~ or C,~+~, as appropriate, instead 

of Cor, R*~, Cr,. 
17. Delete from Q any intersection between Cqr and its neighbor to the 

left and between Cr.~ and its neighbor to the right. 
18. Insert any intersections between Cq.~ and its neighbors to the left or 

right into Q. 
Mark p as a vertex and as an endpoint of B,*~, B*,.,., and B~. 19. 

20. end 

Fig. 2.4. Algorithm l: computation of V*(s). 
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Algorithm 1 does not explicitly test for degeneracies, where a degeneracy is a 
site lying on a bisector, four or more cocircular sites, or three or more collinear 
sites. As Theorem 2.7 shows, Algorithm 1 is adequate to compute the Voronoi 
diagram even in the presence of degeneracies. However, one consequence of the 
lack of explicit tests for degeneracies is that Algorithm 1 can produce zero length 
edges, specifically bisectors with the same point as the two endpoints. These 
edges can be removed if necessary. Alternatively, Algorithm 1 could be written 
to test explicitly for degeneracies, though it then becomes more complex. Also, 
Algorithm 1 assumes that the set S of  sites contains a unique bot tommost  site. 
This assumption is not essential; lines 2 and 3 need to be modified to initialize 
the list L correctly if S contains several sites with identical minimal y-coordinate.  

If/~r > qy, then *p(Bpq) is a hyperbola open upward, and a horizontal line can 
intersect it at two points. To simplify the presentation of Algorithm 1, we split 
*v(Bpq) into two pieces, C~q to the left of  and containing p, and Cp+o to the right 
of and containing p. Then Cpq is monotonically decreasing, Cpq is monotonically 
increasing, and a horizontal line can intersect either of them at most once. If  
py = q~, then we set Cpq = Q and Cpq = * p ( B p q ) .  We call C~q and Cpq boundaries. 

- t -  We use Cpq to denote one of C~- o and Cpq when the choice is unimportant  or 
can be determined from context. For example,  in line I5 of  Algorithm 1, Cq~ is 
C ~  either i fp  is to the right of  the higher of  q and s or if q and s are cohorizontal; 
otherwise Cqs is Cos. 

Line 8 of  Algorithm 1 is a search to find the region containing a newly 
encountered site. The search can be implemented as a binary search on list L, 
since L contains the regions and boundaries in order on the horizontal line. I f  
the site actually falls on a boundary, the search can return the region on either 
side of the boundary. Note that the actual x-coordinate where a boundary 
intersects the horizontal line is determined by the y-coordinate of  the line. 

THEOREM 2,7. Let S be a set of point sites, with unique bottommost site. Then 
Algorithm I computes V*(S). 

PROOF. Say a region or boundary T of V* is active if T intersects the horizontal 
line through p to the left of  or at p and extends above the line, or if T intersects 
the horizontal line to the right of p, and also extends below the line. (Thus a 
boundary with minimum point on the line to the right of  p is not active, and a 
boundary with maximum point on the line to the left of p is not active.) We 
claim that statement I3 following is an invariant of  the while loop, and that 
statements I1 and I2 following are intermittent invariants of  the loop. Specifically, 
I1 and I2 are true after the last iteration of the loop that extracts a particular 
point p from Q. 

(I1) List L contains all regions and boundaries of  V* active at p, in the order 
intersected by the horizontal line through p. 

(I2) If  er, is an edge of V (r and s are arbitrary sites) and e*s contains a point 
lexicographically less than or equal to p, then bisector B*~ has been created. 
If  v is a vertex of V and v* is lexicographically less than or equal to p, then 
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v* has been marked as a vertex and as an endpoint of  all bisectors containing 
an edge of V* incident to v*. 

(I3) I f  two boundaries are adjacent on L and intersect above the horizontal line 
through p, then the intersection is in Q. 

Invariant I I  is true initially, since the horizontal line through the bot tommost  
site b intersects R* at b itself. Invariant I2 is true initially, since no edge or 
vertex of V* contains a point lexicographically less than the minimal site. Invariant 
I3 is true initially since no boundary intersects the horizontal line through b. 
Invariant I3 is clearly maintained by lines 11, 12, 17, and 18. 

We argue invariant I1 explicitly; invariant I2 follows because we examine the 
diagram V* in lexicographic order and always correctly create bisectors and label 
vertices. To argue that I1 is invariant, first note that the set of  active regions and 
boundaries changes only at a site or a vertex of V*. Now a vertex of V* must 
have degree at least three; by Lemma 2.6, if it is not also a site, it must have at 
least two incident edges emanating downward, and the two edges must be 
boundaries active when intersected by the sweepline. Hence it suffices to argue 
that L is updated correctly at a site and at the intersection of boundaries. 

First suppose that p is a site not lying on a boundary. By Lemma 2.4, p is the 
minimal point of  R*. Furthermore, if p lies in the interior of  R* when it was 
first encountered, then p is above edge epq, and p lies on edge e*q. Hence lines 
8-10 correctly update L. 

Now suppose that p is not .a  site but is the intersection of boundaries. Let 
boundaries Cq, q~, Cq2q3 , . . . ,  Cq,,, l q  . . . .  m->3, all intersect at p, in this order from 
left to right just below p, and suppose that p is about to be extracted from Q for 
the first time. By the induction hypothesis I1, L contains the sequence R* 
Cq, q~, Cq,,, ,q .... * . . . ,  Rq,,, . . .  ; call this subsequence L0. By Lemma 2.6, L0 should 
be replaced with R*,, Cq, q .... Rq* after the last time p is extracted from Q. We 
claim the following assertion is an invariant of  the while loop until the last time 
p is extracted from Q: 

(I4) R*  and Rq* are never deleted from L0, and if Rq,, Cq,qj, Rqj, Cqiq~, Rq~ are 
adjacent on Lo, then Cq,q, and Cqjq~ intersect at point p. 

(Notice that by I3, Q contains one copy of p for each consecutive pair of  
boundaries in Lo.) Invariant I4 is clearly true before p is extracted for the first 
time. Each iteration of the while loop replaces a consecutive pair of boundaries 
intersecting at p with a single boundary. However, since all sites q l , . . . ,  q,, are 
equidistant from . - l ( p ) ,  the new boundary intersects its left and right neighboring 
boundaries at p, and invariant I4 is maintained. After p is extracted from Q for 
the last time, only Rq,, Cq, q .... Rq,. remain, and invariant I1 is established. 

Now suppose that p is a site lying on a boundary,  or p is a site and two or 
more boundaries intersect at p. Let Cq, q., . . . ,  Cq ..... q,,, be the boundaries incident 
at p, m-> 2. By Lemma 2.6, this sequence of boundaries and enclosed regions 
should be replaced on L by Cq, p, Rp, C,q, .  We show that I4 is again an invariant 
of  the while loop for the iterations in which p is extracted. The only new case is 
if p, labeled as a site, is extracted from Q. Then p is determined to lie in some 
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region Rq~, and boundaries C~,p and Cq+ip are created. However, p and q l , . . . ,  qm 
are all equidistant from *-~(p). Hence if i r  1, then Cq, p intersects its left 
neighboring boundary at p, and if i r m then Cq+p intersects its right neighboring 
boundary at p. [] 

We see from the proof  of  Theorem 2.7 that it does not matter in what order 
multiple events at a single site are prOcessed. This is why Algorithm 1 can handle 
degeneracies in the placements of  the sites without being explicitly coded to do 
so. Of course, there is a tradeoff between the complexity of the proof  of  Theorem 
2.7 and the complexity of  Algorithm 1. The proof  would be simpler if  Algorithm 
1 explicitly handled multiple events. 

THEOREM 2.8. Algorithm 1 can be implemented to run in time O(n log n) and 
space O(n). 

PROOF. We first claim that the number  of  iterations of  the while loop is at most 
O(n);  it then follows that the number  of bisectors ever created is O(n). By an 
ana/ysis similar to Theorem 2.7, the number  of  iterations of  the loop for a point 
p not a site is one less than the number  of  boundaries intersecting at p from 
below, and for p a site the number  of iterations is one more than the number  of 
boundaries p intersecting at p from below. Since the number  of  intersecting 
boundaries at p is bounded above by the degree of p as a vertex of  V, the number  
of  iterations summed over all vertices and sites is O(n). 

Now Q contains at most two entries per  boundary and one per site, hence at 
most O(n) entries. Priority queue Q needs operations inset, delete, and extract~ 
rain; Q can be implemented as a heap at time cost O(log n) per operation and 
storage cost O(n ). Similarly, L can contain at most O (n) entries, since a horizontal 
line can intersect each bisector at most twice. List L needs operations insert, 
delete, and search (for line 10); a balanced tree scheme can implement these at 
time cost O(log n) per operation and storage cost O(n). Thus each iteration of 
the while loop takes time O(log n) for a total time of O(n log n). [] 

THEOREM 2.9. Algorithm 1 can be modified to compute V in time O( n log n) and 
space O(n). 

PROOF. We claim that Algorithm 1 can be modified to use only untransformed 
bisectors and vertices. Algorithm 1 creates a Voronoi edge by first creating the 
bisector containing the edge and then later marking the bisector with the endpoints 
of  the edge; these operations can be performed directly. Event queue Q contains 
sites and the intersections of  boundaries. The intersection of two boundaries can' 
be obtained by computing the intersection of two untransformed bisectors and 
then adding to the y-coordinate of  the intersection the distance to any of the 
sites deterrrtining the bisectors. Similarly, list L can contain untransformed regions 
and bisectors; the mapping can be computed explicitly during the search of 
line 10. [] 
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The Delaunay triangulation is the geometric dual of  the Voronoi diagram. A 
Delaunay edge is a segment joining two sites whose Voronoi regions share a 
common bounding edge. There is a one-to-one correspondence between the 
vertices of  the Voronoi diagram and the regions resulting from the subdivision 
of the plane induced by the Delaunay edges. I f  a Voronoi vertex has degree 
three, then the corresponding Delaunay region is a triangle; if the vertex has 
degree exceeding three, then the corresponding region has more than three 
bounding Delaunay edges, and diagonals need to be added to obtain a triangula- 
tion. The Delaunay triangulation has many interesting properties; for example,  
it maximizes the minimum angle of  a triangle over all triangulations of  the sites. 
The paper  by Lee and Schacter [12] is a general reference on Delaunay triangula- 
tions. 

Algorithm 1 can be easily modified to compute the Delaunay triangulation. In 
the case of  the intersection of  boundaries, starting at line 12, the Delaunay triangle 
corresponding to vertices q, J, and s should be output. This will actually produce 
a full triangulation, with diagonals added arbitrarily to Delaunay regions with 
more than three sides. I f  Delaunay regions without additional diagonals are 
desired, Algorithm 1 can be modified to detect simultaneous intersection of more 
than two boundaries. 

3. Line Segment Sites. Algorithm 1 can be extended to compute the Voronoi 
diagram of a set of  line segments. The general idea of  the algorithm is the same; 
we transform the Voronoi diagram so that the lowest point of  a Voronoi region 
appears at the Voronoi site, and then use a sweepline technique. However, the 
details are more complex, because the Voronoi diagram itself is more complex, 
and because the transformation * is not as well behaved. 

The Voronoi diagram is constructed using the bisectors between pairs of sites, 
where the "bisector" is the locus of  points equidistant from the two sites. The 
bisector of  two points is a line. While the bisector of  two disjoint segments is 
still a simple curve, it can have up to seven sections, each a section of a line or 
a parabola.  Worse, the bisector of two segments sharing a common endpoint 
need not even be one-dimensional,  since there is a two-dimensional region for 
which the common endpoint is the closest point of  both sites. 

We can simplify the situation somewhat by giving a slightly modified definition 
of the Voronoi diagram. We require that every segment be split into three sites, 
two for the endpoints and one for the segment itself. Then we distinguish between 
the endpoints of  the segment or the segment itself being closest. As will be seen, 
this has the consequence that the bisector between two sites is always a section 
of a line or a parabola. Also, the two-dimensional region that used to be the 
bisector of  two coincident segments becomes the Voronoi region of the common 
endpoint of  the segments. A similar idea has been used in previous papers on 
the Voronoi diagram of line segments [9], [21]. 

The transformation * in the line segment case is not always one-to-one, as it 
was in the point site case. This does not alter the asymptotic time or space 
complexity of  the algorithm, but more care is needed in handling special cases. 
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3.1. The Voronoi Diagram of  Line Segments.  We summarize the definition and 
elementary properties of  the Voronoi diagram of a set S of  point and closed line 
segment sites in the plane. For more details, see, for example, [11] or [9]. We 
assume S contains n sites (at least one of which is a line segment), that line 
segments intersect only at endpoints, and that every endpoint of  a line segment 
is a point site. Furthermore, we assume that not all sites in S are collinear, 

For p c  S and p a point, dp: R2-~ R is the Euclidean distance to p, as before. 
I f  p is a line segment, then we define dp to be the distance to the closest point 
of p; there is a closest point because p is closed. It is possible that the closest 
point of  line segment p to some point of  z ~ R ~ is an endpoint of  p. In this case 
we wish to assign z to the region of the endpoint  of  p (always a site by the 
conditions on S) rather than to p; hence we define the tangent contact region of 
p, tp. For p a point tp is just R 2. For p a segment tp is the closed band containing 
p bounded by the two lines perpendicular to p through the endpoints of  p. (Thus 
a circle centered at z c tp of radius dp(z) is tangent to p.) Now we define d: R:-~ R 
by d ( z ) = minp: z~tp dp ( z ). The bisector Bpq is {z ~ tp ~ tq'. dp ( z ) = dq ( z ) }. Rpq is 
{ z C tp : dp ( z ) <- dq ( z ) } and the Voronoi region Rp is Oqr  p Rpq. The Voronoi diagram 
V= V(S) is {z~Bpq: p, q c S  and d(z)=dp(z)}.  

The bisector Bpq falls into one of four categories, depending on whether p and 
q are two points, a segment and its endpoint, a segment and a disjoint point, or 
two segments. I f  p and q are distinct point sites, then Bpq is the perpendicular 
bisector of  p and q, as before. I f  p is an endpoint of  segment q, then Bpq is the 
line perpendicular  to q through p. If  p is a point not collinear with segment q, 
then Bpq is a section of a parabola.  (Note that if p is a point collinear with 
segment q, not an endpoint,  then Bpq is empty.) Finally, if p and q are segment 
sites, then Bpq is a point, a segment, possible empty if tp c~ tq contains no points 
equidistant from p and q, or if p and q are collinear sharing a common endpoint, 
then Bpq is the line perpendicular  to p and q through the common endpoint. See 
Figure 3.1. 

The Voronoi region Rp need not be convex; however, it is starshaped from p: 
for each x ~ Rp, there is y c p so that the line segment xy is contained in Rp (in 
fact, y can be chosen to be the point o f p  closest to x) [11]. 

It is possible that the Voronoi region of a point site p is degenerate. If  p is the 
common endpoint of  two collinear segments, then Rp is contained in the line 
through p perpendicular to the two segments. I f  p is the common endpoint of 
three or more segments and every angle formed by two consecutive segments is 
less than ~-, then Rp is p itself. 

,4 , ~, 

Fig. 3.1. Bisectors. Dotted lines outline tangent contact region. 
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~ 

Fig. 3.2. Voronoi diagram of line segments. 

A vertex of V is a point of  V incident to three distinct curves (line segments 
or parabolas) contained in V. A vertex is always a point equidistant from three 
sites and in all three tangent contact regions. (A point equidistant from three 
sites and in all three contact regions need not be a vertex. Consider as sites two 
collinear coincident segments and their common endpoint. In general, points on 
the line through the common endpoint perpendicular to the segments are not 
vertices.) An edge of V is a maximal connected subset of  a bisector Bpq n Rp c~ Rq 
contained in V. Notice that Bpq c~ V may not be connected, though it can have 
at most n components,  each an edge. (Consider a "sandwich" consisting of two 
long segments and a row of  sparsely spaced point sites between the two segments.) 
There are at most O(n) edges and vertices of  V, since V forms a planar graph 
with vertices of  degree at least three. Figure 3.2 is a simple example of  the Voronoi 
diagram. 

3.2. The mapping *. As before, we define *: R 2 ~  R 2 by *(z)= (zx, zy+d(z)) .  
Again mapping * is central to the algorithm for the Voronoi diagram of line 
segments. It has many of  the same properties as mapping * in Section 2: it is 
continuous, fixes all sites, and maps each vertical line into itself. Furthermore, 
the lexicographically least point of  a region R* is the lexicographically least 
point of  p. This last property is of  course crucial to the sweepline algorithm. 
Unfortunately, * fails to be one-to-one on V. This makes the geometric details 
of the sweepline algorithm more complicated. This section contains a detailed 
analysis of  the properties of*.  Figure 3.3 depicts the transformed Voronoi diagram 
of Figure 3.2. 

Fig. 3.3. Transformed Voronoi diagram. 
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Fig. 3.4. Transformed bisectors. 

We begin by studying the mapping *p, defined by %: R 2 ~ R  2 by *p(Z)= 
(zx, zv + dp(z)). Again * = *p on Rp. Notice that *p is one-to-one everywhere except 
on a vertical segment below the lowest point of  p, or below all of  p if p is a hori- 
zontal segment. The following lemma describes the effect of  *p on bisectors. 
See Figure 3.4. 

LEMMA 3.1. Let p, q ~ S. 

1. I f  p and q are points, then *p(Bpq) is a hyperbola or an open vertical half-line. 
2. Suppose point p is an endpoint of  segment q. I f  q is not horizontal, then * p( Bpq) 

is two half-lines with endpoint p, one directed up and to the left, the other directed 
up and to the right. I f  q is horizontal, then the vertical half-line below p contained 
in Bpq collapses to p, and *p( Bpq) is the vertical half-line with bottom endpoint p. 

3. Suppose p is a point not collinear with segment q. Then * p( Bpq) is a section of  
a parabola, except if  q is horizontal and qy > py, in which case *p(Bpq) is q. 

4. I f  p and q are both segment sites, and Bpq is a segment, then in general *p(Bpq) 
is also a segment. However, if  p and q are both horizontal segments sharing a 
common endpoint, then again the vertical half-line below the common endpoint 
contained in Bpq collapses to the common endpoint, and *p( Bpq) is the vertical 
half-line above the common endpoint. 

PROOF. In all cases *p(Bpq)=*q(Bpq). 
(1) This follows from Lemma 2.1 and Proposition 2.2. 
(2) If  q is not horizontal, then for each side of q, *q is a linear function on 

tq, hence on Bpq. Furthermore, for z ~ Bpq, *p(Z) must be strictly above p, so both 
sections of  *p(Bpq) extend upward from p. I f  q is horizontal, then *q is linear on 
tq above q and collapses the half-line below p to p itself. 

(3) Notice Bpq is a section of a parabola.  I f  q is not horizontal or Bpq is above 
q, then *q is a linear transformation on tq. Since linear transformations preserve 
asymptotes (or the lack thereof) the image of a parabola  under a linear transforma- 
tion is a parabola,  and B*q is a section of a parabola.  If  q is horizontal and Bpq 
is below q, then *q collapses the portion of tq below q to q, hence it also collapses 
Bp,~ to q. 

(4) Similar. [] 
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COROLLARY 3.2. I r e  is an edge o f  V, then e* is a section o f  a line, parabola, or 
hyperbola. 

We give a characterization o f  every point  w in the range o f  *. This characteriz- 
ation is used to construct  the sweepline algori thm for comput ing  V*. The first 
five possibilities are the same as in Section 2: w is an interior point  o f  some 
region R*; w lies on an edge e* but is neither a site nor  a vertex; w is an isolated 
point  site, not  a vertex; w is a vertex, not  a site; and w is an isolated point  site 
and a vertex. Lemma 2.6 applies to these cases. The remaining possibilities are 
that w is the interior point  o f  some segment site or that w is a point  site with 
incident segment sites. The next two lemmas describe these cases. 

LEMMA 3.3. Suppose w is a point site with at least one incident segment site. Let  
E~ and Eb be the segment sites incident to w with w as the lexicographically greater 
and lesser endpoints, respectively. ( E s is the "smaller" edges; E b is the "bigger" 
edges.) The edges o f  V* extending lexicographically upward f rom w are the bisectors 
among the clockwise-most segment o f  E~ ( i f  E~ # •), point site w, Eb, and the 
counterclockwise-most segment o f  E~ ( i f  Es ~ Q) ,  and possibly more edges described 
below. Furthermore: 

1. I f  there is a segment on Es that is not horizontal, then *-~(w) is w itself and no 
other edges o f  V* extend upward f rom w. The edges o f  V* incident to w from 
below are the bisectors o f  the segments in Es, assuming Es contains at least two 
segments. See Figure 3.5(a). 

2. I f  Es is empty or is a single horizontal segment, and there is no site in S with 
y-coordinate smaller than Wy, then *-~(w) is the closed vertical half-line below 
w. N o  other edges o f  V* extend upward f rom w and no edges o f  V* are incident 

f rom below. See Figure 3.5(b). 
3. I f  E~ is empty or is a single horizontal segment, and there is a site with y-coordinate 

smaller than wv, then *- l (w)  is a closed vertical segment wz, z below w. Point 
�9 z lies on an edge ewx o f  V, where site x is not a segment incident to w. Let t and 

u be the sites intersecting the Voronoi circle at z counterclockwise and clockwise 
o f  w, respectively. (Notice either t = u = x or t ~ u.) 
(a) I f  there is no horizontal segment in E~ u E b then wz is not an edge o f  V. The 

edges extending upward f rom w are the ones described above, the bisector 
between t and w, and the bisector between u and w. I f  t ~ u then there is an 
edge o f  V* incident to w f rom below, and z is a vertex o f  V. Furthermore, 
z is the endpoint o f  all the edges incident to w f rom below in V* as well as 
the bisectors between t and w and between u and w. See Figure 3 .5 (C) / f  
t = u = x and Figure 3.5(d) if  t ~ u. 

(b) I f  there is a horizontal segment incident to w, then wz is an edge o f  V and 
z is a vertex o f  V. The edges o f  V* extending lexicographically upward f rom 
w are the ones described above, the bisector between t and w i f  there is no 
horizontal segment in Es with right endpoint w, and the bisector between u 
and w if  there is no horizontal segment in Eb with left endpoint w, or the 
bisector between w and such a segment i f  it exists. Again z is the endpoint 
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Fig. 3.5 

o f  edges involving t or u and all edges incident to w from below in V*. See Figure 

3.5(e) i f  t = u = x and Figure 3.5(f) /f t ~ u. 

PROOF. We show part  3(a); the others are similar. Since there is a site with 

y -coord ina te  smaller  than  wy and  since there are no segment  sites with upper  
endpo in t  w, there is an edge e ~  of V below w and  a vertical segment  wzc_ Rw 

with z lying on edge ewx. Mapping  *w collapses the vertical half-l ine below w to 
w itself and  * = *w on Rw, so * ( w z ) =  w. Mapping  * is one- to-one  above w and 
below z, so * l ( w ) =  wz. 

Since there are no hor izontal  segments inc ident  to w, segment  wz must be 

conta ined  in the interior  of Rw except at w and  z. Hence wz is not  an edge of V. 

Since z lies on edge ewx, site x must  intersect the Voronoi  circle at z. If x is 
the only site below w intersect ing the Voronoi  circle at z, then z lies in the interior  
of edge ewx, and  e*wx extends upward  both to the left and  right of z* = w. If more 
than one site below w intersects the Voronoi  circle at z, then z is a vertex of V. 
As in the proof  of Lemma 2.6, all the bisectors among  the sites from t to u 
counterclockwise a round  the Voronoi circle at z must  be inc ident  to z* = w from 
below. [] 
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LEMMA 3.4. Suppose w is an interior point o f  segment site s. 

1. I f  s is not horizontal then *- l (w)  is w itself and w lies in the interior o f  both Rs 
and R*. 

2. Suppose s is horizontal. Then , -1(w)  is a vertical segment or half-line with topmost 
point w. I f  *- l (w) is a segment its bottommost endpoint z is a vertex exactly i f  
there are at least two edges in V* incident to w (one o f  the edges is a horizontal 
edge to the left o f  w). I f  z is a vertex then there is a single horizontal edge to 
the right o f  z and z is the endpoint in V of  all edges whose images are incident 
to w in V*. 

PROOF. Similar to the preceding lemma. [] 

3.3. The Algorithm for Calculating V 

THEOREM 3.5. Let S be a set o f  n point and line segment sites. There is an algorithm 
that computes the Voronoi diagram V of  S in time O(n log n) and space O(n).  

PROOF. The algorithm is similar to Algorithm 1; we give a sketch of it here. 
We split edges of  V* into monotonic pieces called boundaries and define active 

regions and boundaries as in the proof  of  Theorem 2.7. We claim that the set of  
active regions and boundaries only changes at a point site or at a vertex that is 
the intersection of boundaries incident from below. This follows from an 
examination of all the cases of  points in the range of *, given by Lemmas 2.6, 
3.3, and 3.4. Hence the points at which the set of  active regions changes can be 
determined using a sweepline algorithm. 

The algorithm uses a list L that contains active regions and boundaries and a 
priority queue Q that contains all point sites and intersections of  boundaries 
active on L. Assertions I1, 12, and 13 from the proof  of  Theorem 2.7 should be 
maintained as invariants. To do this the algorithm chooses the lexicographically 
least point w in the priority queue and performs all the updates to L necessary 
to reflect the regions and boundaries newly active and inactive at w. We claim 
that L can be correctly updated using only knowledge of the sites incident to w 
and the boundaries incident to w from below. This follows by examining all 
cases in Lemmas 2.6, 3.3, and 3.4. After updating L, the algorithm deletes from 
Q intersections among boundaries no longer active and inserts into Q all intersec- 
tions among boundaries newly active. This process iterates until Q is empty. 

As described the algorithm sweeps through V*. We claim that as L is updated 
at each point w of V*, the inverse image of w in V can be constructed. Once 
again, this follows by examining the cases of  Lemmas 2.6, 3.3, and 3.4. (Note 
that there is a subtlety to invariant I2 not apparent  in Theorem 2.6: since more 
edges may be incident to a vertex in V* than in V (case 3 of  Lemma 3.3), the 
algorithm must mark endpoints of  edges according to the incidence structure in 
V, not V*.) Hence the algorithm can actually output V, rather than V*. 

The analysis of  the time and space bounds of the algorithm is similar to 
Theorem 2.8. The number  of  accesses needed to update L at a point w is 
proportional to the number  of  boundaries and segment sites incident to w; the 
total number  of  updates summed over all vertices and sites of V is O(n).  If L 
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is implemented as a balanced tree then accesses cost time O(log n) each, for a 
total time of  O(n log n). Similarly, Q can be implemented as a heap, so the O(n) 
total accesses each cost time O(log n), for a total of  O(n log n). Both Q and L 
require O(n) space. [] 

It was possible to implement Algorithm 1 as if intersections of  boundaries and 
sites could not occur simultaneously, and still have list L updated correctly. In 
the case of  segments, there seems to be no corresponding way to avoid considering 
simultaneous intersections and sites. However, the following steps are a reason- 
ably methodical way of updating L at a point w. First, if two or more boundaries 
are incident to w from below, replace them with a single boundary.  Such 
boundaries may arise in two ways: either edges of  V can intersect at a point in 
*- l (w) strictly below w (this may happen in the cases covered by Lemmas 2.6, 
3.3(3), and 3.4(2)) or bisectors of  segment sites with upper  endpoint w can 
intersect at w both in V and V* (Lemma 3.3(1)). The second step in updating 
L is to create the bisectors resulting from the point site at w and segment sites 
with w as lower endpoint, if any. There are two cases here, depending on whether 
w lies in the interior of  some region or on a boundary (possibly the boundary is 
the result of  the first step). By Lemma 3.3 all such bisectors extend upward from 
w in V*, except the bisector between w and a horizontal segment with left 
endpoint  w, if any. The last step is to consider the edge resulting from a bisector 
between w and a horizontal edge with left endpoint w. This edge extends vertically 
downward and is collapsed into w by *. However, as in Lemma 3.3(3b), its lower 
endpoint may be a vertex of V, and there may be another boundary extending 
upward from w in V* (the boundary is actually horizontal with left endpoint w). 

4. Weighted Point Sites. As a final, easy, application of the sweepline technique 
we consider the Voronoi diagram of weighted point sites. Now every site is a 
point and has a nonnegative weight associated with it. We wish to partition the 
plane into regions so that each region consists of  points closest to a particular 
site, where the metric is the sum of the weight of the site and the distance to the 
site. The Voronoi diagram that results has a similar appearance to the unweighted 
point site case, except that bisectors are sections of  hyperbolas. Also, the region 
of a site may be empty if its weight is bigger than the weighted distance from 
some other site. 

The weighted Voronoi diagram turns out to be identical to the Voronoi diagram 
of circles. The metric in the circle case is the Euclidean distance to the center of  
the circle less the radius of  the circle. Thus outside the circle the metric is the 
Euclidean distance to the closest point of  the circle and inside the circle the 
metric is the negative of  the Euclidean distance to the closest point of  the circle. 
The Voronoi diagram of a set of  weighted point sites is just the Voronoi diagram 
of a set of  (possibly intersecting) circles, where the site at p of  weight wp is 
represented by the circle with center p and radius W -  wp, W = max{ Wq}. Previous 
algorithms for the Voronoi diagrams of circles have running time O(n log 2 n); 
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Lee and Drysdale [11] consider the case of nonintersecting circles and Sharir 
[19] considers the case of possibly intersecting circles. 

The sweepline algorithm for the weighted point site case has running time 
O(n log n). It is similar to Algorithm 1, with two minor differences. First, the 
appropriate mapping * no longer fixes sites, but maps them upward by a distance 
equal to their weight. This does not affect the algorithm, however. Second, a test 
is necessary to see if the region of a site is empty; this turns out to be a simple 
byproduct of the mapping *. 

An alternative definition of weighted Voronoi diagram has been studied by 
Aurenhammer and Edelsbrunner [ 1]. In this model each site has a multiplicative 
weight: the metric is the Euclidean distance to a site multiplied by its weight. 
The diagram that arises from this metric is quite different from the usual Voronoi 
diagram; for example, one Voronoi region may completely encircle another 
Voronoi region. 

4.1. The Voronoi Diagram. We sketch the definition and elementary properties 
of the Voronoi diagram of  weighted point sites. The paper by Sharir [ 19] contains 
an extensive presentation of this information, cast in the framework of the Voronoi 
diagram of circles. S, the set of sites, is a set of n points in the plane. Associated 
with every site p is a nonnegative weight wp. If p and q are distinct sites, 
and dp(q) + Wp <- Wq, then we say p dominates q. If neither p nor q dominates 
the other, then the bisector Bpq is {zcR2: dp(z)+wp=dq(z)+Wq}, and Rpq is 
{z6Ra:dp(z)+Wp<-dq(z)+Wq}. If p dominates q, then Bpq is empty, Rpq is 
R 2, and Rqp is empty. (Note that if dp(q)+ w v = Wq, then {z ~ R2: dp(z)+ wp = 
dq(z)+ wq} is a half-line with endpoint q. We define away this degenerate case 
to simplify the presentation.) The Voronoi region Rp is (")q~p Rpq and the Voronoi 
diagram V(S) = V is {z c Bpq: p, q ~ S and dp(z) + Wp = mint ,s  dr(z) + wr}. 

LEMMA 4.1. Suppose Wp > Wq. Then Bpq is a branch of a hyperbola open toward 
p. I f  Iqy-Py[> Wp- We, then one asymptote of Bpq extends to the left, the other to 
the right. I f  [qy-pyl = wp-Wq, then Bpq has one vertical and one nonvertical 
asymptote. I f  Iqy-Py[ < wp-  Wq then both asymptotes extend left or both extend 
right. 

PROOF. Consider the defining equation of Bpq, Wp+((x-px)2+(y-py)2)  ~/2= 
Wq + ( ( x -  qx)2+ ( y_  qy)2)1/2. By moving wq to the left-hand side and squaring, 
we obtain an equation with a single square root. Furthermore, the quadratic terms 
in x and y cancel, leaving only linear terms. By squaring again we can eliminate 
the remaining square root and obtain terms at most quadratic in x and y. Hence 
Bpq is a conic section. 

Now choose points r~ and r2 so that pqr~ and pqr2 are right triangles with 
hypotenuse segment pq and with e(q, rO=e(q, r2)=wp-Wq (so e(p, rl) = 
e(p, r2)=(e(p,q)2-(wp-Wq)2)l/2).  Choose ray Y~ so that it perpendicularly 
bisects segment prl and is directed away from triangle pqr~; similarly choose ray 
Y2. Now rays Y1 and Y2 must be asymptotes to Bpq, since for a point z on Y~ 



A Sweepline Algorithm for Voronoi Diagrams 171 

(or 112) sufficiently far from p and q, dp(z) + wp is arbitrarily close to dq(z) + wq. 
Hence Bpq is a branch of a hyperbola open toward p. 

Suppose qy>py, so [qy-py[=qy-py.  Now rl and r2 both lie on the circle of  
radius wp-Wq about q and segments rip and r2p are tangent to the circle. If  
qy -py  > wp - wq, then both r~ and r2 must lie above p, so asymptotes Yj and I"2 
extend downward, one to the left and one to the right. I f  % -py  = wp - Wq, then 
one of r~ and r2 has the same y-coordinate as p, and one of Y1 and Y2 extends 
vertically downward and the other is not vertical. If  qy -py  < Wp - Wq, then one 
of r~ and r2 lies below p and the other above p, and Y~ and Y2 extend either 
both to the left or both to the right. 

I f  qy-<py, the analysis is similar, with asymptotes extending upward rather 
than downward. [] 

A vertex of V is a point v of  V satisfying dp(v)+  wp = dq(v)+ Wq = d , (v)+ wr, 
for three distinct sites p, q, r. Equivalently, a vertex is a point lying on three 
distinct curves of  V. An edge of  V is a maximal one-dimensional curve contained 
in V properly containing a point and not containing any vertices in its interior. 
An edge has two vertices as endpoints or has a single vertex as endpoint  and 
extends to infinity. The intersection of Bpq with V need not be connected, as in 
the case of  line segments. The Voronoi diagram V forms a planar graph with 
vertices of  degree at most three and has size O(n). It may not be connected, but 
it has at most O(n) connected components.  

4.2. The transformation *. We define *p: R 2-* R 2 by *p(X, y) = 
(x, y+ dp(x, y )+  wp), and *: R2 ~ R 2 by *(x , y )=(x ,  y+minp~s {dp(x, y )+ wp}). 

We can use the transformation * to get a condition when a site p is dominated 
by some other site. Notice that *p(p)y ----py+ Wp. I f  for some other site q, *q(p)y <- 
py+ wp, then dq(p)+ w o <-Wp and q dominates p. Hence some site dominates p 
if *(p)y <py + wp, or if *(p)y =py + wp with the minimum attained both at p and 
at some site distinct from p. 

LEMMA 4.2. The unique lowest point of R*p is (Px, Py + wp). 

PROOF. Similar to Lemma 2.4. [] 

LEMMA 4.3. 

1. I f  wq + qy > wp +py, then *q( Bpq) has unique lowest point and unique horizontal 
tangent at ( qx, % + Wq). 

2. I f  wp + p~, = Wq + qy then *q( Bpq) has no horizontal tangents, lies striedy above 
q~. + Wq, and has open endpoint at ((Px + qx)/2, qv + wu). 

PROOF. (1) We show that there is a point of  Bpq below q. First, suppose qy > &. 
I f  wp> wq then using the fact that qy-pv > wp-wq and Lemma 4.1, Brq is a 
hyperbola with asymptotes extending both left and right, hence some point of  it 
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lies below q. I f  wp <- Wq, then Bpq is either a nonvertical line or a hyperbola open 
toward q, and some point of  it lies below q. Now suppose qy <-py; then Wq > w r 
We have W q - W p > p y - q y ,  hence by Lemma 4.1 with p and q reversed, the 
asymptotes to Bpq extend either both left or both right. Since Bpq is open toward 
q some point of  it must lie below q. 

Now it is clear that *q maps points of Bpq not on the vertical line through q 
above qy+Wp and points on the vertical ray below q to (q~, qy+Wp). Let ~ be 
the point of  Bpq below q. Then *q(Cl) = (qx, qy + Wq) is the unique minimal point 
of *q(Bpq). It is not hard to see that the tangent to *q(Bpq) at *q(~) must be 
horizontal. 

Suppose z c Bpq and z r  ~. We show the tangent at *q(Z) is not horizontal. 
Notice z is not below p, since there can be a point of  Bpq below at most one of 
p and q. Consider the ray Yp directed from p through z and the ray Yq directed 
from q through z. Yp and Yq cannot overlap. We assume that Yp and Yq are 
not oppositely directed; a slight modification of the argument is necessary if they 
are. Let Y~ and Yq be points of  Yp and Yq after z and Yp and Yq be points 
of  Yp and Yq before z. Since Yp is not vertical downward, %(Yp) must be a ray 
extending upward from *p(p). Similarly, %(Yq) must be a ray extending upward 
from *q(q). 

It is not hard to see that Bpq c a n  be split into two pieces near z: Bpq contained 
§ + 

in the cone bounded by Yp and Yq and B;o contained in the one bounded by 
+ 

Y;  and Y~. We claim Bpq is either vertical upward or is above one of Yp or 
Y~-. I f  Y~ and Yq extend both to the left or both to the right, then Bp+q must be 
above the lower of the two. If  one of Y~ and Yq extends to the left and the 
other to the right, or one is vertical, then either Bp+q is vertical or Bp+q is above 
the ray on the same side of the vertical line through z as Bp+q. Similarly, B~q is 
either vertical downward or is below one of Y ;  and Yq. 

Now if Bpq is vertical, then *q(Bpq) m u s t  be vertical. If  Bpq is above Yp, say, 
+ _ ~  + then since *p is continuous, p(Bpq) - q(Bpq) must be above %(Y~-). Similarly, 

%(B~q) must be below %(Y~)  or *q(Yq). Since %(Yp) extends upward from p 
and *q(Yq) extends upward from q, the tangent to B m at z cannot be horizontal. 

(2) The argument is similar. I f  wp = Wq and py = % then Bpq is the vertical line 
through (Px + q,,)/2. If  wp ~ Wq, then using Lemma 4.1 it can be seen that one of 
the asymptotes to Bpq is a ray vertically downward through (px + qx)/2. In either 
case *q maps all points of  Bpq above qy + wq. [] 

THEOREM 4.4. Let S be a set of  weighted point sites, and V = V(S).  There is a 
sweepline algorithm that computes V in time O( n log n) and space O( n ). 

PROOF. Similar to Theorems 2.7, 2.8, and 2.9. D 

5. A Geometric Interpretation of *. The mapping * may appear  to be somewhat 
mysterious. A three-dimensional version of the Voronoi diagram may elucidate 
the role of  *. This interpretation was first suggested by Edelsbrunner [5]. 
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Fix a set of point sites S. We view the sites as lying in the z = 0 plane of R 3. 
For p a site, let the cone of p, cp, be {(x, y, z) ~ R3: dp(x, y) = z}. Let C be the 
lower envelope of these cones, i.e., C is {(x, y, z): (x, y, z) ~ Cp, some p, and for 
all q, if (x, y, z ' )~  cq then z-< z'}. Finally, let D be the subset of points of C 
contained in two or more cones. Clearly the Voronoi diagram V is the projection 
of D onto the plane z = 0 in the direction parallel to the z-axis. Consider the 
"oblique" projection of  R 3 onto the plane z = 0 in the direction parallel to the 
line {x = 0, y + z = 0}. Then V* is just the oblique projection of D, and R* just 
the oblique projection of  cp n C. 

This interpretation of  V in three dimensions gives a different geometric explana- 
tion of  the sweepline algorithm. Suppose the sweepline is the line y = c (in the 
z = 0 plane). Let Pc be the plane y + z = c. Notice that the portion of  the Voronoi 
diagram V* intersected by the sweepline is just the oblique projection of  Pc n D. 
Hence, rather than translating a line in the z = 0 plane, we can imagine translating 
a plane parallel to Pc. The intersection of  the plane with D gives exactly the 
sequence of  edges of V* intersected by the sweepline. It is clear that the first 
time that the translating plane intersects a cone Cp, the plane is tangent to the 
cone, and the oblique projection of the intersection is the site p. 

The extension to additively weighted point sites is immediate from this interpre- 
tation. The cone for each site is simply pushed in the positive z direction by a 
distance equal to the weight of the site. 

6. Open Problems. One application of Voronoi diagrams is nearest-neighbor 
searching in the plane. This use requires a method to search the planar polygonal 
regions defined by the Voronoi diagram. Two data structures have recently been 
proposed to assist in polygonal region searching. The first, suggested by Edels- 
brunner et al. [6], requires linear storage, linear time to construct, and results in 
logarithmic query time. The second, proposed by Driscoll et al. [4], also requires 
linear space and results in logarithmic query time, but takes time O(n log n) to 
construct. However, the second is built using a sweepline approach, like the 
Voronoi diagram algorithms presented here. A direct application of either data 
structure would require two passes: one to construct the Voronoi diagram, and 
the second to build the search data structure. An interesting question is whether 
the search data structure could be built directly, and the Voronoi diagram 
eliminated. 

The combination of transformation and sweepline is a powerful technique, 
and the question arises of  what other problems can be solved with it. In a 
companion paper we will consider the case of  Voronoi diagrams of line segments 
under polygonal convex distance functions [3]. Convex polygonal distance func- 
tions generalize the metrics Lt and Lx and have applications to versions of the 
piano-mover's problem. (A preliminary version of the companion paper appeared 
in [7], and Leven and Sharir [13] obtain a similar result, though with a more 
complex algorithm.) Perhaps the sweepline algorithm is adequate for even more 
general metrics. 
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