
Algorithmica (1987) 2:153-174 Algorithmica
�9 1987 Springer-Verlag New York Inc.

A Sweepline Algorithm for Voronoi Diagrams

Steven Fortune ~

Abstract. We introduce a geometric transformation that allows Voronoi diagrams to be computed
using a sweepline technique. The transformation is used to obtain simple algorithms for computing
the Voronoi diagram of point sites, of line segment sites, and of weighted point sites. All algorithms
have O(n log n) worst-case running time and use O(n) space.

Key Words. Voroni diagram, Delaunay triangulation, Sweepline algorithm.

1. Introduction. The Voronoi diagram of a set of sites in the plane partitions
the plane into regions, called Voronoi regions, one to a site. The Voronoi region
of a site s is the set of points in the plane for which s is the closest site among
all the sites.

The Vor0noi diagram has many applications in diverse fields. One application
is solving closest-site queries. Suppose we have a fixed set of sites and a query
point, and would like to know the closest site to the query point. If the Voronoi
diagram of the set of sites is constructed, then this problem has been reduced to
determining the region containing the query point. If in fact the number of query
points is large relative to the number of sites, then the construction of the Voronoi
diagram is worthwhile. The papers by Preparata [16] and by Green and Sibson
[8] contain references to other applications.

We present simple sweepline algorithms for the construction of Voronoi
diagrams when sites are points and when sites are line segments. The proposed
algorithms are based on the sweepline technique [17], [20]. The sweepline
technique conceptually sweeps a horizontal line upward across the plane, noting
the regions intersected by the line as the line moves. Computing the Voronoi
diagram direct ly with a sweepline technique is difficult, because the Voronoi
region of a site may be intersected by the sweepline long before the site itself is
intersected by the sweepline. Rather than compute the Voronoi diagram, we
compute a geometric transformation of it. The transformed Voronoi diagram has
the property that the lowest point of the transformed Voronoi region of a site
appears at the site itself. Thus the sweepline algorithm need consider the Voronoi
region of a site only when the site has been intersected by the sweepline. It turns
out to be easy to reconstruct the real Voronoi diagram from its transformation;
in fact in practice the real Voronoi diagram would be constructed, and the
transformation computed only as necessary. The sweepline algorithms compute
the Voronoi diagram of n sites in time O(n log n) and space usage O(n).

AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.

Received April 6, 1986; revised 12 October, 1986. Communicated by Bernard Chazelle,

154 S. Fortune

Previous algorithms for Voronoi diagrams fall into two categories. First are
incremental algorithms, which construct the Voronoi diagram by adding a site
at a time. These algorithms are relatively simple, but have worst-case time
complexity O(n2). However, the algorithms may have good expected time
behavior [2], [8], [15].

The second category of algorithms are divide-and-conquer algorithms. The set
of sites is split into two parts, the Voronoi diagram of each part computed
recursively, and then the two Voronoi diagrams merged together. I f the sites are
points, then they can be split simply by drawing a line that separates the sites
into halves [18]. I f the sites are line segments, then more complex partitioning
is necessary [21]. With care, the divide-and-conquer algorithms can be imple-
mented in worst-case time O(n log n). The difficulty of the divide-and-conquer
algorithms is generally with the merge step that combines two Voronoi diagrams
together. While the time required for this step is only linear in the number of
sites, the details of the merge are complex and hard to implement.

The sweepline algorithms presented in this paper are competitive in simplicity
with the incremental algorithms. Since they avoid the merge step, they are much
simpler to implement than the divide-and-conquer algorithms. But they have the
same worst-case time complexity as the divide-and-conquer algorithms.

We also present an algorithm to compute the Voronoi diagram of weighted
point sites, in which each site has an additive weight associated with it. The
algorithm uses exactly the same sweepline technique, and has time complexity
O(n log n). The best previously known algorithm for this problem has time
complexity O(n log 2 n).

The algorithms in this paper do not assume that the points are in general
position. Thus sites can be arbitrarily collinear or cocircular. In order to prove
that the algorithms are correct, even with degeneracies, we assume that arithmetic
is performed exactly. An interesting problem is to show that the algorithms
perform correctly in more reasonable models of computer floating-point arith-
metic. The algorithm for the case of point sites has been implemented; there are
no known examples that cause it to fail.

2. Point Sites. We first consider the case that all sites are points in the plane.
This simple case has been discussed extensively in the literature. We summarize
the definitions and elementary properties below; for more details, see, for example,
[18] or [11]. For a more general situation than point sites, see [14].

I f p c R 2, then Px and py are the x- and y-coordinates of p, respectively. Points
p, q ~ R 2 are lexicographically ordered, p < q, if/~v < qy or py = qy and Px < q~. A
line or segment l is below p ~ R 2 if there is a point q ~ l with p~ = qx and qy <p~.
For p, q ~ R 2, e(p, q) is the Euclidean distance between p and q.

Let S be a set of n points in the plane, called sites. For p c S, dp: R2-~ R is the
(Euclidean) distance from a point in R 2 to p, and d: R2-~ R is minp~sdp. The
Voronoi circle at z ~ R 2 is the circle centered at z of radius d(z). The bisector Bpq
of p, q ~ S is {z c R2: d~(z) = dq(z)}; Bpq is of course a line, the usual perpendicular

A Sweepline Algorithm for Voronoi Diagrams 155

I t

Fig. 2.1. Voronoi diagram V.

Rp, is ("~q~p Rpq. Rp is a convex, possibly u n b o u n d e d po lygon containing p. The
Voronoi diagram V(S) , or V for short, is

{ZC R2: there is p # q with d (z) = dp(z) -= dq(z)}.
See Figure 2.1.

V consists o f the union of segments, half-lines, and lines. 2 A vertex of V is a
point o f V with at least three incident segments or half-lines; equivalently, a
vertex is a point equidistant f rom at least three sites. An edge of V is a maximal
connected segment, half-line, or line in V; an edge does not contain any vertices
in its interior. An edge is either a line, has two vertices as endpoints , or is a
half-line with one vertex as endpoint . Bpq ~ V is always connected; if it properly
contains a point, then it is an edge, labeled epq. Moreover, each pair p, q ~ S label
at most one edge of V. Edge epq forms part o f the bounda ry o f Rp and R o. There
are at most O (n) edges and vertices o f V, since V forms a planar graph and the
degree o f every vertex is at least 3.

2.1. The Mapping *. The mapp ing *: R 2 ~ R 2 defined by * (z) = (zx, Zy+ d (z))
is central to the algorithm. This section develops the properties o f this mapping;
Section 5 contains a geometr ic interpretat ion o f * that may be helpful. Notice
that * maps the point z c R 2 to the topmost point o f the Voronoi circle at z.
Furthermore, * is cont inuous, fixes all sites, and maps each vertical line into
itself. In general we refer to *(B) as B*, for B a subset o f the plane. To analyze
�9 , we first consider the auxiliary funct ion *p: R 2 ~ R 2, defined by *p(Z)=
(Zx, Zy + dp(z)). Clearly, * = *p on Rp and z * = minpc s *p(z).

LEMMA 2.1. Suppose 1 is a line and is not vertical. Then * p is one-to-one on I and
�9 p(l) is a hyperbola.

PROOF. Mapping * is clearly one- to-one on a nonvertical line, since it affects
only the y-coordinate . Suppose line l has equat ion y = m x + b . Then
�9 p(l) = {(x, z): z = mx + b + ((m x + b - p v) 2 + (x _px)2)u2}. Thus (z - m x - b) 2 =
(rnx+ b _ p y) 2 + (x _p~)2 and we see that *p(l) is a conic section. Consider H =
{ (x , y + e ((x , y) , r)): (x , y) c l}, where r e I is the point o f l closest to p. H is the
union of two half-lines with endpoint r. The two half-lines constituting H must

2 V contains lines only if all sites are collinear.

156 S. Fortune

Fig. 2.2. Bisectors and transformed bisectors.

be asymptotes to *p(l), since for (x , y) c l sufficiently far f rom p, e ((x , y) , r)
approximates e((x, y) , p). Hence *p(1) is a hyperbola. []

Figure 2.2 depicts the mapp ing * when line 1 is the bisector of two sites (which
is the case o f interest). We must also consider the case when the line l is vertical.
The p r o o f o f the following proposi t ion is straightforward.

PROPOSITION 2.2. Suppose line l is vertical. I f p ~ l then *p is one-to-one on I and
�9 p(1) is the open half-line above py. I f p ~ l then *p(l) is the closed half-line above
p, points below p are mapped to p, and * p is one-to-one above p.

�9 is a section o f a hyperbola or a vertical LEMMA 2.3. I f epq is an edge o f V, then epq
line.

PROOF. Since epq c_ Bpq is an edge of V, it must be that d = dp = dq on epq. Since
Bpq is a line, the claim follows f rom Lemma 2.1 and Proposi t ion 2.2. []

LEMMA 2.4. Point p is the unique lowest point o f R~.

PROOF. Clearly, p ~ Rp and p* = p. By Proposi t ion 2.2, if z c Rp and z is not on
the vertical line through p, then z* = *p(Z) is above p, and if z is on the vertical
line th rough p then z * = ~p(z) is mapped to p or above. []

A consequence o f Lemma 2.4 is that if edge epq is below p, then p must lie on
�9 and in fact must be the unique lowest point on it. Thus the edge that lies epq

below p forms part o f the lower boundary o f R*. (Notice that there is no edge
below p exactly if p has minimal y -coord ina te among the set of sites S.) Figure
2.3 depicts V* for the same set o f points as depicted in Figure 2.1.

Fig. 2.3. V* for points in Figure 2.1.

A Sweepline Algorithm for Voronoi Diagrams 157

LEMMA 2.5. Mapping * is one-to-one on V.

PROOF. Cons ider * on a vertical line /. We show that * is one- to-one on
V c~ Rp n l, and, fur thermore, that if Rp n I is a segment, then *(Rp c~ I) does not
collapse to a point. Since * is cont inuous, it preserves the order o f points along
l, and the lemma follows.

Mapping *p is one- to-one everywhere except on the vertical half-line below p.
Since * = *p o n Rp n l, * fails to be one- to-one o n Rp ~ I only if p lies o n Rp ~ l
and then only on the section o f Rp c~ l below p. I f there is no edge of V below
p, then trivially * is one- to-one on V c~ Rp ~ 1. Otherwise some edge lies below
p; it cannot be vertical, hence there is only a single point o f Vc~ Rp n I below p.
For the second claim, if Rp ~ l is a segment, either p does not lie on l or there
is some subsegment o f Rp n I above p. In either case there is a segment o f Rp c~ 1
on which * is one-to-one, and *(Rp c~ l) is not a point. []

LEMMA 2.6. Suppose v is a vertex of V. Let r and s be the sites on the Voronoi
circle at v counterclockwise and clockwise of v*, respectively. I f u* is not a site, then
edge e*rs extends upward from v* and the rest extend downward. I f v* is a site, then
edges er~** and ev*~* extend upward from u* and the rest extend downward.

PROOF. Every edge epq incident to v is a segment o f the bisector Bpq of two
sites p and q adjacent a round the Voronoi circle at v. In fact, Bpq is split into
two half-lines by v; epq is conta ined in the half-line intersecting Apq, where Apq
is the arc o f the circle connect ing p and q not containing any other sites. We

* extends upward f rom v* iff v*~ A~q; the Lemma follows. establish that epq
First suppose that neither p nor q is v*. N o w v splits Bpq into two half-lines.

Let h be the half-line that intersects the arc o f the circle connect ing p and q that
contains v*; let h ' be the other. Ifpy ~ qy, say py > qy, then *p(Bpq) is a hyperbola
through v* with min imum point p, *p(h) extends upward from u*, and *p(h')
extends downward f rom v* to p. I fpy = qy, then *p(Bpq) is a section o f the vertical
half-line above v, *p(h) is the half-line above v*, and *p(h') is the segment f rom
the midpoin t o f pq to v*. In either case, if Apq is the arc containing v*, then
epq ~ h, *p = * on epq, and e*q extends upward f rom v*; if Apq does not contain

' * extends downward f rom v*. Finally, if v*, then epq ~ h , *p = * on epq, and epq
one of p or q is u*, say p, then e*q is a section o f the hyperbola with min imum

* always extends upward from v*. [] point p, Apq always contains v*, and epq

Using Lemma 2.6 we can analyze every point x in the range o f *. The following
cases are mutual ly exclusive and exhaustive: x is in the interior o f some region

* but is neither a site nor a vertex; x is a site, is not R*; x lies on some edge epq
a vertex, and is the min imum point o f both R* and * exp, some p; x is a vertex,
not a site, with at least two edges incident downward and exactly one incident
upward; and x is a vertex and a site, with exactly two edges incident upward
and at least one incident downward , and is the min imum point of R*.

2.2. The Algorithm for Calculating V* and V. A sweeptine algori thm suffices to
compute V*. The algori thm conceptual ly mcves a horizontal line upward across

158 S. Foaune

the p lane , ma in ta in ing the regions o f V* in tersec ted by the hor izonta l line. A
region is encoun te red for the first t ime at a site~ and a region d i sappea r s at the
in tersec t ion o f two edges. The coord ina tes o f these two events are easi ly compu ted ,
s ince all sites are known ini t ia l ly , and since in tersect ions o f edges can be c o m p u t e d
as these edges become newly ad jacen t a long the sweepline.

The a lgor i thm is given fo rmal ly as Algor i thm 1 (F igure 2.4). Algor i thm 1
p roduces the Voronoi d i a g r a m V* as a list o f bisectors . Each b isec tor is marked
with the vert ices that are the endpo in t s o f the co r r e spond ing Voronoi edge. I f a
b isec tor is m a r k e d with only a single vertex, then the co r r e spond ing edge is a

half- l ine.

Algorithm 1 :
Input:
Output:
Data structures:

Computation of V*(S).
S is a set of n -> t points with unique bottommost point.
The bisectors and vertices of V*.
Q: a priority queue of points in the plane, ordered lexicographi-
cally. Each point is labeled as a site, or labeled as the intersection
of a pair of boundaries of a single region. Q may contain duplicate
instances of the same point with distinct labels; the ordering of
duplicates is irrelevant.
L: a sequence (r l , ct, r2 , . . . , rk) of regions (labeled by site) and
boundaries (labeled by a pair of sites). Note that a region can
appear many times on L.

1. initialize Q with all sites
2. p <- extract_rain(Q)
3. L ~ t h e list containing Re.
4. while Q is not empty begin
5. p ~- extract min(Q)
6. ease
7. p is a site:
8. Find an occurrence of a region Rq* on L containing p.
9. Create bisector B*pq.

10. Update list L so that it contains R*, Cpq, Rp*, Cpq, Rq*,... in
place of R*.

11. Delete from Q the intersection between the left and right boundary
of R*, if any.

12. Insert into Q the intersection between C~q and its neighbor to the
left on L, if any, and the intersection between C+,~ and its neighbor
to the right, if any.

13. p is an intersection:
14. Let p be the intersection of boundaries Cqr and Crs.
15. Create the bisector B**.
16. Update list L so it contains Cq, = C~ or C,~+~, as appropriate, instead

of Cor, R*~, Cr,.
17. Delete from Q any intersection between Cqr and its neighbor to the

left and between Cr.~ and its neighbor to the right.
18. Insert any intersections between Cq.~ and its neighbors to the left or

right into Q.
Mark p as a vertex and as an endpoint of B,*~, B*,.,., and B~. 19.

20. end

Fig. 2.4. Algorithm l: computation of V*(s).

A Sweepline Algorithm for Voronoi Diagrams 159

Algorithm 1 does not explicitly test for degeneracies, where a degeneracy is a
site lying on a bisector, four or more cocircular sites, or three or more collinear
sites. As Theorem 2.7 shows, Algorithm 1 is adequate to compute the Voronoi
diagram even in the presence of degeneracies. However, one consequence of the
lack of explicit tests for degeneracies is that Algorithm 1 can produce zero length
edges, specifically bisectors with the same point as the two endpoints. These
edges can be removed if necessary. Alternatively, Algorithm 1 could be written
to test explicitly for degeneracies, though it then becomes more complex. Also,
Algorithm 1 assumes that the set S of sites contains a unique bot tommost site.
This assumption is not essential; lines 2 and 3 need to be modified to initialize
the list L correctly if S contains several sites with identical minimal y-coordinate.

If/~r > qy, then *p(Bpq) is a hyperbola open upward, and a horizontal line can
intersect it at two points. To simplify the presentation of Algorithm 1, we split
*v(Bpq) into two pieces, C~q to the left of and containing p, and Cp+o to the right
of and containing p. Then Cpq is monotonically decreasing, Cpq is monotonically
increasing, and a horizontal line can intersect either of them at most once. If
py = q~, then we set Cpq = Q and Cpq = * p (B p q) . We call C~q and Cpq boundaries.

- t - We use Cpq to denote one of C~- o and Cpq when the choice is unimportant or
can be determined from context. For example, in line I5 of Algorithm 1, Cq~ is
C ~ either i fp is to the right of the higher of q and s or if q and s are cohorizontal;
otherwise Cqs is Cos.

Line 8 of Algorithm 1 is a search to find the region containing a newly
encountered site. The search can be implemented as a binary search on list L,
since L contains the regions and boundaries in order on the horizontal line. I f
the site actually falls on a boundary, the search can return the region on either
side of the boundary. Note that the actual x-coordinate where a boundary
intersects the horizontal line is determined by the y-coordinate of the line.

THEOREM 2,7. Let S be a set of point sites, with unique bottommost site. Then
Algorithm I computes V*(S).

PROOF. Say a region or boundary T of V* is active if T intersects the horizontal
line through p to the left of or at p and extends above the line, or if T intersects
the horizontal line to the right of p, and also extends below the line. (Thus a
boundary with minimum point on the line to the right of p is not active, and a
boundary with maximum point on the line to the left of p is not active.) We
claim that statement I3 following is an invariant of the while loop, and that
statements I1 and I2 following are intermittent invariants of the loop. Specifically,
I1 and I2 are true after the last iteration of the loop that extracts a particular
point p from Q.

(I1) List L contains all regions and boundaries of V* active at p, in the order
intersected by the horizontal line through p.

(I2) If er, is an edge of V (r and s are arbitrary sites) and e*s contains a point
lexicographically less than or equal to p, then bisector B*~ has been created.
If v is a vertex of V and v* is lexicographically less than or equal to p, then

160 S. Fortune

v* has been marked as a vertex and as an endpoint of all bisectors containing
an edge of V* incident to v*.

(I3) I f two boundaries are adjacent on L and intersect above the horizontal line
through p, then the intersection is in Q.

Invariant I I is true initially, since the horizontal line through the bot tommost
site b intersects R* at b itself. Invariant I2 is true initially, since no edge or
vertex of V* contains a point lexicographically less than the minimal site. Invariant
I3 is true initially since no boundary intersects the horizontal line through b.
Invariant I3 is clearly maintained by lines 11, 12, 17, and 18.

We argue invariant I1 explicitly; invariant I2 follows because we examine the
diagram V* in lexicographic order and always correctly create bisectors and label
vertices. To argue that I1 is invariant, first note that the set of active regions and
boundaries changes only at a site or a vertex of V*. Now a vertex of V* must
have degree at least three; by Lemma 2.6, if it is not also a site, it must have at
least two incident edges emanating downward, and the two edges must be
boundaries active when intersected by the sweepline. Hence it suffices to argue
that L is updated correctly at a site and at the intersection of boundaries.

First suppose that p is a site not lying on a boundary. By Lemma 2.4, p is the
minimal point of R*. Furthermore, if p lies in the interior of R* when it was
first encountered, then p is above edge epq, and p lies on edge e*q. Hence lines
8-10 correctly update L.

Now suppose that p is not .a site but is the intersection of boundaries. Let
boundaries Cq, q~, Cq2q3 , . . . , Cq,,, l q m->3, all intersect at p, in this order from
left to right just below p, and suppose that p is about to be extracted from Q for
the first time. By the induction hypothesis I1, L contains the sequence R*
Cq, q~, Cq,,, ,q * . . . , Rq,,, . . . ; call this subsequence L0. By Lemma 2.6, L0 should
be replaced with R*,, Cq, q Rq* after the last time p is extracted from Q. We
claim the following assertion is an invariant of the while loop until the last time
p is extracted from Q:

(I4) R* and Rq* are never deleted from L0, and if Rq,, Cq,qj, Rqj, Cqiq~, Rq~ are
adjacent on Lo, then Cq,q, and Cqjq~ intersect at point p.

(Notice that by I3, Q contains one copy of p for each consecutive pair of
boundaries in Lo.) Invariant I4 is clearly true before p is extracted for the first
time. Each iteration of the while loop replaces a consecutive pair of boundaries
intersecting at p with a single boundary. However, since all sites q l , . . . , q,, are
equidistant from . - l (p) , the new boundary intersects its left and right neighboring
boundaries at p, and invariant I4 is maintained. After p is extracted from Q for
the last time, only Rq,, Cq, q Rq,. remain, and invariant I1 is established.

Now suppose that p is a site lying on a boundary, or p is a site and two or
more boundaries intersect at p. Let Cq, q., . . . , Cq q,,, be the boundaries incident
at p, m-> 2. By Lemma 2.6, this sequence of boundaries and enclosed regions
should be replaced on L by Cq, p, Rp, C,q, . We show that I4 is again an invariant
of the while loop for the iterations in which p is extracted. The only new case is
if p, labeled as a site, is extracted from Q. Then p is determined to lie in some

A Sweepline Algorithm for Voronoi Diagrams 161

region Rq~, and boundaries C~,p and Cq+ip are created. However, p and q l , . . . , qm
are all equidistant from *-~(p). Hence if i r 1, then Cq, p intersects its left
neighboring boundary at p, and if i r m then Cq+p intersects its right neighboring
boundary at p. []

We see from the proof of Theorem 2.7 that it does not matter in what order
multiple events at a single site are prOcessed. This is why Algorithm 1 can handle
degeneracies in the placements of the sites without being explicitly coded to do
so. Of course, there is a tradeoff between the complexity of the proof of Theorem
2.7 and the complexity of Algorithm 1. The proof would be simpler if Algorithm
1 explicitly handled multiple events.

THEOREM 2.8. Algorithm 1 can be implemented to run in time O(n log n) and
space O(n).

PROOF. We first claim that the number of iterations of the while loop is at most
O(n); it then follows that the number of bisectors ever created is O(n). By an
ana/ysis similar to Theorem 2.7, the number of iterations of the loop for a point
p not a site is one less than the number of boundaries intersecting at p from
below, and for p a site the number of iterations is one more than the number of
boundaries p intersecting at p from below. Since the number of intersecting
boundaries at p is bounded above by the degree of p as a vertex of V, the number
of iterations summed over all vertices and sites is O(n).

Now Q contains at most two entries per boundary and one per site, hence at
most O(n) entries. Priority queue Q needs operations inset, delete, and extract~
rain; Q can be implemented as a heap at time cost O(log n) per operation and
storage cost O(n). Similarly, L can contain at most O (n) entries, since a horizontal
line can intersect each bisector at most twice. List L needs operations insert,
delete, and search (for line 10); a balanced tree scheme can implement these at
time cost O(log n) per operation and storage cost O(n). Thus each iteration of
the while loop takes time O(log n) for a total time of O(n log n). []

THEOREM 2.9. Algorithm 1 can be modified to compute V in time O(n log n) and
space O(n).

PROOF. We claim that Algorithm 1 can be modified to use only untransformed
bisectors and vertices. Algorithm 1 creates a Voronoi edge by first creating the
bisector containing the edge and then later marking the bisector with the endpoints
of the edge; these operations can be performed directly. Event queue Q contains
sites and the intersections of boundaries. The intersection of two boundaries can'
be obtained by computing the intersection of two untransformed bisectors and
then adding to the y-coordinate of the intersection the distance to any of the
sites deterrrtining the bisectors. Similarly, list L can contain untransformed regions
and bisectors; the mapping can be computed explicitly during the search of
line 10. []

162 s. Fortune

The Delaunay triangulation is the geometric dual of the Voronoi diagram. A
Delaunay edge is a segment joining two sites whose Voronoi regions share a
common bounding edge. There is a one-to-one correspondence between the
vertices of the Voronoi diagram and the regions resulting from the subdivision
of the plane induced by the Delaunay edges. I f a Voronoi vertex has degree
three, then the corresponding Delaunay region is a triangle; if the vertex has
degree exceeding three, then the corresponding region has more than three
bounding Delaunay edges, and diagonals need to be added to obtain a triangula-
tion. The Delaunay triangulation has many interesting properties; for example,
it maximizes the minimum angle of a triangle over all triangulations of the sites.
The paper by Lee and Schacter [12] is a general reference on Delaunay triangula-
tions.

Algorithm 1 can be easily modified to compute the Delaunay triangulation. In
the case of the intersection of boundaries, starting at line 12, the Delaunay triangle
corresponding to vertices q, J, and s should be output. This will actually produce
a full triangulation, with diagonals added arbitrarily to Delaunay regions with
more than three sides. I f Delaunay regions without additional diagonals are
desired, Algorithm 1 can be modified to detect simultaneous intersection of more
than two boundaries.

3. Line Segment Sites. Algorithm 1 can be extended to compute the Voronoi
diagram of a set of line segments. The general idea of the algorithm is the same;
we transform the Voronoi diagram so that the lowest point of a Voronoi region
appears at the Voronoi site, and then use a sweepline technique. However, the
details are more complex, because the Voronoi diagram itself is more complex,
and because the transformation * is not as well behaved.

The Voronoi diagram is constructed using the bisectors between pairs of sites,
where the "bisector" is the locus of points equidistant from the two sites. The
bisector of two points is a line. While the bisector of two disjoint segments is
still a simple curve, it can have up to seven sections, each a section of a line or
a parabola. Worse, the bisector of two segments sharing a common endpoint
need not even be one-dimensional, since there is a two-dimensional region for
which the common endpoint is the closest point of both sites.

We can simplify the situation somewhat by giving a slightly modified definition
of the Voronoi diagram. We require that every segment be split into three sites,
two for the endpoints and one for the segment itself. Then we distinguish between
the endpoints of the segment or the segment itself being closest. As will be seen,
this has the consequence that the bisector between two sites is always a section
of a line or a parabola. Also, the two-dimensional region that used to be the
bisector of two coincident segments becomes the Voronoi region of the common
endpoint of the segments. A similar idea has been used in previous papers on
the Voronoi diagram of line segments [9], [21].

The transformation * in the line segment case is not always one-to-one, as it
was in the point site case. This does not alter the asymptotic time or space
complexity of the algorithm, but more care is needed in handling special cases.

A Sweepline Algorithm for Voronoi Diagrams 163

3.1. The Voronoi Diagram of Line Segments. We summarize the definition and
elementary properties of the Voronoi diagram of a set S of point and closed line
segment sites in the plane. For more details, see, for example, [11] or [9]. We
assume S contains n sites (at least one of which is a line segment), that line
segments intersect only at endpoints, and that every endpoint of a line segment
is a point site. Furthermore, we assume that not all sites in S are collinear,

For p c S and p a point, dp: R2-~ R is the Euclidean distance to p, as before.
I f p is a line segment, then we define dp to be the distance to the closest point
of p; there is a closest point because p is closed. It is possible that the closest
point of line segment p to some point of z ~ R ~ is an endpoint of p. In this case
we wish to assign z to the region of the endpoint of p (always a site by the
conditions on S) rather than to p; hence we define the tangent contact region of
p, tp. For p a point tp is just R 2. For p a segment tp is the closed band containing
p bounded by the two lines perpendicular to p through the endpoints of p. (Thus
a circle centered at z c tp of radius dp(z) is tangent to p.) Now we define d: R:-~ R
by d (z) = minp: z~tp dp (z). The bisector Bpq is {z ~ tp ~ tq'. dp (z) = dq (z) }. Rpq is
{ z C tp : dp (z) <- dq (z) } and the Voronoi region Rp is Oqr p Rpq. The Voronoi diagram
V= V(S) is {z~Bpq: p, q c S and d(z)=dp(z)}.

The bisector Bpq falls into one of four categories, depending on whether p and
q are two points, a segment and its endpoint, a segment and a disjoint point, or
two segments. I f p and q are distinct point sites, then Bpq is the perpendicular
bisector of p and q, as before. I f p is an endpoint of segment q, then Bpq is the
line perpendicular to q through p. If p is a point not collinear with segment q,
then Bpq is a section of a parabola. (Note that if p is a point collinear with
segment q, not an endpoint, then Bpq is empty.) Finally, if p and q are segment
sites, then Bpq is a point, a segment, possible empty if tp c~ tq contains no points
equidistant from p and q, or if p and q are collinear sharing a common endpoint,
then Bpq is the line perpendicular to p and q through the common endpoint. See
Figure 3.1.

The Voronoi region Rp need not be convex; however, it is starshaped from p:
for each x ~ Rp, there is y c p so that the line segment xy is contained in Rp (in
fact, y can be chosen to be the point o f p closest to x) [11].

It is possible that the Voronoi region of a point site p is degenerate. If p is the
common endpoint of two collinear segments, then Rp is contained in the line
through p perpendicular to the two segments. I f p is the common endpoint of
three or more segments and every angle formed by two consecutive segments is
less than ~-, then Rp is p itself.

,4 , ~,

Fig. 3.1. Bisectors. Dotted lines outline tangent contact region.

164 S. Fortune

~

Fig. 3.2. Voronoi diagram of line segments.

A vertex of V is a point of V incident to three distinct curves (line segments
or parabolas) contained in V. A vertex is always a point equidistant from three
sites and in all three tangent contact regions. (A point equidistant from three
sites and in all three contact regions need not be a vertex. Consider as sites two
collinear coincident segments and their common endpoint. In general, points on
the line through the common endpoint perpendicular to the segments are not
vertices.) An edge of V is a maximal connected subset of a bisector Bpq n Rp c~ Rq
contained in V. Notice that Bpq c~ V may not be connected, though it can have
at most n components, each an edge. (Consider a "sandwich" consisting of two
long segments and a row of sparsely spaced point sites between the two segments.)
There are at most O(n) edges and vertices of V, since V forms a planar graph
with vertices of degree at least three. Figure 3.2 is a simple example of the Voronoi
diagram.

3.2. The mapping *. As before, we define *: R 2 ~ R 2 by *(z)= (zx, zy+d(z)) .
Again mapping * is central to the algorithm for the Voronoi diagram of line
segments. It has many of the same properties as mapping * in Section 2: it is
continuous, fixes all sites, and maps each vertical line into itself. Furthermore,
the lexicographically least point of a region R* is the lexicographically least
point of p. This last property is of course crucial to the sweepline algorithm.
Unfortunately, * fails to be one-to-one on V. This makes the geometric details
of the sweepline algorithm more complicated. This section contains a detailed
analysis of the properties of*. Figure 3.3 depicts the transformed Voronoi diagram
of Figure 3.2.

Fig. 3.3. Transformed Voronoi diagram.

A Sweepline Algorithm for Voronoi Diagrams 165

4 t l t i ~ "
t l . -

t ~ _ - ' "

s

Fig. 3.4. Transformed bisectors.

We begin by studying the mapping *p, defined by %: R 2 ~ R 2 by *p(Z)=
(zx, zv + dp(z)). Again * = *p on Rp. Notice that *p is one-to-one everywhere except
on a vertical segment below the lowest point of p, or below all of p if p is a hori-
zontal segment. The following lemma describes the effect of *p on bisectors.
See Figure 3.4.

LEMMA 3.1. Let p, q ~ S.

1. I f p and q are points, then *p(Bpq) is a hyperbola or an open vertical half-line.
2. Suppose point p is an endpoint of segment q. I f q is not horizontal, then * p(Bpq)

is two half-lines with endpoint p, one directed up and to the left, the other directed
up and to the right. I f q is horizontal, then the vertical half-line below p contained
in Bpq collapses to p, and *p(Bpq) is the vertical half-line with bottom endpoint p.

3. Suppose p is a point not collinear with segment q. Then * p(Bpq) is a section of
a parabola, except if q is horizontal and qy > py, in which case *p(Bpq) is q.

4. I f p and q are both segment sites, and Bpq is a segment, then in general *p(Bpq)
is also a segment. However, if p and q are both horizontal segments sharing a
common endpoint, then again the vertical half-line below the common endpoint
contained in Bpq collapses to the common endpoint, and *p(Bpq) is the vertical
half-line above the common endpoint.

PROOF. In all cases *p(Bpq)=*q(Bpq).
(1) This follows from Lemma 2.1 and Proposition 2.2.
(2) If q is not horizontal, then for each side of q, *q is a linear function on

tq, hence on Bpq. Furthermore, for z ~ Bpq, *p(Z) must be strictly above p, so both
sections of *p(Bpq) extend upward from p. I f q is horizontal, then *q is linear on
tq above q and collapses the half-line below p to p itself.

(3) Notice Bpq is a section of a parabola. I f q is not horizontal or Bpq is above
q, then *q is a linear transformation on tq. Since linear transformations preserve
asymptotes (or the lack thereof) the image of a parabola under a linear transforma-
tion is a parabola, and B*q is a section of a parabola. If q is horizontal and Bpq
is below q, then *q collapses the portion of tq below q to q, hence it also collapses
Bp,~ to q.

(4) Similar. []

166 S. Fortune

COROLLARY 3.2. I r e is an edge o f V, then e* is a section o f a line, parabola, or
hyperbola.

We give a characterization o f every point w in the range o f *. This characteriz-
ation is used to construct the sweepline algori thm for comput ing V*. The first
five possibilities are the same as in Section 2: w is an interior point o f some
region R*; w lies on an edge e* but is neither a site nor a vertex; w is an isolated
point site, not a vertex; w is a vertex, not a site; and w is an isolated point site
and a vertex. Lemma 2.6 applies to these cases. The remaining possibilities are
that w is the interior point o f some segment site or that w is a point site with
incident segment sites. The next two lemmas describe these cases.

LEMMA 3.3. Suppose w is a point site with at least one incident segment site. Let
E~ and Eb be the segment sites incident to w with w as the lexicographically greater
and lesser endpoints, respectively. (E s is the "smaller" edges; E b is the "bigger"
edges.) The edges o f V* extending lexicographically upward f rom w are the bisectors
among the clockwise-most segment o f E~ (i f E~ # •), point site w, Eb, and the
counterclockwise-most segment o f E~ (i f Es ~ Q) , and possibly more edges described
below. Furthermore:

1. I f there is a segment on Es that is not horizontal, then *-~(w) is w itself and no
other edges o f V* extend upward f rom w. The edges o f V* incident to w from
below are the bisectors o f the segments in Es, assuming Es contains at least two
segments. See Figure 3.5(a).

2. I f Es is empty or is a single horizontal segment, and there is no site in S with
y-coordinate smaller than Wy, then *-~(w) is the closed vertical half-line below
w. N o other edges o f V* extend upward f rom w and no edges o f V* are incident

f rom below. See Figure 3.5(b).
3. I f E~ is empty or is a single horizontal segment, and there is a site with y-coordinate

smaller than wv, then *- l (w) is a closed vertical segment wz, z below w. Point
�9 z lies on an edge ewx o f V, where site x is not a segment incident to w. Let t and

u be the sites intersecting the Voronoi circle at z counterclockwise and clockwise
o f w, respectively. (Notice either t = u = x or t ~ u.)
(a) I f there is no horizontal segment in E~ u E b then wz is not an edge o f V. The

edges extending upward f rom w are the ones described above, the bisector
between t and w, and the bisector between u and w. I f t ~ u then there is an
edge o f V* incident to w f rom below, and z is a vertex o f V. Furthermore,
z is the endpoint o f all the edges incident to w f rom below in V* as well as
the bisectors between t and w and between u and w. See Figure 3 .5 (C) / f
t = u = x and Figure 3.5(d) if t ~ u.

(b) I f there is a horizontal segment incident to w, then wz is an edge o f V and
z is a vertex o f V. The edges o f V* extending lexicographically upward f rom
w are the ones described above, the bisector between t and w i f there is no
horizontal segment in Es with right endpoint w, and the bisector between u
and w if there is no horizontal segment in Eb with left endpoint w, or the
bisector between w and such a segment i f it exists. Again z is the endpoint

A Sweeptine Algorithm for Voronoi Diagrams 167

(a)

XQ XO

(c)

w

x l x a

(e)

w!
(b)

(d)

\1
,co e U

(f)

Fig. 3.5

o f edges involving t or u and all edges incident to w from below in V*. See Figure

3.5(e) i f t = u = x and Figure 3.5(f) /f t ~ u.

PROOF. We show part 3(a); the others are similar. Since there is a site with

y -coord ina te smaller than wy and since there are no segment sites with upper
endpo in t w, there is an edge e ~ of V below w and a vertical segment wzc_ Rw

with z lying on edge ewx. Mapping *w collapses the vertical half-l ine below w to
w itself and * = *w on Rw, so * (w z) = w. Mapping * is one- to-one above w and
below z, so * l (w) = wz.

Since there are no hor izontal segments inc ident to w, segment wz must be

conta ined in the interior of Rw except at w and z. Hence wz is not an edge of V.

Since z lies on edge ewx, site x must intersect the Voronoi circle at z. If x is
the only site below w intersect ing the Voronoi circle at z, then z lies in the interior
of edge ewx, and e*wx extends upward both to the left and right of z* = w. If more
than one site below w intersects the Voronoi circle at z, then z is a vertex of V.
As in the proof of Lemma 2.6, all the bisectors among the sites from t to u
counterclockwise a round the Voronoi circle at z must be inc ident to z* = w from
below. []

168 S. Fortune

LEMMA 3.4. Suppose w is an interior point o f segment site s.

1. I f s is not horizontal then *- l (w) is w itself and w lies in the interior o f both Rs
and R*.

2. Suppose s is horizontal. Then , -1(w) is a vertical segment or half-line with topmost
point w. I f *- l (w) is a segment its bottommost endpoint z is a vertex exactly i f
there are at least two edges in V* incident to w (one o f the edges is a horizontal
edge to the left o f w). I f z is a vertex then there is a single horizontal edge to
the right o f z and z is the endpoint in V of all edges whose images are incident
to w in V*.

PROOF. Similar to the preceding lemma. []

3.3. The Algorithm for Calculating V

THEOREM 3.5. Let S be a set o f n point and line segment sites. There is an algorithm
that computes the Voronoi diagram V of S in time O(n log n) and space O(n).

PROOF. The algorithm is similar to Algorithm 1; we give a sketch of it here.
We split edges of V* into monotonic pieces called boundaries and define active

regions and boundaries as in the proof of Theorem 2.7. We claim that the set of
active regions and boundaries only changes at a point site or at a vertex that is
the intersection of boundaries incident from below. This follows from an
examination of all the cases of points in the range of *, given by Lemmas 2.6,
3.3, and 3.4. Hence the points at which the set of active regions changes can be
determined using a sweepline algorithm.

The algorithm uses a list L that contains active regions and boundaries and a
priority queue Q that contains all point sites and intersections of boundaries
active on L. Assertions I1, 12, and 13 from the proof of Theorem 2.7 should be
maintained as invariants. To do this the algorithm chooses the lexicographically
least point w in the priority queue and performs all the updates to L necessary
to reflect the regions and boundaries newly active and inactive at w. We claim
that L can be correctly updated using only knowledge of the sites incident to w
and the boundaries incident to w from below. This follows by examining all
cases in Lemmas 2.6, 3.3, and 3.4. After updating L, the algorithm deletes from
Q intersections among boundaries no longer active and inserts into Q all intersec-
tions among boundaries newly active. This process iterates until Q is empty.

As described the algorithm sweeps through V*. We claim that as L is updated
at each point w of V*, the inverse image of w in V can be constructed. Once
again, this follows by examining the cases of Lemmas 2.6, 3.3, and 3.4. (Note
that there is a subtlety to invariant I2 not apparent in Theorem 2.6: since more
edges may be incident to a vertex in V* than in V (case 3 of Lemma 3.3), the
algorithm must mark endpoints of edges according to the incidence structure in
V, not V*.) Hence the algorithm can actually output V, rather than V*.

The analysis of the time and space bounds of the algorithm is similar to
Theorem 2.8. The number of accesses needed to update L at a point w is
proportional to the number of boundaries and segment sites incident to w; the
total number of updates summed over all vertices and sites of V is O(n). If L

A Sweepline Algorithm for Voronoi Diagrams 169

is implemented as a balanced tree then accesses cost time O(log n) each, for a
total time of O(n log n). Similarly, Q can be implemented as a heap, so the O(n)
total accesses each cost time O(log n), for a total of O(n log n). Both Q and L
require O(n) space. []

It was possible to implement Algorithm 1 as if intersections of boundaries and
sites could not occur simultaneously, and still have list L updated correctly. In
the case of segments, there seems to be no corresponding way to avoid considering
simultaneous intersections and sites. However, the following steps are a reason-
ably methodical way of updating L at a point w. First, if two or more boundaries
are incident to w from below, replace them with a single boundary. Such
boundaries may arise in two ways: either edges of V can intersect at a point in
*- l (w) strictly below w (this may happen in the cases covered by Lemmas 2.6,
3.3(3), and 3.4(2)) or bisectors of segment sites with upper endpoint w can
intersect at w both in V and V* (Lemma 3.3(1)). The second step in updating
L is to create the bisectors resulting from the point site at w and segment sites
with w as lower endpoint, if any. There are two cases here, depending on whether
w lies in the interior of some region or on a boundary (possibly the boundary is
the result of the first step). By Lemma 3.3 all such bisectors extend upward from
w in V*, except the bisector between w and a horizontal segment with left
endpoint w, if any. The last step is to consider the edge resulting from a bisector
between w and a horizontal edge with left endpoint w. This edge extends vertically
downward and is collapsed into w by *. However, as in Lemma 3.3(3b), its lower
endpoint may be a vertex of V, and there may be another boundary extending
upward from w in V* (the boundary is actually horizontal with left endpoint w).

4. Weighted Point Sites. As a final, easy, application of the sweepline technique
we consider the Voronoi diagram of weighted point sites. Now every site is a
point and has a nonnegative weight associated with it. We wish to partition the
plane into regions so that each region consists of points closest to a particular
site, where the metric is the sum of the weight of the site and the distance to the
site. The Voronoi diagram that results has a similar appearance to the unweighted
point site case, except that bisectors are sections of hyperbolas. Also, the region
of a site may be empty if its weight is bigger than the weighted distance from
some other site.

The weighted Voronoi diagram turns out to be identical to the Voronoi diagram
of circles. The metric in the circle case is the Euclidean distance to the center of
the circle less the radius of the circle. Thus outside the circle the metric is the
Euclidean distance to the closest point of the circle and inside the circle the
metric is the negative of the Euclidean distance to the closest point of the circle.
The Voronoi diagram of a set of weighted point sites is just the Voronoi diagram
of a set of (possibly intersecting) circles, where the site at p of weight wp is
represented by the circle with center p and radius W - wp, W = max{ Wq}. Previous
algorithms for the Voronoi diagrams of circles have running time O(n log 2 n);

170 S. Fortune

Lee and Drysdale [11] consider the case of nonintersecting circles and Sharir
[19] considers the case of possibly intersecting circles.

The sweepline algorithm for the weighted point site case has running time
O(n log n). It is similar to Algorithm 1, with two minor differences. First, the
appropriate mapping * no longer fixes sites, but maps them upward by a distance
equal to their weight. This does not affect the algorithm, however. Second, a test
is necessary to see if the region of a site is empty; this turns out to be a simple
byproduct of the mapping *.

An alternative definition of weighted Voronoi diagram has been studied by
Aurenhammer and Edelsbrunner [1]. In this model each site has a multiplicative
weight: the metric is the Euclidean distance to a site multiplied by its weight.
The diagram that arises from this metric is quite different from the usual Voronoi
diagram; for example, one Voronoi region may completely encircle another
Voronoi region.

4.1. The Voronoi Diagram. We sketch the definition and elementary properties
of the Voronoi diagram of weighted point sites. The paper by Sharir [19] contains
an extensive presentation of this information, cast in the framework of the Voronoi
diagram of circles. S, the set of sites, is a set of n points in the plane. Associated
with every site p is a nonnegative weight wp. If p and q are distinct sites,
and dp(q) + Wp <- Wq, then we say p dominates q. If neither p nor q dominates
the other, then the bisector Bpq is {zcR2: dp(z)+wp=dq(z)+Wq}, and Rpq is
{z6Ra:dp(z)+Wp<-dq(z)+Wq}. If p dominates q, then Bpq is empty, Rpq is
R 2, and Rqp is empty. (Note that if dp(q)+ w v = Wq, then {z ~ R2: dp(z)+ wp =
dq(z)+ wq} is a half-line with endpoint q. We define away this degenerate case
to simplify the presentation.) The Voronoi region Rp is (")q~p Rpq and the Voronoi
diagram V(S) = V is {z c Bpq: p, q ~ S and dp(z) + Wp = mint ,s dr(z) + wr}.

LEMMA 4.1. Suppose Wp > Wq. Then Bpq is a branch of a hyperbola open toward
p. I f Iqy-Py[> Wp- We, then one asymptote of Bpq extends to the left, the other to
the right. I f [qy-pyl = wp-Wq, then Bpq has one vertical and one nonvertical
asymptote. I f Iqy-Py[< wp- Wq then both asymptotes extend left or both extend
right.

PROOF. Consider the defining equation of Bpq, Wp+((x-px)2+(y-py)2) ~/2=
Wq + ((x - qx)2+ (y_ qy)2)1/2. By moving wq to the left-hand side and squaring,
we obtain an equation with a single square root. Furthermore, the quadratic terms
in x and y cancel, leaving only linear terms. By squaring again we can eliminate
the remaining square root and obtain terms at most quadratic in x and y. Hence
Bpq is a conic section.

Now choose points r~ and r2 so that pqr~ and pqr2 are right triangles with
hypotenuse segment pq and with e(q, rO=e(q, r2)=wp-Wq (so e(p, rl) =
e(p, r2)=(e(p,q)2-(wp-Wq)2)l/2). Choose ray Y~ so that it perpendicularly
bisects segment prl and is directed away from triangle pqr~; similarly choose ray
Y2. Now rays Y1 and Y2 must be asymptotes to Bpq, since for a point z on Y~

A Sweepline Algorithm for Voronoi Diagrams 171

(or 112) sufficiently far from p and q, dp(z) + wp is arbitrarily close to dq(z) + wq.
Hence Bpq is a branch of a hyperbola open toward p.

Suppose qy>py, so [qy-py[=qy-py. Now rl and r2 both lie on the circle of
radius wp-Wq about q and segments rip and r2p are tangent to the circle. If
qy -py > wp - wq, then both r~ and r2 must lie above p, so asymptotes Yj and I"2
extend downward, one to the left and one to the right. I f % -py = wp - Wq, then
one of r~ and r2 has the same y-coordinate as p, and one of Y1 and Y2 extends
vertically downward and the other is not vertical. If qy -py < Wp - Wq, then one
of r~ and r2 lies below p and the other above p, and Y~ and Y2 extend either
both to the left or both to the right.

I f qy-<py, the analysis is similar, with asymptotes extending upward rather
than downward. []

A vertex of V is a point v of V satisfying dp(v)+ wp = dq(v)+ Wq = d , (v)+ wr,
for three distinct sites p, q, r. Equivalently, a vertex is a point lying on three
distinct curves of V. An edge of V is a maximal one-dimensional curve contained
in V properly containing a point and not containing any vertices in its interior.
An edge has two vertices as endpoints or has a single vertex as endpoint and
extends to infinity. The intersection of Bpq with V need not be connected, as in
the case of line segments. The Voronoi diagram V forms a planar graph with
vertices of degree at most three and has size O(n). It may not be connected, but
it has at most O(n) connected components.

4.2. The transformation *. We define *p: R 2-* R 2 by *p(X, y) =
(x, y+ dp(x, y)+ wp), and *: R2 ~ R 2 by *(x , y)=(x , y+minp~s {dp(x, y)+ wp}).

We can use the transformation * to get a condition when a site p is dominated
by some other site. Notice that *p(p)y ----py+ Wp. I f for some other site q, *q(p)y <-
py+ wp, then dq(p)+ w o <-Wp and q dominates p. Hence some site dominates p
if *(p)y <py + wp, or if *(p)y =py + wp with the minimum attained both at p and
at some site distinct from p.

LEMMA 4.2. The unique lowest point of R*p is (Px, Py + wp).

PROOF. Similar to Lemma 2.4. []

LEMMA 4.3.

1. I f wq + qy > wp +py, then *q(Bpq) has unique lowest point and unique horizontal
tangent at (qx, % + Wq).

2. I f wp + p~, = Wq + qy then *q(Bpq) has no horizontal tangents, lies striedy above
q~. + Wq, and has open endpoint at ((Px + qx)/2, qv + wu).

PROOF. (1) We show that there is a point of Bpq below q. First, suppose qy > &.
I f wp> wq then using the fact that qy-pv > wp-wq and Lemma 4.1, Brq is a
hyperbola with asymptotes extending both left and right, hence some point of it

172 S. Fortune

lies below q. I f wp <- Wq, then Bpq is either a nonvertical line or a hyperbola open
toward q, and some point of it lies below q. Now suppose qy <-py; then Wq > w r
We have W q - W p > p y - q y , hence by Lemma 4.1 with p and q reversed, the
asymptotes to Bpq extend either both left or both right. Since Bpq is open toward
q some point of it must lie below q.

Now it is clear that *q maps points of Bpq not on the vertical line through q
above qy+Wp and points on the vertical ray below q to (q~, qy+Wp). Let ~ be
the point of Bpq below q. Then *q(Cl) = (qx, qy + Wq) is the unique minimal point
of *q(Bpq). It is not hard to see that the tangent to *q(Bpq) at *q(~) must be
horizontal.

Suppose z c Bpq and z r ~. We show the tangent at *q(Z) is not horizontal.
Notice z is not below p, since there can be a point of Bpq below at most one of
p and q. Consider the ray Yp directed from p through z and the ray Yq directed
from q through z. Yp and Yq cannot overlap. We assume that Yp and Yq are
not oppositely directed; a slight modification of the argument is necessary if they
are. Let Y~ and Yq be points of Yp and Yq after z and Yp and Yq be points
of Yp and Yq before z. Since Yp is not vertical downward, %(Yp) must be a ray
extending upward from *p(p). Similarly, %(Yq) must be a ray extending upward
from *q(q).

It is not hard to see that Bpq c a n be split into two pieces near z: Bpq contained
§ +

in the cone bounded by Yp and Yq and B;o contained in the one bounded by
+

Y; and Y~. We claim Bpq is either vertical upward or is above one of Yp or
Y~-. I f Y~ and Yq extend both to the left or both to the right, then Bp+q must be
above the lower of the two. If one of Y~ and Yq extends to the left and the
other to the right, or one is vertical, then either Bp+q is vertical or Bp+q is above
the ray on the same side of the vertical line through z as Bp+q. Similarly, B~q is
either vertical downward or is below one of Y ; and Yq.

Now if Bpq is vertical, then *q(Bpq) m u s t be vertical. If Bpq is above Yp, say,
+ _ ~ + then since *p is continuous, p(Bpq) - q(Bpq) must be above %(Y~-). Similarly,

%(B~q) must be below %(Y~) or *q(Yq). Since %(Yp) extends upward from p
and *q(Yq) extends upward from q, the tangent to B m at z cannot be horizontal.

(2) The argument is similar. I f wp = Wq and py = % then Bpq is the vertical line
through (Px + q,,)/2. If wp ~ Wq, then using Lemma 4.1 it can be seen that one of
the asymptotes to Bpq is a ray vertically downward through (px + qx)/2. In either
case *q maps all points of Bpq above qy + wq. []

THEOREM 4.4. Let S be a set of weighted point sites, and V = V(S). There is a
sweepline algorithm that computes V in time O(n log n) and space O(n).

PROOF. Similar to Theorems 2.7, 2.8, and 2.9. D

5. A Geometric Interpretation of *. The mapping * may appear to be somewhat
mysterious. A three-dimensional version of the Voronoi diagram may elucidate
the role of *. This interpretation was first suggested by Edelsbrunner [5].

A Sweepline Algorithm for Voronoi Diagrams 173

Fix a set of point sites S. We view the sites as lying in the z = 0 plane of R 3.
For p a site, let the cone of p, cp, be {(x, y, z) ~ R3: dp(x, y) = z}. Let C be the
lower envelope of these cones, i.e., C is {(x, y, z): (x, y, z) ~ Cp, some p, and for
all q, if (x, y, z ')~ cq then z-< z'}. Finally, let D be the subset of points of C
contained in two or more cones. Clearly the Voronoi diagram V is the projection
of D onto the plane z = 0 in the direction parallel to the z-axis. Consider the
"oblique" projection of R 3 onto the plane z = 0 in the direction parallel to the
line {x = 0, y + z = 0}. Then V* is just the oblique projection of D, and R* just
the oblique projection of cp n C.

This interpretation of V in three dimensions gives a different geometric explana-
tion of the sweepline algorithm. Suppose the sweepline is the line y = c (in the
z = 0 plane). Let Pc be the plane y + z = c. Notice that the portion of the Voronoi
diagram V* intersected by the sweepline is just the oblique projection of Pc n D.
Hence, rather than translating a line in the z = 0 plane, we can imagine translating
a plane parallel to Pc. The intersection of the plane with D gives exactly the
sequence of edges of V* intersected by the sweepline. It is clear that the first
time that the translating plane intersects a cone Cp, the plane is tangent to the
cone, and the oblique projection of the intersection is the site p.

The extension to additively weighted point sites is immediate from this interpre-
tation. The cone for each site is simply pushed in the positive z direction by a
distance equal to the weight of the site.

6. Open Problems. One application of Voronoi diagrams is nearest-neighbor
searching in the plane. This use requires a method to search the planar polygonal
regions defined by the Voronoi diagram. Two data structures have recently been
proposed to assist in polygonal region searching. The first, suggested by Edels-
brunner et al. [6], requires linear storage, linear time to construct, and results in
logarithmic query time. The second, proposed by Driscoll et al. [4], also requires
linear space and results in logarithmic query time, but takes time O(n log n) to
construct. However, the second is built using a sweepline approach, like the
Voronoi diagram algorithms presented here. A direct application of either data
structure would require two passes: one to construct the Voronoi diagram, and
the second to build the search data structure. An interesting question is whether
the search data structure could be built directly, and the Voronoi diagram
eliminated.

The combination of transformation and sweepline is a powerful technique,
and the question arises of what other problems can be solved with it. In a
companion paper we will consider the case of Voronoi diagrams of line segments
under polygonal convex distance functions [3]. Convex polygonal distance func-
tions generalize the metrics Lt and Lx and have applications to versions of the
piano-mover's problem. (A preliminary version of the companion paper appeared
in [7], and Leven and Sharir [13] obtain a similar result, though with a more
complex algorithm.) Perhaps the sweepline algorithm is adequate for even more
general metrics.

174 S. Fortune

References

[1] F. Aurenhammer and H. Edelsbrunner, An optimal algorithm for constructing the weighted
Voronoi diagram in the plane, Pattern Recognition, 17 (1984), 251-257.

[2] J.L. Bentley, B. W. Weide, and A. C. Yao, Optimal expected-time algorithms for closest-point
problems, ACM Trans. Math. Software, 6 (1980), 563-580.

[3] L. P. Chew and R. L. Drysdale, Voronoi diagrams based on convex distance functions,
Proceedings of the Symposium on Computational Geometry, 1985, pp. 235-244.

[4] J.R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, Making data structures persistent,
Proceedings of the 18th Annual ACM Symposium on Theory of Computing, 1986, pp. 109-121.

[5] H. Edelsbrunner, private communication, 1985.
[6] H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision,

Technical Report, DEC Systems Research Center, Palo Alto, CA, 1984.
[7] S.J. Fortune, Fast algorithms for polygon containment, Automata, Languages, and Program-

ming, 12th Colloquium, Lecture Notes in Computer Science, Vol. 194, Springer-Verlag, New
York, pp. 189-198.

[8] P.J. Green and R. Sibson, Computing Dirichlet tesselations in the plane, Comput. J., 21 (1977)
168-173.

[9] D. Kirkpatrick, Efficient computation of continuous skeletons, Proceedings of the 20th Annual
Symposium on Foundations of Computer Science, 1979, pp. 18-27.

[10] D.T. Lee, Medial axis transformation of a planar shape, IEEE Trans. Pattern Analysis Machine
lnteL, 4 (1982), 363-369.

[11] D.T. Lee and R. L. Drysdale, Generalizations of Voronoi diagrams in the plane, Siam J.
Comput., 10 (1981), 73-87.

[12] D.T. Lee and B. J. Schacter, Two algorithms for constructing a Delauney triangulation, lnternat.
J. Comput. Inform. Sci., 9 (1980), 219-227.

[13] D. Leven and M. Sharir, Planning a purely translational motion for a convex object in
two-dimensional space using generalized Voronoi diagrams, Technical Report 34/85, Tel Aviv
University, 1985.

[14] D. Leven and M. Sharir, Intersection problems and applications of Voronoi diagrams, in
Advances in Robotics, Vol. I (J. Schwartz and C. K. Yap, eds), Lawrence Erlbaum, 1986.

[15] T. Ohya, M. lri, and K. Murota, Improvements of the incremental method for the Voronoi
diagram with computational comparison of various algorithms, J. Oper. Res. Soc. Japan, 27
(1984), 306-336.

[16] F.P. Preparata, The medial axis of a simple polygon, Proceedings of the Sixth Symposium on
Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 53,
Springer-Verlag, New York, 1977, pp. 443-450.

[17] F.P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,
New York, 1985.

[18] M.I. Shamos and D. Hoey, Closest-point problems, Proceedings of the 16th Annual Symposium
on Foundations of Computer Science, 1975, pp. 151-162.

[19] M. Sharir, Intersection and closest-pair problems for a set of planar discs, SIAM J. Comput.,
14 (1985), 448-468.

[20] R. Sedgewick, Algorithms, Addison Wesley, Reading, MA, 1983.
[21] C.K. Yap, An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments,

NYU-Courant Robotics Report No. 43 (submitted to SIAM J. Comput.).

