A Pseudo-Boolean programming approach to
compute differences and similarities between two
genomes

Annelyse Thévenin

Biolnfo Lab, Laboratoire de Recherche en Informatique (LRI),
Université Paris-Sud 11, France

@ Blog> |
| m e PARIS-SUD 11 'n o

1/ 58



Introduction

Context
Notation

ome consists of genes

I RRA A

001 R0

FLAGdb - Arabidopsis thaliana



Evolution of a genome
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Phylogenetic tree
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Comparison between two genomes

. ' ' | | | | | " P | L | |
or 1081 20M 300 4om S0M Slﬁl“l ?dl“l aon 308 100M  110M  120M 130I:‘|
Annotated llSenes

Fugu/Human chromosome 12 [Wang et al., 2006]
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Computation of a scenario based on the principle of
parsimony
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Computation of a measure of (dis)similarity

Compute the (dis)similarities between two genomes.

Group of genes conserved between two species.
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[Sinha et Meller, 2007]
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Comparative genomic

Comparative genomic allows to better understand the evolution of
species.

@ Scenario or computation of measure of (dis)similarity,

o Study of measures of (dis)similarity: number of common
intervals, number of adjacencies, number of breakpoints,
MAD, SAD...
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Compare two genomes

Two genomes without duplication

GG +0 +1 +2 43 +4 45 +6 +7 +8 49

G +0 4+7 +3 -5 —4 +6 +1 +2 -8 49

The genome is a signed permutation.
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The number of common intervals tuno et vagiura, 20001.

A measure of similarity

G +o (D +3 +4 +5 +6 +7 +8 (9
G +0 +7 +3 =5 -4 +6 (D s {9
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Number of adjacencies tangivaud et a1., 20083

A second measure of similarity

G +0 (EED +3 +4 +5 +6 +7 +8 +9

G +0 +7 +3 (=5 —4 +c (D s +9

= 2 adjacencies between G; and Go.
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Number of breakpoints tsanxofs et Blancheste, 19971

A measure of dissimilarity

G1 +02+1 +22+32+4 +52+62+72+82+9

GG +0 4+7 +3 -5 —4 +6 +1 +2 -8 49

Dual measure to the measure of number of adjacencies:
bkp(Gl, G2) aF adj(Gl, Gz) =n-—1

= 7 breakpoints between G; and Go.
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Outline

@ Comparison between two genomes with
duplications

@ Comparison between two partially ordered
genomes



Comparison between two
genomes with duplications



Exact algorithms

Duplications
P mentation

Duplications of genes on 5 chromosomes of the
Arabidopsis thaliana 's genome

[Arabidopsis genome initiative, 2000]
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Comparison of two genomes

Two genomes with duplications

We need to find a matching between both genomes.
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Matching model: exemplar

The matching is required to sature exactly one gene of each gene
family [sankoff, 1999].
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Matching model: exemplar

The matching is required to sature exactly one gene of each gene
family [sankoff, 1999].

21 3 45 2 6 21 3 45 2 6

X N XY

1 325 2 46 325 2 4
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Matching model: exemplar

The matching is required to sature exactly one gene of each gene
family [sankoff, 1999].

T XX

1 325 2 46 1 325 2 46

3 adjacencies 1 adjacence
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Matching model: exemplar

The matching is required to sature exactly one gene of each gene
family [sankoff, 1999].

X TR Y

1 3252 46 325 2 46

3 breakpoints 5 breakpoints
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Matching model: maximum

The matching is required to saturate as many genes as possible of
each gene family [Tang and Moret, 2003].

1 21 3 45 2 6

KT

1 325 2 46

1 21 3 45 26
Gl

g Jiln

1 325 2 46
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Matching model: maximum

The matching is required to saturate as many genes as possible of
each gene family [Tang and Moret, 2003].

01 2 4 6 01 2 4 5 2 6
GZI / GZl /
0 0

1 325 2 46 1 325 2 46

2 adjacencies 1 adjacence
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Matching model: maximum

The matching is required to saturate as many genes as possible of
each gene family [Tang and Moret, 2003].

T LK

01 3 252 46 1 3252 46

5 breakpoints 6 breakpoints
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New matching model: intermediate

The matching is required to saturate at least one gene of each
gene family.
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New matching model: intermediate

The matching is required to saturate at least one gene of each
gene family.

1 325 2 46

3 adjacencies 2 adjacencies
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New matching model: intermediate

The matching is required to saturate at least one gene of each
gene family.

0 1 2 1 3 4\5 246 0 21 384\ 5 246
S %, . % %/
G2 I // G2 I

01 3 2 52 46 01 3 2 5 2 46

3 breakpoints 5 breakpoints
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Strategy

Framework study

Studied models: exemplar, intermediate, maximum.

Studied measures: numbers of adjacencies and breakpoints.

The corresponding problems are NP—hard [Bryant, 2000].

= Result of no-approximation.
= Heuristics.

= Exact algorithms.
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A pseudo-boolean program

Objective max(z); z=x1 +2x2 — x3
x1—2x0+3x3 > 1
Constraints x1+x+x3 = 1
2x1+x0+x3 < 3
Boolean variables x; € {0,1} Vi=1,2,3.



Exact algorithms

Duplications
P Experimentation

Heuristics

Variables

We have 4 types of variables:

a(i, k) denotes a matching between two genes;

b (i

') denotes the saturation of a gene in genome G;;
¢(i,j) denotes two genes consecutives in genome Gy;

d(i,j, k,I) denotes an adjacency.
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lllustration of the variables a(/, k) and b, (/)

Duplications

Génome G

Gi[l] Gi]2
|G1[i]] = |Ga k1]
|G1[i]| = |Ga[k;]]
|G1[i]] = |Ga[kp]|
Go[l] Gs2] Galna

Génome G

ba(kr) + ...+ ba(ky) + . .. + ba(ky) = min{oce; (|G1 [i]]), ocea (|G [i]])}
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lllustration of the variables a(/, k) and b, (/)
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We have two genomes:

Génome G by(i) =1
Gi[1] G1]2] Gili—1] Gi[i] Gi[i+1] G1[n4]

AAx

|G1[i]] = |Ga k1]

a(i,k1) =0
(Gl = [Galks] Gl
(Grli] = (Gl S aliky)
GZD] GZ[Q] GZ[kll Gg[nz]

ba(kq) € {0,1}

Génome G

ba(kr) + ...+ ba(ky) + . .. + ba(ky) = min{oce; (|G1 [i]]), ocea (|G [i]])}
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lllustration of the variables a(/, k) and b, (/)
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We have one family of duplicated genes:

Génome G, (@) =1
Gi[1] Gi[2 Gili —1]
|G1[i]] = |Gz k1]l
¢ (ivkl> =0
|G1i]] = |Ga[k;]|
IG1[i]] = |G [k S ali k)
Gall] G2 Galln] Gl

ba(kq) € {0,1}

Génome G

ba(kr) + ...+ ba(ky) + . .. + ba(ky) = min{oce; (|G1 [i]]), ocea (|G [i]])}
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We have a matching between G;(i) and Go(kj):

Génome G

Gi[l] Gi[2 Gl G1[n]
|G1[i]] = |Galki]|
) (i,k1) =0 (i, kp) =
|G i]| = |Galkj]l o
|G1[il] = |Galky]
Gol] G2 Galki] Galky) Galn,

Geénome G, ba(ki) € {0,1}  balk;) =1  bo(ky) € {0,1}

ba(k1) + ...+ ba(k;j) + ... + ba(kp) = min{oce; (|G4[i]]), occa (|GH[i]]) }
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lllustration of the variables a(/, k) and b, (/)

Duplications

We have a matching between G;(i) and Go(kj):

Génome G

Gi[l] G1]2 G1[n1]
IG1[i]] = G2 [k ]|
) (i,kp) =0
|G1[i]] = |Ga[k;]| 2
IG1[i]] = G2 [ky]| L
Go[l] G»[2 Galkp) Galna

Génome G ba(kp) € {0,1}

ba(k1) + ...+ ba(k;j) + ... + ba(kp) = min{oce; (|G4[i]]), occa (|GH[i]]) }
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lllustration of the variables c,(/,j) and d(i,/, k, /)

We have an adjacency between Go[i] and Gi[j]:

d(i, j, k, £) = 1

aij)=1
Vi<p<j
Genome G bi(i) =1 bi(p) =0 bi(j) =1
Gi[l Gili—1] Gifi] Gili+1 Gilj—1] Gilj] Gilj Gilm
G1[i] = Ga[k] Gilj] = Galf]
aiyk) =1 a(G,) =1
Gall Golk —1] Galk] Galk+1 Goll—1] Galf] Galt+1 Galnz
Genome G» ba(k) =1 ba(g) =0 ba(0) =1
Vk<qg<?
co(k,0) =1
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Experimentation

Dataset [Lerat et al. 2003]

@ 12 ~-proteobacteria complete genomes,
@ size: between 565 and 5474 genes,
@ 7.6% of duplicated genes.

@ For this work, the solver used is CPLEX
http://www.ilog.com/products/cplex.
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Results for the comparison between 12 genomes

Quadri Intel(R) Xeon(TM) CPU 3.00 GHz with 16GB of memory.

Results under the maximum model

@ All results: 66 pairs of genomes (100%);

@ Total time: ~ 3 minutes. )

Results under the exemplar model

@ 65 out of 66 (98%) - memory problem

@ Total time: ~ 3 minutes. )

Results under the intermediate model

@ Maximization of number of adjacencies:

e 63 out of 66 (95%); Total time: ~ 16 minutes.

@ Minimization of number of breakpoints:

e 59 out of 66 (89%); Total time: ~ 1 hour.

v
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Comparison between the exemplar and maximum models

The choice of model depends on the measure considered

@ Between two genomes, under the maximum model there are
8% of adjacencies more than under the exemplar model.

@ Between two genomes, under the exemplar model there are
11% of breakpoints less than under the maximum model.
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Gain from intermediate model to exemplar and maximum
models

During the miminization of the number of breakpoints

Ratio Intermediate
Adjacencies Breakpoints
Exemplar 2% 0%
Maximum -5% 10%
During the maximization of the number of adjacencies
Ratio Intermediate
Adjacencies Breakpoints
Exemplar 10% -3%
Maximum 1% 8%
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LCS: Longest Common Substring [Marron et al., 2004]

Gl 1 2 3 4 51 6 7 2

G2 6 2 7 -6 5 -4 1 2 3

4

IILCS heuristic under the exemplar model

@ Compute S: the Longest Common Substring up to a reversal
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LCS: Longest Common Substring [Marron et al., 2004]
Gl (1 23 4

G2 6 2 7 -6 5 -4(1 2 3

4

IILCS heuristic under the exemplar model

@ Compute S: the Longest Common Substring up to a reversal
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LCS: Longest Common Substring [Marron et al., 2004]

4

IILCS heuristic under the exemplar model

@ Compute S: the Longest Common Substring up to a reversal

© Map all the genes of S accordingly
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LCS: Longest Common Substring [Marron et al., 2004]

4

IILCS heuristic under the exemplar model

@ Compute S: the Longest Common Substring up to a reversal

© Map all the genes of S accordingly

© Remove genes that cannot be matched any longer according
to the model
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LCS: Longest Common Substring [Marron et al., 2004]
G1 4 s@ o 7@

G2 ¢@7 5 4023

4

IILCS heuristic under the exemplar model

@ Compute S: the Longest Common Substring up to a reversal

© Map all the genes of S accordingly

© Remove genes that cannot be matched any longer according
to the model
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LCS: Longest Common Substring [Marron et al., 2004]

G1 2.3 4 56 7

G2 6 7

4

IILCS heuristic under the exemplar model

@ Compute S: the Longest Common Substring up to a reversal

© Map all the genes of S accordingly

© Remove genes that cannot be matched any longer according
to the model
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LCS: Longest Common Substring [Marron et al., 2004]

G1 2.3 4 56 7

G2 6 7

4

IILCS heuristic under the exemplar model

@ Compute S: the Longest Common Substring up to a reversal

© Map all the genes of S accordingly

© Remove genes that cannot be matched any longer according
to the model

© Iterate the process until saturation
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LCS: Longest Common Substring [Marron et al., 2004]

G1 (1 2 3(4 56 7

G2 6 7 (=6 5 4(1 2 3

4

IILCS heuristic under the exemplar model

@ Compute S: the Longest Common Substring up to a reversal

© Map all the genes of S accordingly

© Remove genes that cannot be matched any longer according
to the model

© Iterate the process until saturation
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LCS: Longest Common Substring [Marron et al., 2004]

G1 (1 2 3(4 56 7

G2 @ 7(-6 5 -4(1 2 3

4

IILCS heuristic under the exemplar model

@ Compute S: the Longest Common Substring up to a reversal

© Map all the genes of S accordingly

© Remove genes that cannot be matched any longer according
to the model

© Iterate the process until saturation
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LCS: Longest Common Substring [Marron et al., 2004]

G1 (1 2 3(4 56 7

G2 7065 -4(1 2 3

4

IILCS heuristic under the exemplar model

@ Compute S: the Longest Common Substring up to a reversal

© Map all the genes of S accordingly

© Remove genes that cannot be matched any longer according
to the model

© Iterate the process until saturation
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LCS: Longest Common Substring [Marron et al., 2004]

4

IILCS heuristic under the exemplar model

@ Compute S: the Longest Common Substring up to a reversal

© Map all the genes of S accordingly

© Remove genes that cannot be matched any longer according
to the model

© Iterate the process until saturation
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LCS: Longest Common Substring [Marron et al., 2004]

4

IILCS heuristic under the exemplar model

@ Compute S: the Longest Common Substring up to a reversal

© Map all the genes of S accordingly

© Remove genes that cannot be matched any longer according
to the model

© Iterate the process until saturation
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Hybrid: IILCS then exact algorithm

@ Partial matching by iteration of IILCS;

@ Stopping criterion: size of a LCS less than a parameter k;

@ Then, total matching using our exact algorithm.
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Results of heuristics

o Heuristic IILCS_M HYB_M(2) | HYB_M(3)
g g Average 99.05% 99.83% 99.94%
s 8| Worstcase 97.43% 99.38% 99.47%
2 8| Bestcase 100% 100% 100%
| Exactresult 16,67% 45,45% 75,76%
. —| Heuristic IILCS E | HYB_E(2) | HYB_E(3)
g_ 9 Average 99.36% 99.97% 99.99%
< 8| Worst case 97.89% 99.73% 99.73%
3 8| _Bestcase 100% 100% 100%
| Exactresult 20% 83,08% 95,38%
% = Heuristic IILCS_IA HYB_IA(2) | HYB_IA(3)
5 2 Average 90.56% 99.43% 99.82%
g 8| Worstcase 82.09% 98.20% 98.78%
8 8| Bestcase 98.52% 100% 100%
= | Exactresult 0% 28,57% 55,56%
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Results of heuristics
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Results of heuristics
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A partially ordered genome

One chromosome of Sorghum:
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A partially ordered genome

A part of partially ordered Sorgum Genome:

UHCE4
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E> psumenn\ results

A partially ordered genome

Two studies of a same part of Sorghum genome:

[Paterson, 2003]
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A partial order

P: +14
-73-8++49 /

+1 +15

;l N / \/ 2N

+3 > +4 5 +6 +12 - +18 +13
N A
\ >< +11 +16/‘

45 » +10 +17

A partially ordered genome represented by a DAG.
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A partial order

P: +14
75 -8 149 \
+1 +15
;l N / \/ 2N
+3 > +4 > +6 +12 - +18 +13
N A
\ >< +11 +16/‘
45 » +10 +17

The gene +4 precedes the gene +12, both genes are comparables.
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A partial order

P: +14
7-8+ 49 \
+1 +15
;l N / \/ N
+3 > +4 > 16 +12 - +18 +13
N~ A
\ >< +11 116
+5 » +10 +17

The genes +1 and +2 are incomparables.
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A partial order

P: +14
7 -8 49 / \
+1 +15
;l N / \/ N
+3 > +4 > +6 +12 - +18 +13
N A
\ >< +11 \-’F16/‘
+5 > +10 +17

The width of P is the size of the maximal set of incomparable
genes: 4.
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A linear extension

P: +14
7-8>+9 / \
41 +15
;l N / \/ N
+3 > +4 516 +12 - +18 +13
N A
\ >< +11 +16
+5 > +10 +17
T:

+0 +1 +2 +3 +4 +5 +6 -7 -8 +9 +10 +11 +12 +18 +17 +16 +15 +14 +13
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@ Studied measures: number of common intervals, number of
adjacencies.

@ NP-hard problems [Blin et al.2007, Fu and Jiang 2006].
@ We want, in the future, to evaluate some heuristics.

@ We express our problems as pseudo-boolean programs.

= Exact algorithms.
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Three studied problems:

The number of common intervals

@ MCIL-1PO: Confront one partially ordered genome P; and a
reference totally ordered genome /d and maximize the number
of common intervals.

4

The number of adjacencies

@ MAL-1PO: Confront one partially ordered genome P; and a
reference totally ordered genome /d and maximize the number
of adjacencies.

@ MAL-2PO: Confront two partially ordered genomes P; and
P> and maximize the number of adjacencies.
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We have 1 common variable 's type:

a;,- denotes the gene g at the position i (i € {1,n}) in the
linear extension T, (x € {1,2}).

3 constraints:

C.avV0o<g<n, } a
0<i<n

=1

5

CbVO<i<n, ) a;=1
0<g<n

C.c VO0<g<n 0<g<n g1<xg, 0<j<i<n, a; ;+a,;<1

o =




Introduction
Notations

Partial order Exact algorithms
Experimental results

We have 4 specific variable's types:

bg i+ denotes the gene g at a position between Ty[i] and
Tali + t];

Cg,i,+ denotes the common interval compose of the genes
{g,g+1,...,g+ t} at positions {i,i+1,...,i+t}
in Tq;

dg ; denotes an adjacency between g and g + 1 with g at
the position T1[i];

€g.,i.j.z» denotes an adjacency between g1 and g with g7 at
positions T1[i] and Ta[j].
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Illustration of the variables ay ;

1 _ 1 _ 1 _
i1 =1 @i =0 a,;,=0
1 _ 1 _ 1 _
322 =0 =1 a5,,,=0
1 _ 1 _ 1 _ 1 _ 1 _
313 =1 o4z =0 3y 3=0 a5 =1 Aipiya = 1
Ti: rg+3-g+2-g+1—-g+4->g+5b >
Positions: i i+1 i+2 i+3 i+4
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lllustration of the variables b, j+ and ¢ ; ¢

Cgt1,i2 =1
A
r ~
bgi3i2=1 bgoj2=1 bgp1i2=1
pa { J
Id : rg+1l—g+2—g+3—g+4—g+5h >
Positions: i i+1 i+ 2 i+3 i+4
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Experimentation

Simulated dataset [Blin et al. 2006]:

The size n € {30, 40,50, 60, 70, 80,90} ;

The order rate p € {0.7,0.9};

The gene distribution q € {0.4,0.6,0.8};

19 unsigned genomes for each triplet (n, p, q).

For this work, the solver used is MiniSat-+ [Een et Sorensson,
2006].
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Results for the three programs

g € {0.4,0.6,0.8)
Quadri Intel(R) Xeon(TM) CPU 3.00 GHz with 16GB of memory.

MCIL-1PO =- CI-1P0

@ 494 results out of 570 (87%), n € {30,...,90}, for p = 0.9
, n €{30,...,50}, for p=0.7

@ 2 hours in average (6% case > 1 hour).

MAL-1PO = Adjacency-1P0
@ 778 results out of 798 (97%), n € {30,...,90}, p € {0.7,0.9}

@ in average 2 hours (9% case > 1 hour).

<

MAL-2PO = Adjacency-2P0

@ 1852 results out of 2052 (90%), n € {30,40,50}, p = 0.9
@ 1 hour in average (8% case > 1 hour).




Partial order

Influence on time, Adjacency-1P0

Time in minutes
200 400 600

0.7 0.9
Order rate p

a—e

Gene distribution rule q

size =90

Time in minutes
200 400 600

0123

—

Logarithm of time in minutes
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Partial order
Experlmental results

Influence on the measure, Adjacency-10P

g o m size=30
= W size=40
5" B size=50
= W size =60
2, | size=70
| size = 80

Order rate p Wiisizs = 00

Adjacencies
o 5 10 15 20

0.4 06 0.8
Gene distribution rule gq

W’Idt h

20

Adjacencies

6 5 10
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Comparison between two measures

90% of results give the maximum number of adjacencies. \
Adjacency-1P0
16% of results give the maximum number of common intervals.
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Genomes with duplicated genes

o A pseudo-boolean program to compute two distances (the
number of adjacencies and number of breakpoints) between
two genomes with duplication under three models (exemplar,
maximum and intermediate matching).

@ Rules of reduction to speed-up the programs.

@ Two heuristics for each model: simple, fast and efficient on
the dataset we studied.
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Conclusion

Partially ordered genomes

@ Dealing with partially ordered genomes.

e Exact algorithms for 3 problems (MICL-1P0, MAL-1P0Q and
MAL-2P0).

@ Rules of reduction to speed-up the programs.

@ Influence of parameters.
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Future works

General

o Test other datasets,
@ Improve the running time of the programs,
o Study other (dis)similarity measures: MAD, SAD.

Genomes with duplicated genes

@ Double objective: minimize the number of breakpoints and
maximize the number of adjacencies at the same time.

@ See in details the differences and similitudes between each
model and measure.

@ Direct analysis project: No homology assignement.

o Supermarket project: Comparison of two ways.
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Future works

Partially ordered genomes

@ Define and evaluate heuristics,

o Generalize the programs (CI-2P0, genomes with
duplications).

o Compare a set of contigs and a reference genome.




Conclusion
Future works

Conclusion

Collaborators

Université Paris-Est (LIGM) Université de Nantes (LINA)
Guillaume Fertin

'
1|
Irena Rusu | I n E.

Sébastien Angibaud

Stéphane Vialette




Conclusion
Future works

Conclusion




Conclusion
Future works

Conclusion

Rules to speed-up the resolution

Genomes with duplications

@ Pre-processing: suppression of genes present in only one
genome, specific suppressions under the exemplar model.
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Rules to speed-up the resolution

Genomes with duplications

@ Pre-processing: suppression of genes present in only one
genome, specific suppressions under the exemplar model.
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Rules to speed-up the resolution

Genomes with duplications

@ Pre-processing: suppression of genes present in only one
genome, specific suppressions under the exemplar model.
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Rules to speed-up the resolution

Genomes with duplications

@ Pre-processing: suppression of genes present in only one
genome, specific suppressions under the exemplar model.

@ Rule of reduction: matching between no-duplicate genes.

012-741 2 35 3 9
G,

Io IIQQ .I
G2 e o CIE ) o o

0-22 7 4 1 2 3 5-13 09
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Rules to speed-up the resolution

Genomes with duplications

@ Pre-processing: suppression of genes present in only one
genome, specific suppressions under the exemplar model.

@ Rule of reduction: matching between no-duplicate genes.

@ Pre-matching: between two no-duplicated genes.
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Rules to speed-up the resolution

Genomes with duplications

@ Pre-processing: suppression of genes present in only one
genome, specific suppressions under the exemplar model.

@ Rule of reduction: matching between no-duplicate genes.

@ Pre-matching: between two no-duplicated genes.
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Heuristic IILCS_IA

Gl (1 2 3(4 56 1 2

G2 1 2(6 5 491 2 3

Each family of genes have at least one gene matched
= The heuristic IILCS_IA stop.
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Heuristic IILCS_IA

Gl 1 2 3@ 5 6 @P
G2 @P 65 20 2 3

We can again increase the number of adjacencies until the size of
LCS if superior than 1.
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Parameters of partial order (siin et a1., 20073

1
/
0
N
2

(0—(1,2)—=3—((7—8—9),(4,5)—(6,10)—11)—12

@ The gene distribution g: define the disorder;

@ The order rate p: probability to have " —".
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The heuristics can be bad

ENTREES
Gy +d +x Ay A A, +ty +f
Gy +d —x By B, B, =y +f
LCS de taille 4

Vi1<i<m gl:rl +a; +b +¢ +di +e

s =x; +a; +b; +x; +¢ +d; +e+a; +b +¢ +d;

OPT
+d  +o Fx1 ta1 +b1 ter +dy ter +wz taz +by tox +da tez Fam +am +bm +em tdm tem, +y  +F
+d —=z +@1 +a1 +b1 +e1 +di +er +x2 +az +by +ca +da tez +&m +am +bm +em +dm +em —y  +f
H
JTAJT A+‘MA—“, +by 4ec1 +dy +uA+rzA+a2 +bz +c2 +d2 +€zA +J'H,A+am +bm +em "lvva+(1HA +yA+f
+d —z +z1 +e1 4ay; +by +e1 +di +xo +ez +az +by +co +da +@m +em +am +bm +em +dm —y  +f

Nous obtenons 3m + 3 points de cassures et 3m + 2 adjacences via H contre
4 et 6m avec un programme exacte.
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Measures MAD and SAD

Gy +0 +1 +2 +3 +4 45 +6 +7 +8 +9

G 40 +7 +3 -5 —4 +6 +1 +2 -8 49
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Measures MAD and SAD

6 1 5 2 1 2 4 7 1

P, i, I — G — G — G — p—— G—— G——

Gi 40 +1 +2 +3 +4 +5 +6 +7 +8 49

G +0 +7 +3 -5 -4 46 +1 +2 -8 +9
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State of the art

Previous results [Chen et al., 2006]

Under the exemplar model, there do not exist an approximation
allows to minimize the number of breakpoints between two
genomes even if every gene is present at most three times in each

genome.
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Result for the exemplar model

Under the exemplar model, define if there exist a matching without
breakpoint is a NP-complet problem, even if every gene is present
at most twice on one genome.

Demonstration.
Reduction from the VERTEX COVER problem.[]
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Result for the exemplar model

Under the exemplar model, define if there exist a matching without
breakpoint is a NP-complet problem, even if every gene is present
at most twice on one genome.

Under the exemplar model, minimize the number of breakpoints is
not approximable even if every gene is present at most twice on
one genome.
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Results under the intermediate and maximum models

Under exemplar and intermediate models, the problems to define if
there exist a matching without breakpoint are equivalent problems.
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Results under the intermediate and maximum models

Under exemplar and intermediate models, the problems to define if
there exist a matching without breakpoint are equivalent problems.

Minimize the number of breakpoints, under the intermediate
model, is a non approximable problem even if every gene is present
at more twice on one genome.

= No equivalence under the maximum model.
= Currently: equivalent result for 2 genomes where every gene is
present at more twice on each genome [Sikora, 2009].



