Algorithms in Genome Research

Pedro Feijão

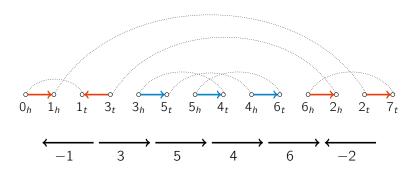
Winter 2013/14

pfeijao@cebitec.uni-bielefeld.de

Lecture 2

Quick Recap

BP Graph, oriented and unoriented components:



Quick Recap

- Sorting is equivalent of increasing # of cycles in BP graph
 - In oriented (good) components at least 1 oriented edge this is always possible (safe reversals).
 - In unoriented (bad) components, we will need extra operations.
- If there are only oriented components in the BP graph:

$$d = N - C$$

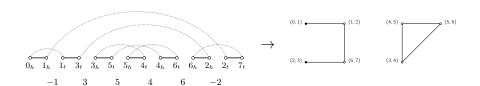
If there are also unoriented components:

$$d = N - C + k$$

where k is the minimum cost of these *extra* operations.

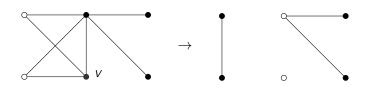
Finding safe reversals using the Overlap Graph $O(\pi)$

- Each vertex in $O(\pi)$ corresponds to a gray edge in $BP(\pi)$.
 - \blacksquare Oriented edges \rightarrow Black vertices (odd degree).
 - Unoriented edges → White vertices (even degree).
- If two edges in $BP(\pi)$ overlap, there is an edge in $O(\pi)$ between the corresponding vertices.

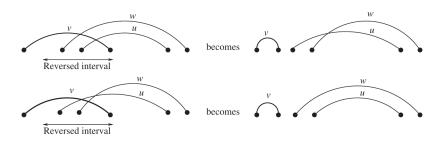


Effect of Reversal in the Overlap Graph

- What happens in $O(\pi)$ after applying an oriented reversal in a vertex v?
- The subgraph induced by v and its neighbours is **complemented**.



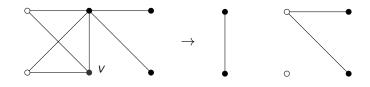
Why?



A. Bergeron/Discrete Applied Mathematics 146 (2005) 134-145

Effect of Reversal in the Overlap Graph

2 All neighbours of *v* have their orientation inverted.



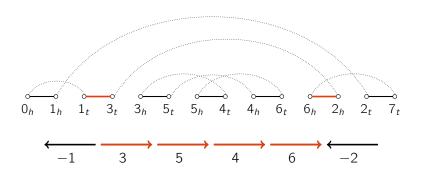
Why?

 $\blacksquare \quad \text{That is why the } \mathbf{score} \text{ of } v \text{ is}$

$$s(v) = T + U - O - 1$$

Sorting Unoriented Components

- Let's analyse the effect that reversals have on cycles of $BP(\pi)$.
- Reversals change # of cycles by -1, 0, or +1.
- What happens exactly when we apply a reversal defined by two black edges?

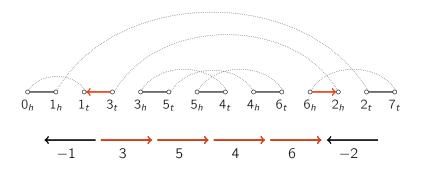


Reversals and effect on cycles

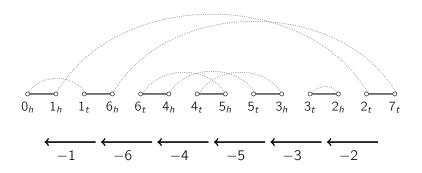
- **1** Edges are on the **same cycle**:
 - **Type I**: Divergent edges: breaks the cycle. $\Delta C = +1$.
 - **Type II**: Convergent edges: $\Delta C = 0$, may change cycle orientation.
- Edges on different cycles:
 - **Type III**: Merges the two cycles. $\Delta C = -1$.

So far, we only used **Type I** operations, to sort oriented components.

Type I - Same Cycle, divergent

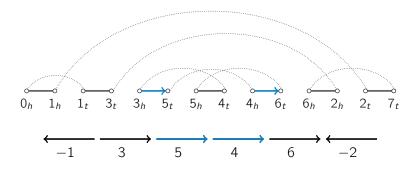


Type I - Same Cycle, divergent

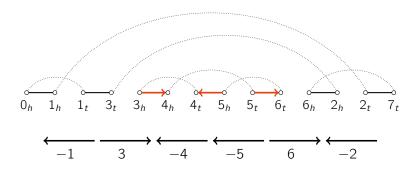


This reversal increases the number of cycles by one, $\Delta C = +1$.

Type II - Same Cycle, convergent

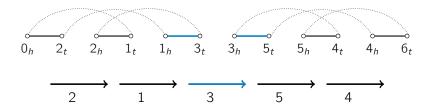


Type II - Same Cycle, convergent

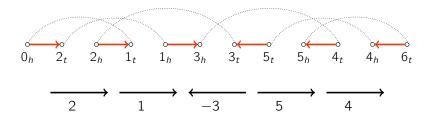


Does not change number of cycles ($\Delta C = 0$), but the cycle is **oriented**.

Type III - Different Cycles



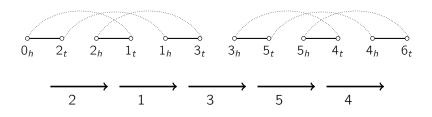
Type III - Different Cycles



Merges the two cycles, decreasing the number of cycles by one $(\Delta C = -1)$, but the new cycle is **oriented**.

Extra Operations

How many extra operations do we need to sort unoriented components?



java InversionVisualisation L2/2unoriented.txt

Extra Operations

Applying one reversal in each cycle, orients both cycles, with 2 extra operations:

$$d = N - C + 2$$

 Applying one reversal merging both cycles, creates one new oriented cycle. Only one operation, but also one less cycle:

$$d = N - (C - 1) + 1 = N - C + 2$$

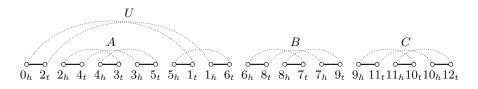
■ In both cases, 2 extra operations. Does this mean that

$$d = N - C + K$$

where K is the number of unoriented components? **Almost...**

Definitions

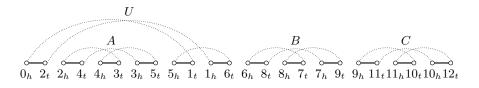
■ A Component *U* separates two other components *A* and *B* if any edge from a vertex from *A* to *B* would cross an edge of U.



 $lue{U}$ separates A and B. (Also A and C).

Definitions

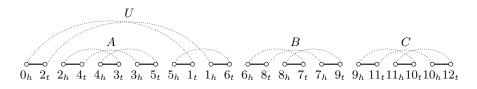
■ A **hurdle** is an unoriented component that does **not** separate other two unoriented components.



A,B and C are hurdles.

Definitions

■ A **super-hurdle** is a hurdle that, when removed, causes the creation of a new hurdle.



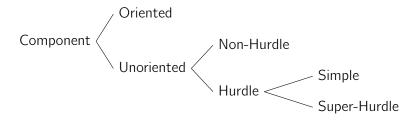
lacksquare A is a super-hurdle. B and C are called *simple* hurdles.

■ Why are these definitions important? Because except for one very rare special case, we have

$$d = N - C + H$$

where H is the number of hurdles.

BP Graph – Component Types



Reversal Types

- Type I: Oriented Reversal: $\Delta C = +1$.
 - Edges on same cycle, divergent.
- **Type II**: **Hurdle Cutting**: $\Delta C = 0$, $\Delta H = -1$.
 - Edges on same cycle (hurdle), convergent.
- **Type III**: **Hurdle Merging**: $\Delta C = -1$, $\Delta H = -2$.
 - Edges on different cycles (hurdles).

Separating component

- Why a separating component is not a Hurdle?
- Because it can be oriented by a **Hurdle Merging** of two hurdles that is separates.

java InversionVisualisation L2/sep-hur-example.txt

Super-hurdles: Problems might occur

- Cutting a super-hurdle is bad.
- Merging hurdles that are separated from a super-hurdle can cause the separating component to become a hurdle.

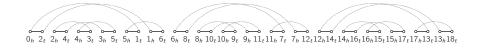
java InversionVisualisation L2/sep-hur-example.txt

Super-hurdles: Problems might occur

- How to avoid those problems?
- When there is an odd # of hurdles, cut a simple hurdle.
- When there is an even # of hurdles, merge opposite hurdles.
- Can we always do that? No... meet the fortress!

Fortresses

A fortress is a permutation that has an odd number of hurdles, and all are super-hurdles.



In this kind of permutation, there is no way to avoid an **extra operation**, a hurdle cut that creates a new hurdle.

java InversionVisualisation L2/fortress.txt

Reversal Distance - Complete equation

Theorem (Reversal Distance, HP 95)

The reversal distance of a permutation π is given by

$$d(\pi) = N - C + H + F$$

where:

- N is the number of genes
- *C* is the number of cycles in $BP(\pi)$
- *H* the number of hurdles in $BP(\pi)$
- $F = \begin{cases} 1, & \pi \text{ is a fortress} \\ 0, & \text{otherwise} \end{cases}$

Reversal Distance - Complete Algorithm

```
1: procedure ReversalSort(\pi)
       while \pi \neq identity do
 2.
           if \exists oriented component in BP(\pi) then
 3.
               → Apply a max score oriented reversal – Type I
 4:
           else if even # of hurdles then
 5:
               → Apply a Hurdle Merging on opposite hurdles – Type III
 6:
           else if ∃ simple hurdle then
 7.
               \rightarrow Apply a Hurdle Cutting on a simple hurdle – Type II
 8.
           else
9:
               → Merge any two super hurdles (Fortress)
10:
           end if
11.
       end while
12.
13: end procedure
```