Algorithms in Genome Research

Pedro Feijao

Winter 2013/14
pfeijao@cebitec.uni-bielefeld.de

Lecture 4 - Multiple Genome Rearrangement and Breakpoint Models

Genome Rearrangement Scenarios

■ Finding genome rearrangement scenarios between two genomes is usually easy.

Genome Rearrangement Scenarios

■ What if we have more genomes? Can we find an evolutionary scenario?
■ Ideally, we want a rearrangement phylogeny, explaining ancestral configurations and rearrangement scenarios.

- For instance, something like:

Evolution of Herpes Viruses

Multiple Genome Rearrangement

- The complexity of many combinatorial problems increases when the number of objects increase from 2 to 3.
- Genome Rearrangement is no exception: when comparing 3 (or more) genomes, most rearrangement models are NP-hard.

Multiple Genome Rearrangement

- We are looking for the most parsimonious phylogenetic tree. More formally:

Multiple Genome Rearrangement Problem - MGR

Given n genomes, find a tree T with the n genomes as leaf nodes and assign ancestral genomes to internal nodes of T such that the tree is optimal, i.e., the sum of rearrangement distances over all edges of the tree is minimal.

- This problem is also called the Big Parsimony Problem.

■ In the Small Parsimony Problem, a tree T is given, and only the ancestral assignment is needed.
■ The simplest form of the MGR is the median problem, when three input genomes are considered.

Genome Median Problem

Given three genomes A, B and C, and a genome distance measure d, find a genome M where the median score

$$
s(M)=d(A, M)+d(B, M)+d(C, M)
$$

is minimized.

Genome Median Problem

Unfortunately, the median problem is NP-hard for most rearrangement distances, except for breakpoint distances in some cases.

■ Unichromosomal BP: NP-hard
■ Linear Genomes: Pe'er and Shamir, 1998

- Circular Genomes: Bryant, 1998

■ Reversal: NP-hard (Caprara, 1997)
■ DCJ: NP-hard (Caprara, 1997; Tannier et al. 2009)

- Multichromosomal BP: $O\left(n^{3}\right)$ (Tannier et al. 2009); $O(n \sqrt{n})$ (Kováč, 2013)
- Single-Cut-or-Join: $O(n)$ (Feijão and Meidanis,2009)

Multichromosomal BP Distance

■ Proposed by Tannier et al., in 2009.

- Similarly to the DCJ model, genomes are defined as sets of adjacencies and telomeres, given a gene set \mathcal{A}.
- For instance, given $\mathcal{A}=\{1,2,3,4,5,6,7\}$, we can define the genome $A=\left\{1_{t}, 1_{h} 3_{t}, 3_{h} 4_{h}, 4_{t}, 2_{t}, 2_{h} 5_{t}, 5_{h}, 6_{t}, 6_{h} 7_{t}, 7_{h}\right\}$

Multichromosomal BP Distance

Multichromosomal BP Distance - Tannier et al., 2009
Given genomes A and B, the multichromosomal BP distance is defined as

$$
d_{\mathrm{BP}}(A, B)=N-A-\frac{T}{2}
$$

where N is the number of genes, A is the number of common adjacencies and T the number of common telomeres in A and B.

Alternatively, using the Adjacency Graph:

$$
d_{\mathrm{BP}}(A, B)=N-C_{2}-\frac{P_{1}}{2}
$$

where N is the number of genes, C_{2} is the number of cycles of lenght 2 and T the number of paths of lenght 1 in $A G(A, B)$.

Median Problem - BP Distance

- Given a gene set \mathcal{A}, consider a graph G whose vertex has two vertices, x and t_{x}, for each extremity x of the genes in \mathcal{A}.
■ There is an edge between x and t_{x}, for all extremities x, and also and edge between all pairs of x vertices and all pairs of t_{x} vertices.

For instance, for $\mathcal{A}=\{1,2,3\}$ we have this graph:
Clique

Clique
Property: Perfect Matching in $G \Longleftrightarrow$ Genome in \mathcal{A}.

Example

For gene set $\mathcal{A}=\{1,2,3\}$, and genome $A=\left\{1_{t}, 1_{h} 2_{t}, 2_{h} 3_{t}, 3_{h}\right\}$ we have the following matching:

■ "Horizontal edges" \rightarrow Adjacencies in the genome.
■ "Vertical edges" \rightarrow Telomeres in the genome.

Median Problem - BP Distance

Now consider the same graph G, in an weighted form: Given genomes A, B and C, assign weights to the edges of G in this form:

- Adjacency weights: for each adjacency edge (x, y), the weight is \# of genomes that have adjacency $x y(w=0,1,2$ or 3$)$.
- Telomere weights: for each telomere edge $\left(x, t_{x}\right)$, weight is \# of genomes that have telomere x divided by $2(w=0,1 / 2,1$ or $3 / 2)$.
- Any other edge has weight 0 .

Matching Weight and Median Score

Claim

Consider three genomes A, B and C, and the weighted graph G. For any genome M, the corresponding weighted matching in G has total weight

$$
w=3 N-\left(d_{\mathrm{BP}}(A, M)+d_{\mathrm{BP}}(B, M)+d_{\mathrm{BP}}(C, M)\right)=3 N-s(M)
$$

where $s(M)$ is the median score of M.

Proof?

Therefore, solving the maximum weight perfect matching problem in G (can be done in $O\left(n^{3}\right)$), we find a median with minimum score, solving the median problem.

Single-Cut-or-Join - SCJ

- Introduced by Feijao and Meidanis in 2009.

■ It is very similar to the Multichromosomal BP distance, but slightly simpler.

- The Median problem is solved in $O(n)$. The small parsimony problem can also be solved in polynomial time.

SCJ - Definitions

- A cut is an operation that breaks an adjacency in two telomeres.
- A join is the reverse operation:two telomeres \rightarrow one adjacency.
- Any single cut or single join is a SCJ.

Genomes as Sets of Adjacencies

- When a gene set is given, a genome can be uniquely represented as a set of adjacencies, omiting telomeres.
- For instance, given $\mathcal{A}=\{1,2,3,4,5,6,7\}$, we can define the genome $A=\left\{1_{h} 3_{t}, 3_{h} 4_{h}, 2_{h} 5_{t}, 6_{h} 7_{t}\right\}$

- Then, SCJ operations can be seen as set operations:
- A cut of an adjacency $x y$: $A-\{x y\}$.
- A join of an adjacency $x y: A \cup\{x y\}$.

Genomes as Sets of Adjacencies - Example

Gene set: $\mathcal{A}=\{1,2,3,4\}$

$$
A=\left\{1_{h} 2_{t}, 2_{h} 3_{t}, 3_{h} 4_{t}\right\}
$$

SCJ Distance and Sorting

- How many SCJs do we need to tranform one genome into another?
- If I have two sets A and B, and the only allowed operation is to remove or include elements from the sets, how can I transform A into B in the minimum number of operations?
- One way: First, remove all elements of A that are not present in B.
- Then, include in A all elements of B that are not already in A.
- In set theory: remove $(A-B)$ and include $(B-A)$.
- SCJ: Apply cuts of $(A-B)$ and joins of $(B-A)$.

$$
d_{\mathrm{SCJ}}=|A-B|+|B-A|
$$

SCJ Sorting

$$
\begin{aligned}
& B=\left\{a_{h} b_{t}, b_{h} c_{t}, c_{h} d_{t}\right\} \xrightarrow[a_{t}]{\xrightarrow{a}}{ }_{a_{h}} b_{t} \xrightarrow[b_{h}]{b} c_{t} \xrightarrow[c_{h}]{c} \underbrace{d}_{d_{t}}{ }_{d_{h}}
\end{aligned}
$$

- Red adjacencies must be cut
- Blue adjacencies must be joined

SCJ Sorting

$$
\begin{aligned}
& A=\left\{a_{h} c_{h}, c_{t} b_{h}, b_{t} d_{t}\right\} \\
& A_{1}=A-\left\{a_{h} c_{h}\right\}=\left\{c_{t} b_{h}, b_{t} d_{t}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& A_{2}=A_{1}-\left\{b_{t} d_{t}\right\}=\left\{c_{t} b_{h}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& A_{3}=A_{2} \cup\left\{a_{h} b_{t}\right\}=\left\{a_{h} b_{t}, c_{t} b_{h}\right\} \\
& A_{4}=A_{3} \cup\left\{c_{h} d_{t}\right\}=\left\{a_{h} b_{t}, b_{h} c_{t}, c_{h} d_{t}\right\}
\end{aligned}
$$

SCJ Distance with the Adjacency Graph

There is also a simple equation for the SCJ distance using the Adjacency Graph:

$$
d_{\mathrm{SCJ}}(A, B)=2 N-2 C_{2}-P
$$

where N is the number of genes, C_{2} and P are the number of cycles of lenght 2 and paths of $A G(A, B)$, respectively.

Proof of SCJ distance by $A G(A, B)$

We know from the definition of SCJ distance and basic set theory that

$$
d_{\mathrm{SCJ}}(A, B)=|A-B|+|B-A|=|A|+|B|-2|A \cap B| .
$$

- $|A \cap B|=$ common adjacencies $=C_{2}$.
- For any A, we know that $|A|=N-t_{A} / 2$, where t_{A} is the number of telomeres of A.
■ Each path has exactly two telomeres $\Rightarrow P=\left(t_{A}+t_{B}\right) / 2$.
Then,

$$
\begin{aligned}
d_{\mathrm{SCJ}}(A, B) & =|A|+|B|-2|A \cap B| \\
& =2 N-\left(t_{A}+t_{B}\right) / 2-2 C_{2} \\
& =2 N-2 C_{2}-P .
\end{aligned}
$$

SCJ with Adjacency Graph - Example

$A=\left\{1_{h} 2_{h}, 2_{t} 3_{h}, 3_{t} 4_{t}, 4_{h} 6_{h}, 6_{t} 5_{t}\right\}, B=\left\{1_{t} 2_{t}, 2_{h} 3_{h}, 3_{t} 4_{t}, 4_{h} 6_{t}\right\}$
$A G(A, B)$
$1_{t} \quad 1_{h} 2_{h} \quad 2_{t} 3_{h} \quad 33_{t} 4_{t} \quad 4_{h} 6_{h} \quad 6_{t} 5_{t} \quad 5_{h}$

$\begin{array}{llllllll}1_{h} & 1_{t} 2_{t} & 2_{h} 3_{h} & 34_{t} & 4_{h} 6_{t} & 6 h 5_{t} & 5_{h}\end{array}$

■ $\quad d_{\mathrm{SCJ}}(A, B)=|A-B|+|B-A|=4+4=8$.

- $\quad d_{\mathrm{SCJ}}(A, B)=2 N-2 C_{2}-P=12-2-2=8$.

Relationship between SCJ, BP and DCJ distances

The "expected" relationship is SCJ $=2 B P$ and $S C J=4 D C J$. The theoretical bounds are:

- Relationship between SCJ and Multichromosomal BP:

$$
d_{B P}(A, B) \leq d_{S C J}(A, B) \leq 2 d_{B P}(A, B)
$$

- Relationship between SCJ and DCJ:

$$
d_{D C J}(A, B) \leq d_{S C J}(A, B) \leq 4 d_{D C J}(A, B)
$$

- All the bounds are tight.

Relationship between SCJ, BP and DCJ distances

Simulated data:

SCJ Median Problem

■ Start with an "empty" genome M and think about the "effect" of adding an adjacency to M.

- If the adjacency is not present in any genome, $\Delta s(M)=+3$.
- If the adjacency is present in 1 genome, $\Delta s(M)=+1$.
- If the adjacency is present in 2 genomes, $\Delta s(M)=-1$.
- If the adjacency is present in 3 genomes, $\Delta s(M)=-3$.
- Adjacencies with $\Delta s(M)<0$ are good.

SCJ Median Problem

Basically, for each adjacency the genomes A, B and C "vote" in favour or against it, depending on whether the adjacency is present or not. The solution is given by

SCJ Median Solution

Given genomes A, B and C, the genome M defined as

$$
M=\{d: d \text { is present in at least two of the input genomes }\}
$$

is a median of A, B and C.

Weighted Multiple Genome Median Problem

Formulation

Given n genomes A_{1}, \ldots, A_{n} and nonnegative weights w_{1}, \ldots, w_{n}, find M that minimizes $\sum_{i=1}^{n} w_{i} \cdot d\left(A_{i}, M\right)$

Weighted Multiple Genome Median Problem

SCJ Solution

- The genome $M=\{d: f(d)<0\}$, where

$$
f(d)=\sum_{d \notin A_{i}} w_{i}-\sum_{d \in A_{i}} w_{i}
$$

is a solution to the Weighted Multiple Genome Median Problem.

- If $f(d) \neq 0$ for all adjacencies d, the solution is unique.

The Small Parsimony Problem

Phylogeny for 12 Campanulaceae genomes and Tobacco as an outgroup.

■ Small Parsimony Problem: Assign ancestral genomes the internal nodes of the tree in a way that minimizes the total number of rearrangements in the tree.

The Small Parsimony Problem

- This problem is NP-hard for any distance where the median is NP-Hard (almost all)
- Also for multichromosomal BP, which median is polynomial, this is NP-Hard (Kováč, 2013).
- The only known polynomial result is with the SCJ distance.

Heuristics for the small parsimony problem

- Sankoff and Blanchette (BPAnalysis, 1997) proposed an iterative procedure: solving median problems in the internal nodes until convergence.
- Also tries to solve the Big Parsimony, by solving the small in all possible trees.
- More recent methods: GRAPPA (Moret et al., 2001); MGR (Bourque and Pevzner, 2002).

Solving the SCJ Small Parsimony

- Fitch's Algorithm (1971) for discrete character sets.

■ If each genome is a set of independent discrete characters, Fitch's Algorithm finds a tree that minimizes the number of character changes in the tree.

SCJ Small Parsimony with Fitch's Algorithm

- Since an adjacency can be seen as a binary character (presence/absence), running Fitch's Algorithm for each adjacency reconstructs ancestral genomes that are optimal under the SCJ distance
- The only possible problem is that adjacencies are not independent, which could cause conflits, but Feijao and Meidanis (2009) showed how conflicts can be avoided.

Review

- Multiple genome rearrangement problems are usually NP-hard.
- Median Problem: Polynomial for Multichromosomal BP and SCJ, NP-hard (or open) for all the rest.
- Small Parsimony: Polynomial only for SCJ.

Some current challenges in Genome Rearrangements:
■ Models that allow different gene content (InDel, Duplications).

- Methods for finding the common blocks between genomes (syntenic regions).

