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Comparison between two genomes

Fugu/Human chromosome 12 [Wang et al., 2006]
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Computation of a measure of (dis)similarity

Compute the (dis)similarities between two genomes.

Synteny

Group of genes conserved between two species.

7/ 58



Introduction
Duplications
Partial order

Conclusion

Context
Notation

Comparative genomic

Comparative genomic allows to better understand the evolution of
species.

Scenario or computation of measure of (dis)similarity,

Study of measures of (dis)similarity: number of common
intervals, number of adjacencies, number of breakpoints,
MAD, SAD...
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Compare two genomes

Two genomes without duplication

G1 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

G2 +0 +7 +3 −5 −4 +6 +1 +2 −8 +9

The genome is a signed permutation.
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The number of common intervals [Uno et Yagiura, 2000].

A measure of similarity

G1 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

G2 +0 +7 +3 −5 −4 +6 +1 +2 −8 +9

⇒ 23 common intervalles between G1 and G2.
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Number of adjacencies [Angibaud et al., 2008]

A second measure of similarity

G1 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

G2 +0 +7 +3 −5 −4 +6 +1 +2 −8 +9

⇒ 2 adjacencies between G1 and G2.
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Number of breakpoints [Sankoff et Blanchette, 1997]

A measure of dissimilarity

G1 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

G2 +0 +7 +3 −5 −4 +6 +1 +2 −8 +9

Dual measure to the measure of number of adjacencies:

bkp(G1,G2) + adj(G1,G2) = n − 1

⇒ 7 breakpoints between G1 and G2.
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Outline

1 Comparison between two genomes with
duplications

2 Comparison between two partially ordered
genomes
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Comparison between two
genomes with duplications
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Duplications of genes on 5 chromosomes of the
Arabidopsis thaliana ’s genome

[Arabidopsis genome initiative, 2000]
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Comparison of two genomes

Two genomes with duplications

We need to find a matching between both genomes.

G1

G2

1 2 1 3 4 5 2

1 2 23 5 4

0

0 6

6
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Matching model: exemplar

The matching is required to sature exactly one gene of each gene
family [Sankoff, 1999].
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Matching model: maximum

The matching is required to saturate as many genes as possible of
each gene family [Tang and Moret, 2003].
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New matching model: intermediate

The matching is required to saturate at least one gene of each
gene family.
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Strategy

Framework study

Studied models: exemplar, intermediate, maximum.

Studied measures: numbers of adjacencies and breakpoints.

The corresponding problems are NP–hard [Bryant, 2000].

⇒ Result of no-approximation.

⇒ Heuristics.

⇒ Exact algorithms.
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Comparison between two
genomes with duplication

Exact algorithms
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A pseudo-boolean program

Objective max(z); z = x1 + 2x2 − x3

x1 − 2x2 + 3x3 ≥ 1
Constraints x1 + x2 + x3 = 1

2x1 + x2 + x3 < 3

Boolean variables xi ∈ {0, 1} ∀i = 1, 2, 3.
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Variables

We have 4 types of variables:

a(i , k) denotes a matching between two genes;

bx(i) denotes the saturation of a gene in genome Gx ;

cx(i , j) denotes two genes consecutives in genome Gx ;

d(i , j , k , l) denotes an adjacency.

G1

G2

ji

lk
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Illustration of the variables a(i , k) and bx(i)

Génome G1

G1[1] G1[2] G1[i− 1] G1[i] G1[i + 1] G1[n1]

Génome G2

G2[1] G2[2] G2[k1] G2[kj ] G2[kp] G2[n2]

|G1[i]| = |G2[k1]|

|G1[i]| = |G2[kj ]|

|G1[i]| = |G2[kp]|

a(i, k1) = 0

a(i, kj) = 1

a(i, kp) = 0

b1(i) = 1

b2(k1) ∈ {0, 1} b2(kj) = 1 b2(kp) ∈ {0, 1}

b2(k1) + . . . + b2(kj) + . . . + b2(kp) = min{occ1(|G1[i]|), occ2(|G1[i]|)}

1
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Illustration of the variables a(i , k) and bx(i)

We have one family of duplicated genes:
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Illustration of the variables cx(i , j) and d(i , j , k , l)

We have an adjacency between G0[i ] and G1[j ]:

d(i, j, k, `) = 1

Genome G1

G1[1] G1[i− 1] G1[i] G1[i + 1] G1[j − 1] G1[j] G1[j + 1] G1[n1]

Genome G2

G2[1] G2[k − 1] G2[k] G2[k + 1] G2[`− 1] G2[`] G2[` + 1] G2[n2]

G1[i] = G2[k]

a(i, k) = 1

G1[j] = G2[`]

a(j, `) = 1

b1(p) = 0
∀ i < p < j

b1(i) = 1 b1(j) = 1

b2(q) = 0
∀ k < q < `

b2(k) = 1 b2(`) = 1

c1(i, j) = 1

c2(k, `) = 1

1
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Comparison between two
genomes with duplication

Experimentation
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Experimentation

Dataset [Lerat et al. 2003]

12 γ-proteobacteria complete genomes,

size: between 565 and 5474 genes,

7.6% of duplicated genes.

Solver

For this work, the solver used is CPLEX

http://www.ilog.com/products/cplex.
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Results for the comparison between 12 genomes

Quadri Intel(R) Xeon(TM) CPU 3.00 GHz with 16GB of memory.

Results under the maximum model

All results: 66 pairs of genomes (100%);

Total time: ' 3 minutes.

Results under the exemplar model

65 out of 66 (98%) - memory problem

Total time: ' 3 minutes.

Results under the intermediate model

Maximization of number of adjacencies:

63 out of 66 (95%); Total time: ' 16 minutes.

Minimization of number of breakpoints:

59 out of 66 (89%); Total time: ' 1 hour.
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Comparison between the exemplar and maximum models

The choice of model depends on the measure considered

Between two genomes, under the maximum model there are
8% of adjacencies more than under the exemplar model.

Between two genomes, under the exemplar model there are
11% of breakpoints less than under the maximum model.
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Gain from intermediate model to exemplar and maximum
models

During the miminization of the number of breakpoints

Ratio

2% 0%
Maximum -5% 10%

Intermediate
Adjacencies Breakpoints

Exemplar

During the maximization of the number of adjacencies

Ratio

10% -3%
Maximum 1% 8%

Intermediate
Adjacencies Breakpoints

Exemplar
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Comparison between two
genomes with duplications

Heuristics
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LCS: Longest Common Substring [Marron et al., 2004]

6 1 2 3G2

G1 1 2 3 4 1 6 7 2

72 −6

−5

5 −4

IILCS heuristic under the exemplar model

1 Compute S : the Longest Common Substring up to a reversal

2 Map all the genes of S accordingly

3 Remove genes that cannot be matched any longer according
to the model

4 Iterate the process until saturation
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LCS: Longest Common Substring [Marron et al., 2004]

6 1 2 3G2
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IILCS heuristic under the exemplar model

1 Compute S : the Longest Common Substring up to a reversal

2 Map all the genes of S accordingly

3 Remove genes that cannot be matched any longer according
to the model

4 Iterate the process until saturation
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LCS: Longest Common Substring [Marron et al., 2004]

G1

G2

764321

32157 −6

−5

−4

IILCS heuristic under the exemplar model

1 Compute S : the Longest Common Substring up to a reversal

2 Map all the genes of S accordingly

3 Remove genes that cannot be matched any longer according
to the model

4 Iterate the process until saturation
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Hybrid: IILCS then exact algorithm

Partial matching by iteration of IILCS;

Stopping criterion: size of a LCS less than a parameter k;

Then, total matching using our exact algorithm.
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Results of heuristics

M
ax

im
um

(6
6 

ca
se

s)

IILCS_M HYB_M(2) HYB_M(3)
99.05% 99.83% 99.94%
97.43% 99.38% 99.47%
100% 100% 100%

16,67% 45,45% 75,76%

(6
5 

ca
se

s)

IILCS_E HYB_E(2) HYB_E(3)
99.36% 99.97% 99.99%
97.89% 99.73% 99.73%
100% 100% 100%
20% 83,08% 95,38%

(6
3 

ca
se

s)

IILCS_IA HYB_IA(2) HYB_IA(3)
90.56% 99.43% 99.82%
82.09% 98.20% 98.78%
98.52% 100% 100%

0% 28,57% 55,56%

Heuristic
Average

Worst case
Best case

Exact result

E
xe

m
pl

ar

Heuristic
Average

Worst case
Best case

Exact result

In
te

rm
ed

ia
te Heuristic

Average
Worst case
Best case

Exact result
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A partially ordered genome

One chromosome of Sorghum:

[Klein, 2004]
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A part of partially ordered Sorgum Genome:

[Klein, 2004]
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A partially ordered genome

Two studies of a same part of Sorghum genome:

[Paterson, 2003] [Klein, 2004]
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A partial order

P :

+0

+1

+2

+3 +4

+5

+6

-7 -8 +9

+10

+11

+12 +13

+14

+15

+16

+17

+18

A partially ordered genome represented by a DAG.
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A partial order

P :

+0

+1

+2

+3 +4

+5

+6

-7 -8 +9

+10

+11

+12 +13

+14

+15

+16

+17

+18

The gene +4 precedes the gene +12, both genes are comparables.
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P :

+0

+1

+2

+3 +4

+5

+6

-7 -8 +9

+10

+11

+12 +13

+14

+15

+16

+17

+18

The genes +1 and +2 are incomparables.
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A partial order

P :

+0

+1

+2

+3 +4

+5

+6

-7 -8 +9

+10

+11

+12 +13

+14

+15

+16

+17

+18

The width of P is the size of the maximal set of incomparable
genes: 4.
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A linear extension

P :

+0

+1

+2

+3 +4

+5

+6

-7 -8 +9

+10

+11

+12 +13

+14

+15

+16

+17

+18

T :

+0 +1 +2 +3 +4 +5 +6 -7 -8 +9 +10 +11 +12 +18 +17 +16 +15 +14 +13
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Studied measures: number of common intervals, number of
adjacencies.

NP-hard problems [Blin et al. 2007, Fu and Jiang 2006].

We want, in the future, to evaluate some heuristics.

We express our problems as pseudo-boolean programs.

⇒ Exact algorithms.
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Three studied problems:

The number of common intervals

MCIL-1PO: Confront one partially ordered genome P1 and a
reference totally ordered genome Id and maximize the number
of common intervals.

The number of adjacencies

MAL-1PO: Confront one partially ordered genome P1 and a
reference totally ordered genome Id and maximize the number
of adjacencies.

MAL-2PO: Confront two partially ordered genomes P1 and
P2 and maximize the number of adjacencies.
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We have 1 common variable ’s type:

axg ,i denotes the gene g at the position i (i ∈ {1, n}) in the
linear extension Tx (x ∈ {1, 2}).

3 constraints:

C.a ∀ 0 ≤ g ≤ n,
∑

0≤i≤n

axg,i = 1

C.b ∀ 0 ≤ i ≤ n,
∑

0≤g≤n

axg,i = 1

C.c ∀ 0 ≤ g1 ≤ n, 0 ≤ g2 ≤ n, g1 ≺x g2, 0 < j ≤ i ≤ n, axg1,i + axg2,j ≤ 1
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We have 4 specific variable’s types:

bg ,i ,t denotes the gene g at a position between T1[i ] and
T1[i + t];

cg ,i ,t denotes the common interval compose of the genes
{g , g + 1, . . . , g + t} at positions {i , i + 1, . . . , i + t}
in T1;

dg ,i denotes an adjacency between g and g + 1 with g at
the position T1[i ];

eg1,i ,j ,g2 denotes an adjacency between g1 and g2 with g1 at
positions T1[i ] and T2[j ].
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Illustration of the variables axg ,i

P1:

g + 1

g + 2

g + 3 g + 4 g + 5

T1: g + 1g + 2g + 3 g + 4 g + 5

Positions: i i + 1 i + 2 i + 3 i + 4

a1
g+3,i = 1 a1

g+2,i+3 = 0

a1
g+2,i+2 = 0

a1
g+2,i+1 = 1

a1
g+1,i+3 = 0

a1
g+1,i+2 = 1

a1
g+1,i+1 = 0

a1
g+4,i+3 = 1

a1
g+4,i+2 = 0

a1
g+4,i+1 = 0

a1
g+5,i+4 = 1
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Illustration of the variables bg ,i ,t and cg ,i ,t

P1:

g + 1

g + 2

g + 3 g + 4 g + 5

T1:

C
I
-
1
P
O

g + 1g + 2g + 3 g + 4 g + 5

Id : g + 1 g + 2 g + 3 g + 4 g + 5

Positions: i i + 1 i + 2 i + 3 i + 4

cg+1,i ,2 = 1

bg+3,i ,2 = 1 bg+2,i ,2 = 1 bg+1,i ,2 = 1
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Experimentation

Simulated dataset [Blin et al. 2006]:

The size n ∈ {30, 40, 50, 60, 70, 80, 90};
The order rate p ∈ {0.7, 0.9};
The gene distribution q ∈ {0.4, 0.6, 0.8};
19 unsigned genomes for each triplet (n, p, q).

Solver

For this work, the solver used is MiniSat+ [Een et Sorensson,
2006].
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Results for the three programs

q ∈ {0.4, 0.6, 0.8}
Quadri Intel(R) Xeon(TM) CPU 3.00 GHz with 16GB of memory.

MCIL-1PO ⇒ CI-1PO

494 results out of 570 (87%), n ∈ {30, . . . , 90}, for p = 0.9
, n ∈ {30, . . . , 50}, for p = 0.7

2 hours in average (6% case > 1 hour).

MAL-1PO ⇒ Adjacency-1PO

778 results out of 798 (97%), n ∈ {30, . . . , 90}, p ∈ {0.7, 0.9}
in average 2 hours (9% case > 1 hour).

MAL-2PO ⇒ Adjacency-2PO

1 852 results out of 2 052 (90%), n ∈ {30, 40, 50}, p = 0.9

1 hour in average (8% case > 1 hour).
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Influence on time, Adjacency-1PO
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Influence on the measure, Adjacency-1OP
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Comparison between two measures

CI-1PO

90% of results give the maximum number of adjacencies.

Adjacency-1PO

16% of results give the maximum number of common intervals.
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Conclusion

Genomes with duplicated genes

A pseudo-boolean program to compute two distances (the
number of adjacencies and number of breakpoints) between
two genomes with duplication under three models (exemplar,
maximum and intermediate matching).

Rules of reduction to speed-up the programs.

Two heuristics for each model: simple, fast and efficient on
the dataset we studied.
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Partially ordered genomes

Dealing with partially ordered genomes.

Exact algorithms for 3 problems (MICL-1PO, MAL-1PO and
MAL-2PO).

Rules of reduction to speed-up the programs.

Influence of parameters.
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Future works

General

Test other datasets,

Improve the running time of the programs,

Study other (dis)similarity measures: MAD, SAD.

Genomes with duplicated genes

Double objective: minimize the number of breakpoints and
maximize the number of adjacencies at the same time.

See in details the differences and similitudes between each
model and measure.

Direct analysis project: No homology assignement.

Supermarket project: Comparison of two ways.
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Future works

Partially ordered genomes

Define and evaluate heuristics,

Generalize the programs (CI-2PO, genomes with
duplications).

Compare a set of contigs and a reference genome.

57/ 58



Introduction
Duplications
Partial order

Conclusion

Conclusion
Future works

Collaborators
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Rules to speed-up the resolution

Genomes with duplications

Pre-processing: suppression of genes present in only one
genome, specific suppressions under the exemplar model.

Rule of reduction: matching between no-duplicate genes.

Pre-matching: between two no-duplicated genes.

0 1 2 -7 4 1 2 3 5 -6 3 3 9

0 -2 2 7 4 8 1 2 3 5 -1 3 9

G1

G2
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Pre-processing: suppression of genes present in only one
genome, specific suppressions under the exemplar model.
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Heuristic IILCS IA

1 2 3G2

G1 1 2 3 4 6 1 2

2

−5

15−6 −4

Each family of genes have at least one gene matched
⇒ The heuristic IILCS IA stop.
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Heuristic IILCS IA

1 2 3G2

G1 1 2 3 4 6 1 2

2

−5

15−6 −4

We can again increase the number of adjacencies until the size of
LCS if superior than 1.
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Parameters of partial order [Blin et al., 2007]

0

1

2

3 4

5

6

7 8 9

10

11

12

(0→(1,2)→3→((7→8→9),(4,5)→(6,10)→11)→12

The gene distribution q: define the disorder;

The order rate p: probability to have ”→”.
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The heuristics can be bad

ENTRÉES

G1 +d +x A1 A2 Am +y +f
G2 +d −x B1 B2 Bm −y +f

∀ 1 ≤ i ≤ m Ai = xi + ai + bi + ci + di + ei
Bi = xi + ai + bi + xi + ci + di + ei + ai + bi + ci + di

LCS de taille 4

OPT
+d +x +x1 +a1 +b1 +c1 +d1 +e1 +x2 +a2 +b2 +c2 +d2 +e2 +xm +am +bm +cm +dm +em +y +f

+d −x +x1 +a1 +b1 +c1 +d1 +e1 +x2 +a2 +b2 +c2 +d2 +e2 +xm +am +bm +cm +dm +em −y +f

H
+d +x +x1 +a1 +b1 +c1 +d1 +e1 +x2 +a2 +b2 +c2 +d2 +e2 +xm +am +bm +cm +dm +em +y +f

+d −x +x1 +e1 +a1 +b1 +c1 +d1 +x2 +e2 +a2 +b2 +c2 +d2 +xm +em +am +bm +cm +dm −y +f

Nous obtenons 3m + 3 points de cassures et 3m + 2 adjacences via H contre
4 et 6m avec un programme exacte.

1
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Measures MAD and SAD

G1 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

G2 +0 +7 +3 −5 −4 +6 +1 +2 −8 +9
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Measures MAD and SAD

G1 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

G2 +0 +7 +3 −5 −4 +6 +1 +2 −8 +9

6 1 5 2 1 2 4 7 1

7 4 2 1 2 5 1 6 1
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State of the art

Previous results [Chen et al., 2006]

Under the exemplar model, there do not exist an approximation
allows to minimize the number of breakpoints between two
genomes even if every gene is present at most three times in each
genome.
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Result for the exemplar model

Lemma

Under the exemplar model, define if there exist a matching without
breakpoint is a NP-complet problem, even if every gene is present
at most twice on one genome.

Demonstration.

Reduction from the vertex cover problem.�
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Result for the exemplar model

Lemma

Under the exemplar model, define if there exist a matching without
breakpoint is a NP-complet problem, even if every gene is present
at most twice on one genome.

Theorem

Under the exemplar model, minimize the number of breakpoints is
not approximable even if every gene is present at most twice on
one genome.
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Results under the intermediate and maximum models

Lemma

Under exemplar and intermediate models, the problems to define if
there exist a matching without breakpoint are equivalent problems.
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Results under the intermediate and maximum models

Lemma

Under exemplar and intermediate models, the problems to define if
there exist a matching without breakpoint are equivalent problems.

Theorem

Minimize the number of breakpoints, under the intermediate
model, is a non approximable problem even if every gene is present
at more twice on one genome.

⇒ No equivalence under the maximum model.
⇒ Currently: equivalent result for 2 genomes where every gene is
present at more twice on each genome [Sikora, 2009].
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