Gene Family Assignment-Free Comparative Genomics

Daniel Doerr Annelyse Thévenin Jens Stoye

Genome Informatics, Faculty of Technology and Institute for Bioinformatics, Center for Biotechnology (CeBiTec), Bielefeld University, Germany

Context Previous models Gene family assignment

Similarities and differences between species

Daniel Doerr, Annelyse Thévenin, Jens Stoye

Context Previous models Gene family assignment

Mutations

Daniel Doerr, Annelyse Thévenin, Jens Stoye

Context Previous models Gene family assignment

Representation of a genome

Context Previous models Gene family assignment

Comparative genomics

The order of genes is relevant.

Context Previous models Gene family assignment

Applications in Comparative Genomics

Comparative Genomics

Daniel Doerr, Annelyse Thévenin, Jens Stoye

Context Previous models Gene family assignment

Comparing gene order of two genomes

Comparative Genomics

Daniel Doerr, Annelyse Thévenin, Jens Stoye

Context Previous models Gene family assignment

Model 1: No duplication

Two genomes without duplication

$$G_1$$
 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
 G_2 +0 +7 +3 -5 -4 +6 +1 +2 -8 +9

A chromosome is a signed permutation.

Context Previous models Gene family assignment

Number of adjacencies

A measure of similarity

$$G_1$$
 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
 G_2 +0 +7 +3 -5 -4 +6 +1 +2 -8 +9

 \Rightarrow 2 adjacencies between G_1 and G_2 .

Context Previous models Gene family assignment

Model 2: With duplications

Two genomes with duplications

A chromosome is a sequence over a set of signed characters.

We need to find a matching between both genomes.

Daniel Doerr, Annelyse Thévenin, Jens Stoye

Gene Family Assignment-Free Comparative Genomics

Context Previous models Gene family assignment

Model 2: With duplications

Two genomes with duplications

A chromosome is a sequence over a set of signed characters.

We need to find a matching between both genomes.

Context Previous models Gene family assignment

Number of adjacencies varies in matchings

Example: Number of adjacencies in two different matchings:

Context Previous models Gene family assignment

Number of adjacencies varies in matchings

Example: Number of adjacencies in two different matchings:

Context Previous models Gene family assignment

Previous results

Maximizing the number of adjacencies between two genomes with duplication is a **NP-hard** problem.

There exists **exact** (and realistic) **programs and heuristics** to resolve it. [Angibaud *et al.*, 2008].

Context Previous models Gene family assignment

Gene family consequences

Pros

- + Subsequent analyses produce **reasonable results**.
- + Facilitates **simple** but **powerful** datastructure.
- + Gene family information: Many databases and tools available.

Cons

- Wrong gene family assignments produce incorrect results in subsequent analyses.
- Datastructure: Strong and weak homology assumptions are indifferent.
- Gene family concept **not** applicable for all biological phenomena.

Context Previous models Gene family assignment

Gene family consequences

Pros

- + Subsequent analyses produce **reasonable results**.
- + Facilitates **simple** but **powerful** datastructure.
- + Gene family information: Many databases and tools available.

Cons

- Wrong gene family assignments produce incorrect results in subsequent analyses.
- Datastructure: Strong and weak homology assumptions are indifferent.
- Gene family concept **not** applicable for all biological phenomena.

Gene family assignment free Our strategy Algorithms

New model Gene family assignment-free

Gene family assignment free Our strategy Algorithms

Gene family assignment free

Normalized similarity measure: σ : $G_1 \times G_2 \rightarrow [0, 1]$

Datastructure is an ordered weighted bipartite graph.

Gene family assignment free Our strategy Algorithms

Conserved Adjacencies

Scoring scheme for adjacencies

Adjacencies in a matching \mathcal{M} are scored according to the measure σ of the corresponding edges as follows:

$$s(i,j,k,\ell) = \begin{cases} \sigma(G_1[i], G_2[k]) \cdot \sigma(G_1[j], G_2[\ell]) & \text{if adjacent } * \\ 0 & \text{otherwise} \end{cases}$$

*adjacent: $(G_1[i], G_1[j])$ and $(G_2[k], G_2[\ell])$ are saturated and consecutive (taking sign into account)

Gene family assignment free Our strategy Algorithms

Adjacencies or edges?

Quantifying the quality of a matching $\mathcal{M}:$ Adjacencies vs edges.

Gene family assignment free Our strategy Algorithms

Studied problem

Family-free(FF)-Adjacencies problem

Given two genomes G_1 and G_2 and some $\alpha \in]0, 1]$, find an intermediate matching \mathcal{M} such that at least one edge per connected component is covered and the following formula is maximized:

$$\mathcal{F}_{lpha}(\mathcal{M}) = lpha \cdot \operatorname{adj}(\mathcal{M}) + (1 - lpha) \cdot \operatorname{edg}(\mathcal{M}).$$

Gene family assignment free Our strategy Algorithms

Our strategy

Goal: Family-free comparative genome analysis.

Strategy: Resolve a particular case: For a given pair of genomes G_1 and G_2 , find optimal solution for FF-adjacencies problem (**NP-hard** problem).

Method: Exact algorithm and heuristic.

Gene family assignment free Our strategy Algorithms

Algorithms

Gene family assignment free Our strategy Algorithms

Algorithms

FFAdj-Int Exact algorithm, implemented as pseudo-boolean
program, based on previous work
[Angibaud et al., 2008]

FFAdj-MCS Heuristic, based on LCS - Longest Common Substring [Marron *et al.*, 2004]

Data Evaluation of our algorithms Evaluation of the family-free model

Evaluation of our methods

Data Evaluation of our algorithms Evaluation of the family-free model

Experimentation

Dataset

- 12 γ -proteobacteria complete genomes,
- Size: Between 564 and 5571 genes,
- Already used in [Angibaud et al., 2008],
- 7.6% of duplicated genes.

- The parameter α is in {0.001, 0.3, 0.5, 0.8, 1}.
- Pairwise normalized similarities σ were obtained using the Relative Reciprocal BLAST Score (RRBS)
- The solver used is CPLEX

http://www.ilog.com/products/cplex.

Data Evaluation of our algorithms Evaluation of the family-free model

Evaluation of our algorithms

- For **40 out of 66 pairs of genomes** we could solve the pseudo-boolean program for all values of *α*.
- The heuristic FFAdj-MCS deviates in the objective by less than 3% (between 0.2% for α = 0.001 and 2.9% for α = 1).

Daniel Doerr, Annelyse Thévenin, Jens Stoye

Data Evaluation of our algorithms Evaluation of the family-free model

Comparison with previous results

With or without gene family assign

Although the number of adjacencies is artificially increased in the gene family assignment study (the genes are unsigns), we observed **the same number of adjacencies** relative to the size of the matching (which increase) in the results of FFAdj-Int (for $\alpha = 1$).

Data Evaluation of our algorithms Evaluation of the family-free model

Reconstructed trees

True phylogeny [Lerat, 2003]

Reconstructed tree

(Robinson-Foulds distance: 2)

This branch is known to be particularly hard to reconstruct since the two organisms diverged far from each other.

Data Evaluation of our algorithms Evaluation of the family-free model

Orthology detection

In collaboration with Marcus Lechner, Maribel Hernandez-Rosales, Nicolas Wieseke, Sonja J. Prohaska and Peter Stadler, we improve the **detection of orthology** by combining clustering and synteny.

Other free-family projects

Apply the new model to different problems

In collaboration with Marília Braga, Cédric Chauve, Katharina Jahn and Roland Wittler.

Acknowledgments

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

