Algorithms in Genome Research

Pedro Feijao

Winter 2013/14

pfeijao@cebitec.uni-bielefeld.de

Lecture 3 - The Double Cut and Join Operation

Genome Rearrangements - Some History

Since the beginning of the genome rearrangement field, many models were studied. First, with only one operation.

- Inversions (reversals) Watterson et al. 1982; Sankoff 1992; Bafna & Pevzner 1993; Hannenhalli & Pevzner 1995; Kaplan, Shamir & Tarjan 1999; Bader, Moret & Yan 2001; Bergeron 2001; Bergeron, Heber & S 2002; Bergeron, Mixtacki & S 2004
- Transpositions Meidanis, Walter & Dias, 1997; Elias & Hartman 2006; Bulteau, Fertin, Rusu 2011
- **Block interchanges** Christie 1996
- Translocations Hannenhalli 1996; Bergeron, Mixtacki & S 2005

Genome Rearrangements - Some History

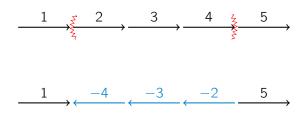
Then, models combining more than one operation:

- Translocations and Reversals("general HP model") Hannenhalli & Pevzner 1995; Tesler 2002; Ozery-Flato & Shamir 2003; Jean & Nikolski 2007; Bergeron, Mixtacki & S 2008; Erdős, Sokoup & S 2011
- Inversions + Transpositions: Walter, Dias & Meidanis 1998; Christie & Irving 2001
- Fusion/Fission + Transpositions: Meidanis & Dias 2001
- **Double Cut and Join (DCJ)** Yancopoulos, Attie & Friedberg 2005; Bergeron, Mixtacki & S 2006.

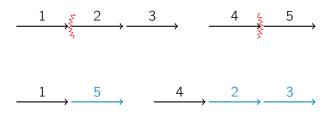
DCJ Operation

■ The **DCJ operation** was proposed by Yancopoulos et al. in 2005.

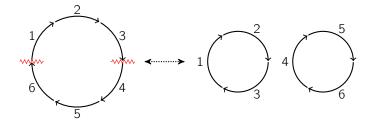
■ It is based on the fact that lots of rearrangement operations can be modeled by applying two cuts followed by two joins in a genome.



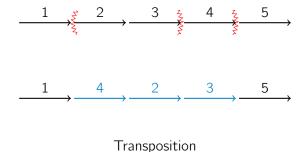
Signed Reversal/Inversion



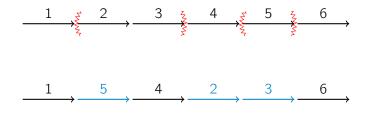
Translocation (multichromosomal operation)



Circular Fussion / Fission



More than two cuts!



Block Interchange

More than two cuts! But...

Operations modelled with 2 DCJs

 Transpositions and Block-Interchanges can be achieved with 2 DCJs: an excision followed by a reincorporation.

Adapted from Braga and Stoye, BSB 2013

DCJ rearrangement problem

As usual, we are interested in the following questions:

- What is the minimum number of DCJ operations we need to transform one genome into another? (distance)
- Finding DCJ operations that actually transform one genome into another in minimal number of steps. (sorting scenario)

Genes, extremities and adjacencies

- A **block** (marker, gene) a is an oriented sequence of DNA that starts with a **tail** a_t and ends with a **head** a_h .
- Head and tail are called the extremities of a block.

$$a_t$$
 a_h

■ In the **graph representation**, each extremity is a vertex and there is a black directed edge from the tail to the head.

Genes, extremities and adjacencies

- An **adjacency** is a pair of extremities, representing the linkage between two consecutive blocks *a* and *b*.
- Depending on their respective orientation, can be of four different types: a_hb_t , a_hb_h , a_tb_t , a_tb_h

$$a_t$$
 a_h b_t b_h

$$a_{t} \quad a_{h} b_{h} \quad b_{t}$$

$$a_h$$
 a_t b_t b_h

$$a_h$$
 a_t b_h b_t

■ In the **graph representation**, adjacencies are represented by grey edges between the extremities.

Genes, extremities and adjacencies

An extremity that is not adjacent to any other block is called a telomere.

$$a_t$$
 a_h b_t b_h

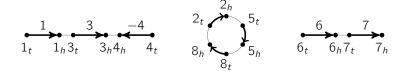
■ In this example, a_t and b_h are telomeres.

Genomes

A **genome** is set of adjacencies and telomeres such that each extremity appears in exactly **one** adjacency or telomere.

$$A = \{1_t, 1_h 3_t, 3_h 4_h, 4_t, 2_h 5_t, 5_h 8_t, 8_h 2_t, 6_t, 6_h 7_t, 7_h\}$$

Graph representation:



■ Linear chromosomes are paths, circular chromosomes are cyles.

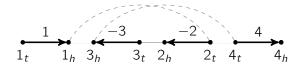
DCJ Operation

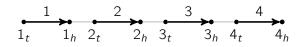
The **double cut and join** (DCJ) operation acts in the adjacencies and telomeres of a genome one of the following three ways:

(a) Adjacencies $\{pq, rs\}$ are replaced by $\begin{cases} \{pr, sq\} \\ \mathbf{or} \\ \{ps, qr\} \end{cases}$

- **(b)** Adjacency $\{pq\}$ and telomere $\{r\}$ are replaced by $\begin{cases} \{pr, q\} \\ \mathbf{or} \\ \{qr, p\} \end{cases}$
- **(c)** Telomeres $\{q, r\}$ are replaced by adjacency $\{qr\}$, or the inverse operation.

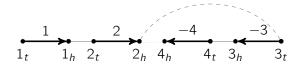
DCJ Operation - Type (a) example

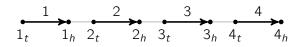




- Cuts: $1_h 3_h$, $2_t 4_t$
- Joins: $1_h 2_t$, $3_h 4_t$
- **DCJ operation**: $\{1_h3_h, 2_t4_t\} \rightarrow \{1_h2_t, 3_h4_t\}$

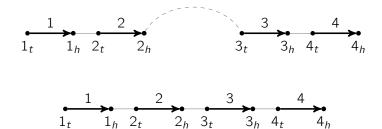
DCJ Operation - Type (b) example





- Cut: $2_h 4_h$ (telomere 3_t does not need a cut)
- Join: $2_h 3_t$ (new telomere 4_h does not need a join)
- **DCJ operation**: $\{2_h4_h, 3_t\} \rightarrow \{2_h3_t, 4_h\}$

DCJ Operation - Type (c) example



- Join: $2_h 3_t$
- **DCJ operation**: $\{2_h, 3_t\} \rightarrow \{2_h 3_t\}$

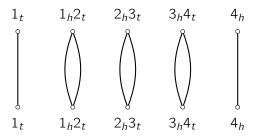
Adjacency Graph

- The adjacency graph was proposed by Bergeron, Mixtacki and Stoye in 2006.
- Similarly to the BP graph, it is very useful for solving rearrangement problems.
- The adjacency graph AG(A, B) is a graph where:
 - **Vertices** are the adjacencies and telomeres of A and B.
 - **Edges** connect corresponding extremities of *A* and *B*.

Adjacency Graph

DCJ distance with the Adjacency Graph

- When A and B are the same, in AG(A, B) there are only:
 - Cycles of length 2 (common adjacencies)
 - Paths of length 1 (common telomeres).



DCJ Distance

Lemma (Bergeron, Mixtacki, Stoye, 2006)

Genomes A and B are the same \iff N = C + I/2, where N is the number of genes, C is the number of cycles and I the number of odd paths in AG(A, B).

Corollary: when A and B are different, N > C + I/2.

Proof?

Effect of a DCJ Operation in AG(A, B)

The application of one DCJ operation can change the graph AG(A, B) in the following ways:

- # of odd paths by -2, 0 or +2. $\Delta I = -2$, 0, +2
- # of cycles by -1, 0 or +1. $\Delta C = -1$, 0, +1
- No DCJ changes odd paths and cycles at the same time.

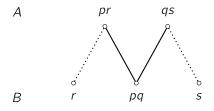
Therefore, we have: $\Delta(C + I/2) = -1, 0, +1$.

When two genomes are the same, we have that N - (C + I/2) = 0, which results in the following lower bound:

$$d_{\mathrm{DCJ}}(A, B) \geq N - (C + I/2)$$

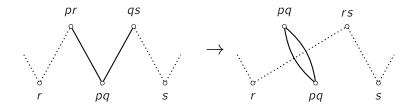
Increasing Cycles and Odd Paths in AG(A, B)

If an adjacency pq in B is not present in A, then in AG(A, B) the vertex pq in B will be connected to two different vertices in A.



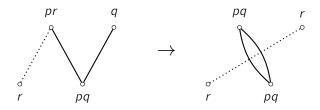
Can we apply a DCJ operation in A that creates the adjacency pq, also increasing the number of cycles or odd paths in AG(A, B)?

DCJ in AG(A, B), Type (a)



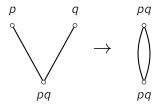
- Type (a) operation: $\{pr, qs\} \rightarrow \{pq, rs\}$
- lacktriangle $\Delta C = +1$, and the other component mantains the type and parity.

DCJ in AG(A, B), Type (b)



- Type (b) operation: $\{pr, q\} \rightarrow \{pq, r\}$
- lacktriangle $\Delta C = +1$, and the original path mantains its parity.

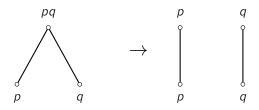
DCJ in AG(A, B), Type (c)



- Type (c) operation: $\{p, q\} \rightarrow \{pq\}$
- lacktriangle $\Delta C = +1$, and the original even path is gone.

Another type (c) operation

■ If all adjacencies of B exist in A, there is still one last possible case:



- Type (c) operation: $\{pq\} \rightarrow \{p, q\}$
- $\Delta I = +2$, and the original even path is gone.

Building a DCJ Algorithm

■ Since in all cases we can always find a DCJ that increases (C + I/2) by 1, this can be used to build a greedy algorithm that performs these kind of operations until A in transformed into B.

Algorithm 1 (Greedy sorting by DCJ)

1: for each adjacency $\{p, q\}$ in genome B do let u be the element of genome A that contains p3: let v be the element of genome A that contains qif $u \neq v$ then 4: replace u and v in A by $\{p,q\}$ and $(u \setminus \{p\}) \cup (v \setminus \{q\})$ 5: end if 6: 7: end for 8: for each telomere $\{p\}$ in genome B do 9: let u be the element of genome A that contains pif u is an adjacency then 10: replace u in A by $\{p\}$ and $\{u \setminus \{p\}\}$ 11: 12: end if 13: end for

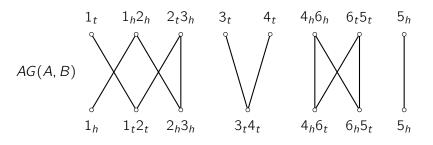
Bergeron, Mixtacki & Stoye, 2006

DCJ Distance

- Is this algorithm optimal?
- Since it can always increase (C + I/2) by one at each step, it is not difficult to show that it always transforms A into B in N (C + I/2) steps, which is the lower bound.
- That means that the algorithm is optimal, and the DCJ distance is given by

$$d_{\mathrm{DCJ}}(A, B) = N - (C + I/2)$$

Example



Examples of sorting DCJ operations from A to B:

- Type (a): $\{1_h 2_h, 2_t 3_h\} \rightarrow \{2_h 3_h, 1_h 2_t\}$
- Type (b): $\{1_t, 2_t 3_h\} \rightarrow \{1_t 2_t, 3_h\}$
- Type (c): $\{3_t, 4_t\} \rightarrow \{3_t 4_t\}$