Algorithms in Genome Research

Winter 2013/2014

Exercises

Number 3, Discussion: 2013 November 22

1. Given the following genomes:

$$
\begin{gathered}
A=\left\{a_{t}, a_{h} f_{h}, f_{t} b_{h}, b_{t} e_{t}, e_{h} d_{h}, d_{t}, c_{h}, c_{t} g_{t}, g_{h}, i_{h} h_{t}, h_{h} i_{t}, l_{t} j_{h}, j_{t} k_{t}, k_{h} l_{h}\right\} \\
B=\left\{c_{h} a_{t}, a_{h} b_{t}, b_{h} c_{t}, d_{t}, d_{h} e_{t}, e_{h} f_{t}, f_{h} g_{t}, g_{h} h_{t}, h_{h} i_{t}, i_{h}, l_{h} j_{t}, j_{h} k_{t}, k_{h} l_{t}\right\}
\end{gathered}
$$

(a) Draw the chromosomes of A and B.
(b) Draw the adjacency graph of A and B.
(c) Compute the DCJ distance between A and B.
(d) Find 3 different DCJ operations applied in A that decrease its distance to B, and redraw the adjacency graph for each operation.
(e) What is type of the operations that you applied in (c)? (Reversal, translocation, fission...)

