Algorithms in Genome Research

Pedro Feijão

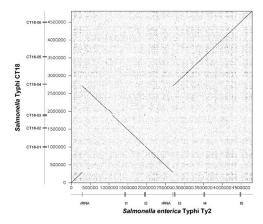
Winter 2013/14

pfeijao@cebitec.uni-bielefeld.de

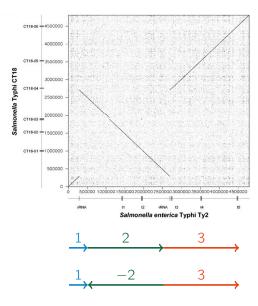
 Wiki Page: http://wiki.techfak.uni-bielefeld.de/gi/Teaching

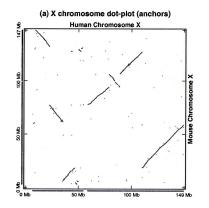
 DiDy Workshop: http://wiki.techfak.uni-bielefeld.de/didy

Genome Rearrangements - Background

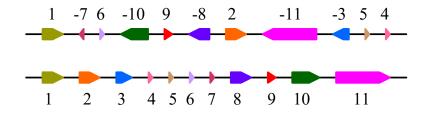


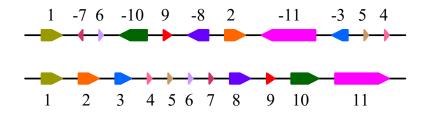
Genome Rearrangements - Background



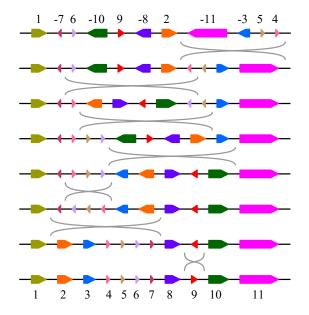


Pevzner, P.A. and Tesler, G. 2003. Genome rearrangements in mammalian evolution: Lessons from human and mouse genomic sequences. *Genome Res.* **13**: 13-26.



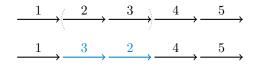


How many rearrangements do we need to *transform* one genome into the other?

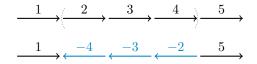


- **Genome rearrangements** are evolutionary events that *shuffle* the genome.
- Important questions:
 - What is the minimum number of rearrangement operations needed to transform one genome into another? (Distance)
 - Can we find a rearrangement scenario with this minimum number of operations? (Sorting)

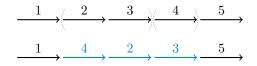
- **Genome rearrangements** are evolutionary events that *shuffle* the genome.
- Important questions:
 - What is the minimum number of rearrangement operations needed to transform one genome into another? (Distance)
 - Can we find a rearrangement scenario with this minimum number of operations? (Sorting)
- Several types of **rearrangement operations** were studied:



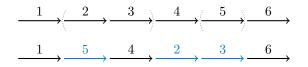
Unsigned Reversal/Inversion



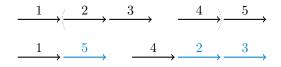
Signed Reversal/Inversion



Transposition



Block Interchange



Translocation (*multichromosomal* operation)

Genome Rearrangement Models

- Several models were proposed, allowing only one operation or combining two or more.
- Usually polinomially solvable, notable exceptions: Unsigned reversal and Transposition (NP-hard)

 Since 1990, beginning with Sankoff in 1992, many papers have been devoted to the subject of inversion distance.

- Since 1990, beginning with Sankoff in 1992, many papers have been devoted to the subject of inversion distance.
- The unsigned inversion distance is NP-hard (Caprara 1997)

- Since 1990, beginning with Sankoff in 1992, many papers have been devoted to the subject of inversion distance.
- The *unsigned inversion* distance is NP-hard (Caprara 1997)
- The signed inversion was solved polynomially by Hannenhalli and Pevzner in 1995. It is usually called HP model.

- Since 1990, beginning with Sankoff in 1992, many papers have been devoted to the subject of inversion distance.
- The *unsigned inversion* distance is NP-hard (Caprara 1997)
- The signed inversion was solved polynomially by Hannenhalli and Pevzner in 1995. It is usually called HP model.
- The HP model was later improved and simplified in a series of articles. Here we will present elements of the original theory, also with contributions from Bergeron (2001) and also Bergeron,Mixtacki and Stoye (2005).

■ A signed permutation is a permutations on the set {0, 1, ..., n} in which every element has a *sign*. In our case the permutations always start with 0 and end with *n*.

■ A **signed permutation** is a permutations on the set {0, 1, ..., *n*} in which every element has a *sign*. In our case the permutations always start with 0 and end with *n*. *For example*:

$$\pi_1 = (0 \quad -2 \quad -1 \quad 4 \quad 3 \quad 5 \quad -8 \quad 6 \quad 7 \quad 9)$$

■ A **signed permutation** is a permutations on the set {0, 1, ..., *n*} in which every element has a *sign*. In our case the permutations always start with 0 and end with *n*. *For example*:

 $\pi_1 = (0 \quad -2 \quad -1 \quad 4 \quad 3 \quad 5 \quad -8 \quad 6 \quad 7 \quad 9)$

A point *p* · *q* is a pair of consecutive elements in the permutation. In the above example, 0 · −2 and −2 · −1 are the first two points of *π*₁.

• A **signed permutation** is a permutations on the set {0, 1, ..., *n*} in which every element has a *sign*. In our case the permutations always start with 0 and end with *n*. *For example*:

 $\pi_1 = (0 \quad -2 \quad -1 \quad 4 \quad 3 \quad 5 \quad -8 \quad 6 \quad 7 \quad 9)$

- A point p ⋅ q is a pair of consecutive elements in the permutation. In the above example, 0 ⋅ −2 and −2 ⋅ −1 are the first two points of π₁.
- When a point is in the form i · (i + 1) or -(i + 1) · -i it is called an (conserved) adjacency. Otherwise, it is a breakpoint.

$$\pi_1 = (0 \quad -2 \quad -1 \quad 4 \quad 3 \quad 5 \quad -8 \quad 6 \quad 7 \quad 9)$$

In this permutation, there are *two* adjacencies, $-2 \cdot -1$ and $6 \cdot 7$, and *seven* breakpoints.

 $\pi_1 = (0 \quad -2 \quad -1 \quad 4 \quad 3 \quad 5 \quad -8 \quad 6 \quad 7 \quad 9)$

- In this permutation, there are *two* adjacencies, $-2 \cdot -1$ and $6 \cdot 7$, and *seven* breakpoints.
- The Breakpoint Distance is the number of breakpoints in a permutation, that is, distance from the identity:

$$Id = (0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9)$$

 $\pi_1 = (0 \quad -2 \quad -1 \quad 4 \quad 3 \quad 5 \quad -8 \quad 6 \quad 7 \quad 9)$

- In this permutation, there are *two* adjacencies, $-2 \cdot -1$ and $6 \cdot 7$, and *seven* breakpoints.
- The Breakpoint Distance is the number of breakpoints in a permutation, that is, distance from the identity:

$$Id = (0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9)$$

It is one the simplest measure of dissimilarity for genome rearrangements. *Notation*: $d_{BP}(\pi_1) = 7$.

 $\pi_1 = (0 \quad -2 \quad -1 \quad 4 \quad 3 \quad 5 \quad -8 \quad 6 \quad 7 \quad 9)$

- In this permutation, there are *two* adjacencies, $-2 \cdot -1$ and $6 \cdot 7$, and *seven* breakpoints.
- The Breakpoint Distance is the number of breakpoints in a permutation, that is, distance from the identity:

$$Id = (0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9)$$

It is one the simplest measure of dissimilarity for genome rearrangements. *Notation*: $d_{BP}(\pi_1) = 7$.

 $\pi_1 = (0 \quad -2 \quad -1 \quad 4 \quad 3 \quad 5 \quad -8 \quad 6 \quad 7 \quad 9)$

- In this permutation, there are *two* adjacencies, $-2 \cdot -1$ and $6 \cdot 7$, and *seven* breakpoints.
- The Breakpoint Distance is the number of breakpoints in a permutation, that is, distance from the identity:

$$Id = (0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9)$$

It is one the simplest measure of dissimilarity for genome rearrangements. *Notation*: $d_{BP}(\pi_1) = 7$.

For instance, the permutation

$$\pi_2 = (0 \quad -4 \quad -3 \quad -2 \quad -1 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9)$$

has 2 breakpoints, which means that π_2 is *closer* to the identity than π_1 .

Inversions

• An **inversion** of a permutation interval reverts the *order* and *sign* of all elements of the interval.

$$\pi_1 = (0 \ -2 \ -1 \ 4 \ 3 \ 5 \ -8 \ 6 \ 7 \ 9)$$

Inversions

• An **inversion** of a permutation interval reverts the *order* and *sign* of all elements of the interval.

$$\pi_1 = \begin{pmatrix} 0 & -2 & -1 & 4 & 3 & 5 & -8 & 6 & 7 & 9 \end{pmatrix}$$

$$\pi'_1 = \begin{pmatrix} 0 & -2 & -5 & -3 & -4 & 1 & -8 & 6 & 7 & 9 \end{pmatrix}$$

Inversions

• An **inversion** of a permutation interval reverts the *order* and *sign* of all elements of the interval.

$$\pi_1 = \begin{pmatrix} 0 & -2 & -1 & 4 & 3 & 5 & -8 & 6 & 7 & 9 \end{pmatrix}$$

$$\pi'_1 = \begin{pmatrix} 0 & -2 & -5 & -3 & -4 & 1 & -8 & 6 & 7 & 9 \end{pmatrix}$$

- The **inversion distance** is the minimum number of inversions needed to transform one permutation into another (usually the other permutation is the identity). Notation: $d_R(\pi_1)$.
- Finding such a scenario of inversions is called sorting by inversions.
 - Distance vs. Sorting

- A inversion changes the number of breakpoints by at most 2.
- This gives a simple *lower bound* for the inversion distance:

$$d_R(\pi_1) \geq \frac{d_{\mathsf{BP}}(\pi_1)}{2}$$

 Using BP for lower bound is an useful *first approach* in many models.

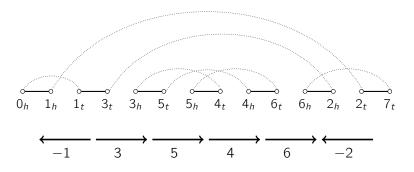
Breakpoint Graph - Genomes as Graphs

Breakpoint Graph - Genomes as Graphs

- The BP graph of a is a very useful structure for studying rearrangement problems. Notation $BP(\pi)$.
- Vertices are the gene extremities (tail and head).
- Black edges between consecutive gene extremities (reality edges).
- Grey edges between consecutive gene extremities of the identity (desire edges).

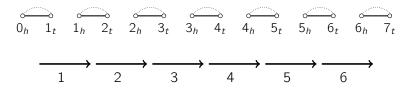
Breakpoint Graph - Genomes as Graphs

- The BP graph of a is a very useful structure for studying rearrangement problems. Notation $BP(\pi)$.
- Vertices are the gene extremities (tail and head).
- Black edges between consecutive gene extremities (reality edges).
- Grey edges between consecutive gene extremities of the identity (desire edges).



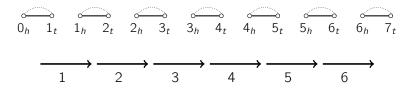
Breakpoint Graph

When the input genome is the identity, the BP graph is composed of *n* trivial cycles.



Breakpoint Graph

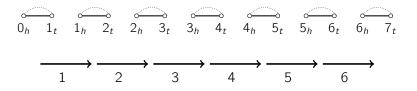
When the input genome is the identity, the BP graph is composed of *n* trivial cycles.



• Sorting is equivalent to **increasing the cycles of the BP graph**.

Breakpoint Graph

When the input genome is the identity, the BP graph is composed of *n* trivial cycles.



- Sorting is equivalent to **increasing the cycles of the BP graph**.
- What happens in the BP graph when an inversion is applied?

 An inversion changes the number of cycles of the BP graph at most by 1.

- An inversion changes the number of cycles of the BP graph at most by 1.
- Again, we have a **lower bound** for the inversion distance:

$$d_R(\pi) \ge N - C$$

where C is the *number of cycles* in the BP graph of π .

- An inversion changes the number of cycles of the BP graph at most by 1.
- Again, we have a **lower bound** for the inversion distance:

1

$$d_R(\pi) \ge N - C$$

where *C* is the *number of cycles* in the BP graph of π .

This bound is very tight, that is, usually it is exactly the inversion distance.

- An inversion changes the number of cycles of the BP graph at most by 1.
- Again, we have a **lower bound** for the inversion distance:

$$d_R(\pi) \ge N - C$$

where C is the *number of cycles* in the BP graph of π .

- This bound is very tight, that is, usually it is exactly the inversion distance.
- When is this bound not *exactly* the distance?

- An inversion changes the number of cycles of the BP graph at most by 1.
- Again, we have a **lower bound** for the inversion distance:

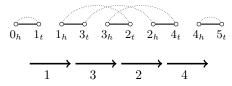
$$d_R(\pi) \ge N - C$$

where C is the *number of cycles* in the BP graph of π .

- This bound is very tight, that is, usually it is exactly the inversion distance.
- When is this bound not *exactly* the distance?
 - When it is not possible to increase the cycles of BP with an inversion.
 - That occurs in the presence of **unoriented components**.

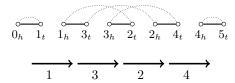
Unoriented components

In the example below, there is no inversion that increases the number of cycles.



Unoriented components

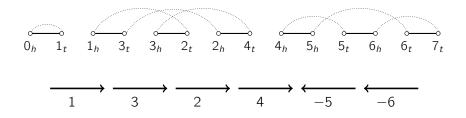
In the example below, there is no inversion that increases the number of cycles.



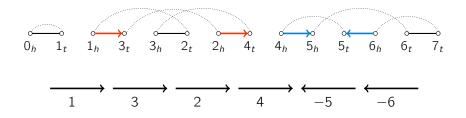
- The lower bound is N C = 5 3 = 2, but the real distance is 3, because one extra reversal is needed to *orient* the unoriented cycle in the BP graph.
- So, let's define oriented/unoriented components.

Two black edges in a same cycle are convergent if, when traversing the cycle both edges induce the same direction. Otherwise, they are divergent.

Two black edges in a same cycle are convergent if, when traversing the cycle both edges induce the same direction. Otherwise, they are divergent.



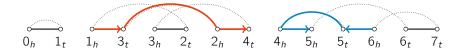
Two black edges in a same cycle are convergent if, when traversing the cycle both edges induce the same direction. Otherwise, they are divergent.



A grey edge is **oriented** if its two incident black edges are *divergent*, otherwise the edge is **unoriented**.

A grey edge is oriented if its two incident black edges are divergent, otherwise the edge is unoriented.

• A grey edge is **oriented** if its two incident black edges are *divergent*, otherwise the edge is **unoriented**.



 Equivalently, A grey edge is oriented if it "contains" an odd number of vertices, and unoriented otherwise (even number of vertices).

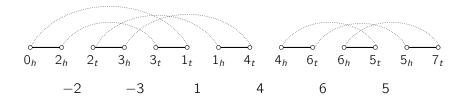
A cycle is oriented if it contains at least one oriented edge.
 Otherwise, it is unoriented.

A cycle is oriented if it contains at least one oriented edge.
 Otherwise, it is unoriented.

Figure : Example of unoriented and oriented cycles.

- Two cycles are **connected** if they have overlapping edges.
- A **component** is a subset of connected cycles.

Two cycles are connected if they have overlapping edges.
A component is a subset of connected cycles.



An oriented (good) component has at least one oriented cycle, otherwise it is a unoriented (bad) component.

Sorting good components

Theorem (Hannenhalli-Pevzer, 95)

If the graph $BP(\pi)$ has only **oriented components**, then

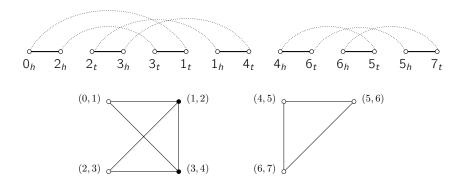
$$d_R(\pi) = N - C$$

where N is the number of elements of π and C is the number of cycles of $BP(\pi)$.

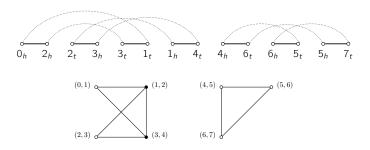
- When there are only oriented components, there is always at least one inversion that increases the number of cycles of $BP(\pi)$ and does not create any unoriented component.
- These are called safe inversions.

Finding safe inversions - Definitions

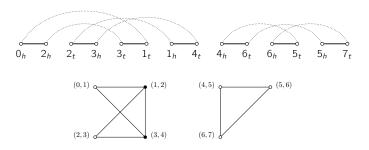
- The **overlap graph** $O(\pi)$ is a graph where:
 - Vertices are the grey edges of $BP(\pi)$. If the edge is oriented, the vertex is black, otherwise is white.
 - When two grey edges overlap, there is an edge between the corresponding vertices.



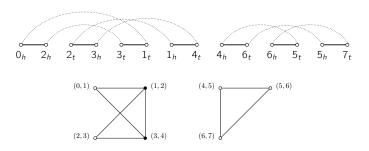
BP Graph	Overlap Graph
Component	Connected component



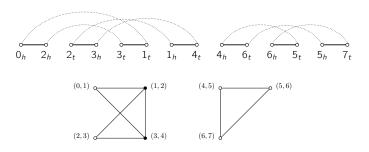
BP Graph	Overlap Graph
Component	Connected component
Oriented edge	Black vertex, <i>odd degree</i>



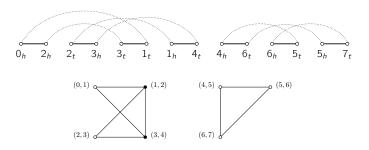
BP Graph	Overlap Graph
Component Oriented edge	Connected component Black vertex, <i>odd degree</i>
Unoriented edge	White vertex, even degree



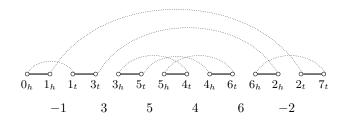
BP Graph	Overlap Graph
Component	Connected component
Oriented edge	Black vertex, <i>odd degree</i>
Unoriented edge	White vertex, even degree
Oriented component	Component with at least 1 black vertex

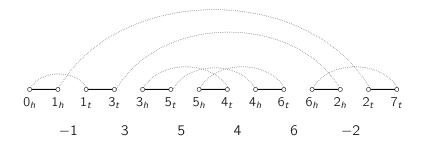


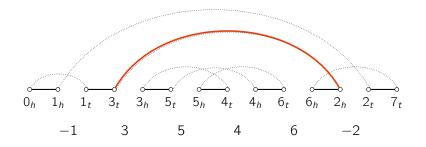
BP Graph	Overlap Graph
Component	Connected component
Oriented edge	Black vertex, odd degree
Unoriented edge	White vertex, even degree
Oriented component	Component with at least 1 black vertex
Unoriented component	Component with only white vertices

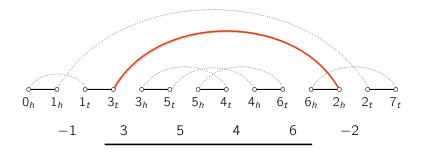


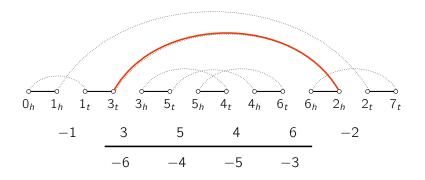
Another Example



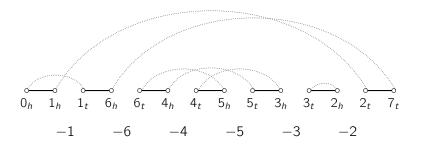


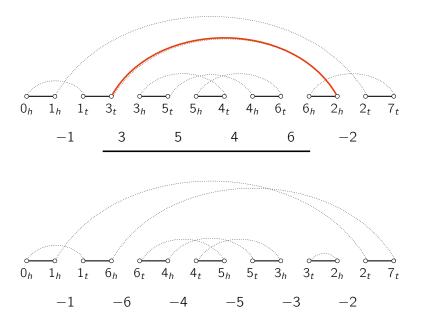






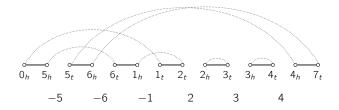
■ After applying the reversal, the adjacency -3 · -2 is created, and the number of cycles increases by 1.



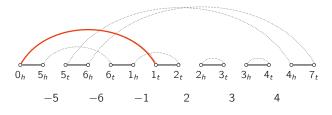


- This kind of inversion *always* fixes a breakpoint, increasing the number of cycles by 1.
- But, it is always *good*?
- Not always, because it can create a *bad component*!

Unsafe inversions - Example

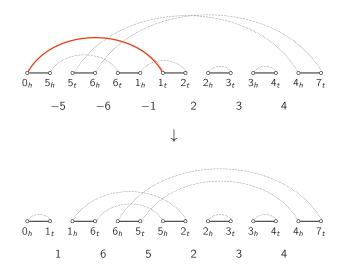


Unsafe inversions - Example



 \downarrow

Unsafe inversions - Example



Increased number of cycles but created a bad component!

How to find safe inversions?

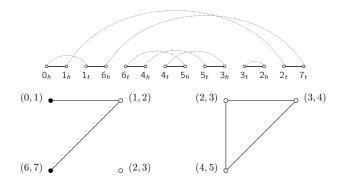
How to know when an inversion is safe?
-> Increases the number of cycles without creating bad components?

Safe inversions - Definitions

■ The **score** of a inversion is the number of *oriented edges* in the BP graph, *after* the application of the reversal.

Safe inversions - Definitions

- The **score** of a inversion is the number of *oriented edges* in the BP graph, *after* the application of the reversal.
- In the last example, the resulting BP and Overlap graphs are:



The score of that reversal is 2.

Safe inversions - Definitions

Definition (Inversion score)

The score of a inversion induced by a vertex v in the overlap graph is given by

$$s(v) = T + U - O - 1$$

where T is the number of oriented vertices in the graph, U and O are the number of unoriented and oriented vertices adjacent to v, respectively.

Inversion Score - example

For v = (2, 3), we have T = 2, U = 1, O = 0. Therefore s(v) = T + U - O - 1 = 2.

After applying the inversion, we have the following graph:

and we see that the score (number of oriented vertices) is indeed 2.

Safe inversions

- Safe inversions are inversions that increase the number of cycles of the BP graph by one and do not create new unoriented components.
- Can we always find safe inversions?

Safe inversions

- Safe inversions are inversions that increase the number of cycles of the BP graph by one and do not create new unoriented components.
- Can we always find safe inversions? Yes:

Theorem (Bergeron, 2001)

Among all possible oriented inversions, an inversion of maximal score is always safe.

Safe inversions

- Safe inversions are inversions that increase the number of cycles of the BP graph by one and do not create new unoriented components.
- Can we always find safe inversions? Yes:

Theorem (Bergeron, 2001)

Among all possible oriented inversions, an inversion of maximal score is always safe.

 Algorithm: Apply maximal score inversions until all components are sorted.

Example

$$\pi = (0 \quad 3 \quad 1 \quad 6 \quad 5 \quad -2 \quad 4 \quad 7)$$

• These slides will be soon available in the Wiki page.

Don't forget the exercises!