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Physical maps of the human genome, including the sequence of most 
of its euchromatic portions1,2, are basic resources in human genetics 
and genomics research: they provide the framework for the analysis of 
sequence data, and they enable genome-scale analysis of SNPs, copy 
number variants (CNVs), epigenetic phenomena and gene expression.

Yet, physical maps of the human genome remain incomplete. 
Almost 30 Mb of euchromatic genome sequence that are apparently 
human—observed in human whole-genome sequence data3,4, con-
taining human ESTs5,6 and homologous to other mammalian genome 
sequences—are either absent from or have no assigned locations in 
current assemblies of the human genome7,8.

These ‘missing pieces’ of the reference human genome are a likely 
source of mistaken inference in today’s analyses of genome sequence 
data9. Sequence reads arising from the missing pieces may be dis-
carded as non-alignable or incorrectly assumed to arise from paralo-
gous sequences in the known, assembled part of the human genome. 
Sequences missing from the reference human genome might also help 
answer questions in human genetics research, such as what is the 
source of the genetic signals that have been ascertained (but not yet 
fine mapped to causal variation or causal genes) by linkage, associa-
tion and CNVs.

Here, we describe an approach for applying admixture mapping to 
localize the human genome’s missing pieces at megabase-pair scales 

using the patterns of sequence variation that have been created by 
the isolation and subsequent remixture of human populations. We 
report the successful mapping of ~5 Mb of unplaced human euchro-
matic sequences, including many protein-coding genes. We find that 
most of these sequences are euchromatic islands within the genome’s 
heterochromatic oceans, including centromeres and the short arms 
of the acrocentric chromosomes, and that they almost always consist 
of segmental duplications (sometimes recent, sometimes millions of 
years old) of sequence present elsewhere in the reference genome.

The construction of large-scale genome models (or assemblies) 
uses physical sequence overlaps between genomic clones10. Clones are 
assembled into larger scaffolds on the basis of overlapping sequences 
at their ends.

By contrast, mapping based on statistical relationships among 
variants can provide information that is complementary to physical  
mapping, as it does not require a continuous path of sequences to be 
cloned and uniquely assembled. Before physical mapping was feasible, 
linkage among alleles was used to construct the first genetic maps 
of the human genome based on RFLPs11,12 and later to build and 
improve genetic maps based on microsatellite markers13,14.

A unique kind of long-range information—finer in resolution than 
linkage in families, yet longer in reach than linkage disequilibrium 
(LD) in populations—is present in many of the world’s admixed 
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populations. Whenever human populations have been reproductively 
isolated for long periods of time (such as Africans and Europeans) 
and then remixed (such as African Americans), the genomes of the 
descendants are mosaics of segments that derive from ancestors 
from the two ancestral populations (Fig. 1a). The divergence of the 
sequences in the ancestral populations gives rise to sequence variation 
that is informative about the ancestry of each segment. Long-range 
‘admixture LD’ has been used to map genetic factors that segregate 
at different frequencies in different populations15,16 and to identify 
genomic sites of recombination in African Americans17,18.

We reasoned that population admixture could also be used to map 
the locations of unmapped human genome sequences. Provided that 
the sequence in a genomic missing piece is variable, that this variation 
was subject to genetic drift and that the extent of this drift is known in 
the two ancestral populations, we could infer the ancestral origin of a 
missing piece—whether it has been inherited from each individual’s  
European or African ancestors—with varying levels of statistical cer-
tainty, in a large panel of admixed individuals. By comparing such 
ancestry profiles for the genome’s missing pieces to similar determina-
tions across the known mapped and assembled sequences that make 
up the majority of these individuals’ genomes, each missing piece 
could in principle be connected to the genomic location at which 
it resides, even if we lack a continuous path of cloned, assembled 
sequence with which to make such a connection (Fig. 1b).

Specifically, we can test ancestry-informative SNPs for correla-
tion between their genotypes and inferred local ancestry across the 
genome, estimated using available genome-wide genotypes19. This 
is different from and potentially much more powerful than detect-
ing LD between genotypes at two SNPs, as the correlation between 
genotypes and local ancestry is expected to be much stronger (than 
that between SNPs) at genetic distances up to a few cM, and the 
distance between unmapped missing pieces and the nearest parts of 
the reference genome may be substantial. Furthermore, we estimated 
statistical mapping power from allele frequencies in the ancestral 
populations and found that it was substantial, even for admixed pop-
ulation samples of even a few hundred individuals (Supplementary 
Figs. 1–3 and Supplementary Note). Thus, admixture mapping 
could in principle connect sequences that are physically farther apart 
than the size of most genomic clones (20–180 kb) and LD blocks 
(15–50 kb).

RESULTS
Sources	of	the	missing	pieces
We used 3 sources of unplaced genome sequence: (i) the current 
reference genome (hg19), which contains 59 unplaced contigs  
(~5 Mb of euchromatic sequence) for which the correct location 
is either only known at the chromosomal level or not known at all;  
(ii) the HuRef genome20, assembled by random shotgun sequencing 
of a single individual, containing an even larger number of unplaced 
scaffolds (~3.5 Mb of euchromatic sequence in 28 scaffolds >100 kb 
in length and ~7 Mb of euchromatic sequence in 698 scaffolds >10 kb 

in length); and (iii) sequence from BAC and fosmid clones available 
from GenBank21 (Online Methods).

Mapping	the	human	genome’s	missing	pieces
If an ancestry-informative SNP resides on an unmapped contig, we 
can map the location of the contig by admixture mapping of the SNP. 
We (i) aligned all unmapped sequence reads from the 1000 Genomes 
Project22,23 to unplaced scaffolds from HuRef, (ii) identified polymor-
phic sites across these unplaced sequences and (iii) computed geno-
types at each locus in all European (CEU) and West African (YRI) 
samples (Online Methods). We selected 314 ancestry-informative 
SNPs whose genotypes had Pearson’s correlation r2 > 15% with local 
ancestry. We then genotyped these SNPs in a cohort of 380 African-
American participants from the Jackson Heart Study24 (JHS), select-
ing this sample size on the basis of initial analyses of the predicted 
power to map each SNP as a function of the number of available 
genotypes (Online Methods and Supplementary Fig. 3).

We successfully performed admixture mapping of 139 SNPs 
(Supplementary Fig. 4 and Supplementary Table 1), assign-
ing locations for 70 previously unlocalized scaffolds (Fig. 2 and 
Supplementary Table 2). We never observed SNPs from the same 
scaffold mapping to different locations, as could be the case if the 
scaffold were itself misassembled. Sequences mapped by this approach 
comprised a total of ~4 Mb of euchromatic sequence that had not been 
included or mapped in hg19.

West African

a

b

Individual
from admixed

population

Chromosome with missing sequence Unlocalized sequence

European

High r2Low r2 Low r2

Figure 1 Admixture mapping of the human genome’s missing 
pieces. (a) Chromosomes of West African descent have recombined 
with chromosomes of European descent through admixture to form 
mosaic genomes in African Americans. (b) Localization of genomic 
missing pieces, including unlocalized scaffolds and cryptic segmental 
duplications, by admixture mapping. Wherever allele frequencies have 
been influenced by genetic drift in the ancestral populations, statistically 
significant correlation between genotype and local ancestry allows the 
unplaced genomic sequence to be mapped to its correct location. 
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Identifying	additional	cryptic	missing	pieces
An additional set of cryptic missing pieces might be entirely miss-
ing from human genome reference sequences (might not even be 
described as unlocalized sequences nor present in HuRef) but exist 
instead as cryptic segmental duplications (or paralogs) of known 
genomic sequences and have been incorrectly assumed to represent 
the same genomic sequence as their known paralogs.

We reasoned that admixture mapping could also be used to iden-
tify cryptic segmental duplications. A SNP that is annotated in the 
assembled part of the human genome might in fact exist on a cryptic 
paralogous sequence elsewhere. Therefore, the identification of SNPs 
that admixture map to a different genomic location than their anno-
tated location might indicate the presence of these SNPs at another 
genomic location on a cryptic segmental duplication.

To identify mismapped SNPs, we analyzed genome-wide SNP data 
from two large African-American cohorts. Among the 906,703 SNPs 
from the Affymetrix 6.0 array genotyped in ~7,800 individuals from 
the Candidate gene Association Resource (CARe) cohort25 and the 
566,714 SNPs from the Illumina HumanHap550 array genotyped in 

~1,800 individuals from the Illumina iControlDB (ICDB) cohort, we 
identified, respectively, 121 and 15 SNPs that admixture mapped to 
genomic locations far from their HapMap26 annotations of physical 
location (Supplementary Table 3 and Supplementary Note).

Approximately half of these mismapped SNPs belonged to a single 
region, an approximately 360-kb segmental duplication from 16q22.2 
to 1q21.1 involving the HYDIN gene27–29, confirmed by FISH and 
previously found to give rise to false genome-wide association signals 
at 16q22.2 that in fact arose from true association at the Duffy locus 
at 1q23.2 (ref. 30) (Supplementary Tables 4 and 5).

Excluding the HYDIN paralog, incorrect mapping for ~30 SNPs can 
be explained by known segmental duplications31–37, whereas, for the 
remaining ~40 mismapped SNPs, the most likely explanation is that 
they reside on sequence missing from the reference genome. (Of the 
~30 SNPs that we simply remapped from one known segmental dupli-
cation copy to another, 10 corresponded to sites previously used as 
single unique nucleotides38 (SUNs) to distinguish known segmental 
duplications. By definition, none of the remapped SNPs with which 
we identified novel segmental duplications corresponded to SUNs.)
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Figure 2 Approximate locations of previously unplaced genome sequence scaffolds that were mapped by our approach. Contigs from hg19  
are labeled with three digits and stand for GL000###, and scaffolds from HuRef are labeled with five digits and stand for SCAF_11032791#####. 
Scaffolds with available chromosomal assignment or FISH data are denoted in blue; other scaffolds are denoted in red. Green indicates BAC clones that 
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g
©

 2
01

3 
N

at
ur

e 
A

m
er

ic
a,

 In
c.

 A
ll 

rig
ht

s 
re

se
rv

ed
.



Nature GeNetics	 VOLUME 45 | NUMBER 4 | APRIL 2013 409

A rt i c l e s

To understand the relationships between these cryptic paralogs 
and unplaced scaffolds from large sequencing efforts, we cross- 
referenced the locations of these SNPs with alignments of unlocal-
ized sequence from HuRef and GenBank. We identified 18 sequences 
>40 kb in length each containing 1 or more of the mismapped SNPs. 
Twelve of these 18 regions (spanning ~1.3 Mb of euchromatic 
sequence) could not be explained by segmental duplications already 
annotated in the reference genome; these indicate the presence of 
cryptic segmental duplications.

To critically evaluate these findings by an independent method, 
we used the principle that cryptic segmental duplications should give 
rise, for SNPs called from sequencing data, to excess heterozygosity 
that does not follow simple models of Hardy-Weinberg equilibrium 

between pairs of alleles. We searched for such a signal—annotated 
SNPs that behave more like paralogous sequence variants (PSVs)—in 
data from the 1000 Genomes Project pilot and confirmed all of these 
regions (Online Methods and Supplementary Table 6). For 8 of the 
12 cryptic segmental duplications, we could find no mention in the 
literature. We further confirmed six of them by interchromosomal 
LD analysis using HapMap genotypes (Table 1).

We determined for each region whether the alternate allele of any 
of the mismapped SNPs was present in any of the BAC clones align-
ing to that region, by aligning sequences from BAC clones retrieved 
from GenBank to the hg19 reference genome. For SNPs in six of these 
regions, we could identify BAC clones carrying the alternate allele, 
suggesting that these clones harbor the sequence where these SNPs 

table 1 segmental duplications localized by admixture mapping
Chr. Position Band Gene Size (kb) Chr.′ Position′ Band′ Scaffold Divergence CARea ICDBb HapMapc FISHd

1 83598160–
83955427

1p31.1 POMZP3 ~400 7 76182346–
76575579

7q11.23 NA ~1.4% 6 1 + –

1 206072708–
206558788

1q32.1 FAM72/SRGAP2 ~240 1 14388000–
1440957834

1q21.1 NA ~0.6% 3 0 – –

2 37958019–
38003219

2p22.2 NA ~45 22 NA 22q11.1 SCAF_1103279187616 ~4.0% 3 0 + –

2 91737476–
91880745

2p11.1 OTOP1 ~140 1 NA 1q21.1 RP11-247L13 ~1.2% 2 0 + –

2 133120083 2q21.2 NA ~115 20 NA 20q11.21 RP11-462H3 >2.0% 1 1 + +

3 612223– 
663367

3p26.3 NA ~50 22 NA 22q11.1 GL000217 ~2.0% 1 0 – +

3 75761051–
75871577

3p12.3 ZNF717 >110 21 NA 21q11.2 RP4-813B7 >5.0% 1 0 – –

4 25709– 
68702

4p16.3 ZNF595 ~40 22 NA 22q11.1 RP11-85C8 ~0.5% 1 0 – –

4 3536207–
3636136

4p16.3 FLJ35424 ~100 9 NA 9p11.2 SCAF_1103279188214 ~3.0% 1 0 + +

4 190470115–
190684480

4q35.2 NA ~215 21 NA 21q11.2 GL000193 >2.0% 2 0 – –

5 21506326–
21573437

5p14.3 NA ~65 6 58137660–
58139549

6p11.2 CH17-92N24 ~1.5% 0 0 + +

6 256518– 
382461

6p25.3 DUSP22 ~125 16 NA 16p11.2 NA ~0.1% 0 1 – –

6 57204729–
57435462

6p11.2 PRIM2 ~230 6 NA 6p11.2 SCAF_1103279188350 ~2.0% 0 0 – +

6 57204729–
57608453

6p11.2 PRIM2 ~400 6 NA 6q11.1 SCAF_1103279188263 ~2.0% 0 0 – +

6 57369236–
57608453

6p11.2 PRIM2 ~240 3 NA 3p11.1 SCAF_1103279180085 ~2.0% 3 0 + +

6 57401565–
57570618

6p11.2 PRIM2 >170 3 NA 3p11.1 RP1-216J23 ~2.0% 3 0 + +

6 57447574–
57575919

6p11.2 PRIM2 ~130 6 NA 6p11.2 SCAF_1103279188406 ~2.0% 0 0 – +

12 147380– 
188194

12p13.33 FAM138 >40 20 62947067–
62965512

20q13.33 SCAF_1103279187960 ~1.2% 1 0 – –

13 19020001–
19167977

13q11 ANKRD30BP2 ~200 21 14447204–
14594419

21q11.2 NA ~0.8% 3 0 + –

14 19817857–
20194548

14q11.2 POTEH/POTEM ~400 2 16085071–
16459525

22q11.1 NA ~0.6% 8 0 + –

16 70845287–
71202573

16q22.2 HYDIN ~360 1 146341167–
146400000

1q21.1 GL000192 ~0.6% 58 8 + –

21 10971951–
11032242

21p11.1 TPTE >60 13 NA 13q11 RP5-1039L24 ~0.2% 1 1 – –

21 11083847–
11156072

21p11.1 BAGE >80 13 NA 13q11 NA NA 2 0 – –

Chr., chromosome; NA, not available. Genomic positions and bands are based on hg19 coordinates and localization of the ancestral copy of the duplication, respectively.  
Protein-coding gene(s) overlapping the duplication are shown. The estimated size of the duplication is given. Column titles marked with prime symbols include information on 
the derived copy of the duplication, with the genomic scaffold containing the sequence in the derived copy of the duplication is indicated. The estimated sequence divergence 
between the ancestral and derived copies of the duplication is given.
aNumber of Affymetrix 6.0 SNPs remapped in the CARe data set. bNumber of Illumina SNPs remapped in the ICDB data set. cWhether independent evidence of the cryptic duplication was 
confirmed by interchromosomal LD from HapMap genotypes. dWhether a FISH experiment was performed to validate the duplication.
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this triplication by the presence of excess sequence read depth across 
this region in low-coverage data from the 1000 Genomes Project  
(Fig. 3a and Supplementary Fig. 5) and FISH analysis (Fig. 3b).  
We also observed that the copy in the reference genome is a hybrid 
of the two copies on chromosome 6 owing to a misassembly 
(Supplementary Fig. 6 and Supplementary Note).

Pericentromeric	locations	of	the	missing	pieces
Despite the fact that most of the 300 or so gaps8 in the reference 
human genome exist in interstitial regions, most of the sequence we 
were able to localize mapped not to interstitial gaps but to cytogeneti-
cally defined heterochromatic regions of the human genome. Among 
the mapped scaffolds, 57 of 70 mapped to pericentromeric regions 
(Fig. 2 and Supplementary Table 2). Among the remapped SNPs 
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Figure 3 Cryptic paralogs of the PRIM2 gene. (a) Analysis of sequencing 
coverage depth in data from the 1000 Genomes Project suggests the presence 
of three segments (blue arrows) with higher copy number. Although the copy 
number of each segment seems to be fixed in most genomes, at least two 
genomes show extra copy number gain at two of the three segments (HG00155 
GBR at regions 1 and 2 and NA18541 CHB at regions 2 and 3), suggesting 
a model in which there are two additional copies of this locus in most human 
genomes, one copy containing regions 1 and 2 and another copy containing 
regions 2 and 3. Blue arrows indicate the regions, black arrows indicate 
alignment of HuRef scaffolds within these regions, and green arrows indicate  
the BAC clones overlapping these regions and used in the reference assembly.  
(b) FISH analysis of PRIM2 and its cryptic paralogs. Fosmid clone WI2-
0569M11 overlapping PRIM2 (G248P8956G6 aligned to chr. 6: 57,417, 
677–57,467,167) hybridized to two distinct locations in the pericentromeric 
region of chromosome 6, 6p11.2 and 6q11.1, and to a third location in the 
pericentromeric region of chromosome 3, confirming the two additional partial 
copies of the PRIM2 gene missing from the reference genome.
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Figure 4 FISH analysis confirmed the presence of cryptic segmental 
duplications. (a) Fosmid clone WI2-1750D05 (G248P87673B3 aligned 
to chr. 2: 133,062,362–133,104,847) hybridized to 19q13.31 and to 
the centromeric region of chromosome 20, as predicted by admixture 
mapping. (b) WI2-1656E10 (G248P83226C5 aligned to chr. 3: 
613,680–650,737) hybridized to the centromeric/acrocentric regions  
of chromosomes 14 and 22, as predicted by admixture mapping.  
(c) WI2-0903H06 (G248P8635D3 aligned to chr. 4: 3,573,606–
3,614,890) hybridized to the centromere of chromosome 9, as predicted 
by admixture mapping. (d) WI2-1022I06 (G248P82546E3 aligned to  
chr. 5: 21,531,026–21,568,722) hybridized to 6p11.2.

actually reside (Table 1). For one of these regions containing the gene 
PRIM2, further analysis indicated an intrachromosomal duplication 
in the pericentromeric region of chromosome 6 and an additional 
interchromosomal duplication in the pericentromeric region of 
 chromosome 3 (Supplementary Note). We confirmed the existence of 
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identifying cryptic segmental duplications, 40 of 70 mapped to peri-
centromeric regions. (In all these cases, the resolution of the mapping 
was limited to the pericentromeric region identified.)

We sought to confirm these pericentromeric mappings using both 
published and new cytogenetic data. Of the 70 scaffolds we mapped 
successfully, 17 were among 29 scaffolds that were previously analyzed 
by FISH (Supplementary Information of ref. 39 and Supplementary 
Table 8 of ref. 20). All 17 of these admixture mappings were consist-
ent with 1 of the often multiple locations suggested by FISH (Fig. 2 
and Supplementary Table 2). Although confirmatory, this result also 
emphasizes the discerning power of admixture mapping over techniques 
based on hybridization, as the latter can yield ambiguous results when 
clones contain segmental duplications or other kinds of repeats.

We also performed additional FISH experiments to critically evalu-
ate the mappings of five novel cryptic paralogous sequences for which 
no previous FISH data existed. In all (5/5) cases, FISH confirmed 
the presence of the additional copy in the predicted pericentromeric 
region (Fig. 4 and Online Methods).

A further prediction of these mappings to pericentromeric regions 
involves the sequence content of the respective scaffolds. If these 
genomic missing pieces are indeed euchromatic islands in hetero-
chromatic oceans, then they might frequently contain heterochromatic 
beaches consisting of the satellite sequences associated with human 
centromeres. To evaluate this prediction, we measured the amount 
of sequence classified as heterochromatic satellite on each scaffold. 
The great majority of the scaffolds that admixture mapped to pericen-
tromeric regions (50/57) contained more than 5% satellite sequence 
(Online Methods, Supplementary Fig. 4 and Supplementary  
Table 2), compared with almost none (1/13) of the scaffolds that 
admixture mapped to interstitial regions (P = 0.003).

Another prediction of these pericentromeric mappings is that, 
given earlier data indicating that recombination within centromeres 
is likely to be heavily repressed40, scaffolds mapping to the same peri-
centromeric regions might show LD with one another. We identified 
pairs of SNPs (from distinct scaffolds) with LD not due to admix-
ture and ~500 SNP pairs from distinct scaffolds for which both SNPs 
mapped to the same genomic regions (Supplementary Table 7). In no 
instance did these LD-based relationships among scaffolds disagree 
with our mappings from admixture.

To understand how the pericentromeric missing pieces relate to the 
known human genome, we aligned their sequences to hg19; virtually all 
scaffolds mapping to pericentromeric regions were found to consist of 
one or more segmental duplications of mapped euchromatic sequence, 
with 2–5% sequence divergence (Supplementary Table 2). This suggests 
that a large fraction of these sequences arrived at their current locations 
by a process of segmental duplication in primate ancestors41.

Our mapping of these cryptic segmental duplications to centro-
meric regions is consistent with an earlier finding that most chromo-
some arms (35/43) have greater density of known interchromosomal 
duplications in the proximity of centromeres than is observed  
farther away from centromeres42; both results seem to reflect a ten-
dency of interchromosomal duplications to deposit sequence at and 
around centromeres.
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Figure 5 Expression of cryptic gene paralogs from pericentromeric regions 
of the human genome. PSVs were used to distinguish the expression of the 
DUSP22, PRIM2, HYDIN and MAP2K3 genes from the expression of their 
cryptic paralogs in RNA-seq data from diverse human tissues. PSVs in the 
UTRs are represented by blue text, PSVs predicted to change the protein 
product of the paralog are shown in red, and synonymous PSVs are shown 
in green. The color of each box indicates the number of RNA-seq reads 
that can be assigned to one paralog or the other using the PSV.
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Are	the	missing	pieces	copy	number	variable?
Although the cryptic, pericentromeric euchromatic regions described 
here have not been purposefully interrogated in earlier CNV studies, 
they may have been indirectly interrogated via assays that targeted 
paralogous sequences in the known, assembled parts of the human 
genome. This seems the likely scenario, as almost all of the mismapped 
SNPs we identified from genotyping arrays (63/70, not including the 
HYDIN locus) fell within CNVs reported in the Database of Genomic 
Variants (DGV)43 (Supplementary Table 3), despite the fact that 
DGV CNVs together cover less than a third of the human genome.

Given the sequence divergence over the identified cryptic paralogs 
(often greater than 2%), these additional copies are likely to have fixed 
in the ancestors of all humans. Identifying CNVs over these sequences 
at a greater rate than for the rest of the genome might therefore indi-
cate the instability of sequences in pericentromeric regions rather 
than a persistent state of polymorphism of these additional copies 
in the human population after the duplication event. To evaluate the 
copy number variability of four selected paralogous region pairs, we 
analyzed the read depth of coverage and paralogous sequence vari-
ation using data from the 1000 Genomes Project (Online Methods).  
We identified common CNVs affecting the segmental duplications 
from the 2p22.2, 4q35.2 and DUSP22 loci (Supplementary Figs. 7–9), 
and we found evidence for CNVs affecting either of the PRIM2 cryptic 
paralogs (Fig. 3a and Supplementary Fig. 5). In each case, we could 
confirm, using PSVs, that the cryptic paralogs rather than the para-
logs present in the reference genome accounted for the observed copy 
number variability (Supplementary Note), consistent with CNVs 
having arisen in the pericentromeric paralogs.

Expression	of	protein-coding	genes	from	pericentromeric	regions
Cryptic, pericentromeric paralogs of known protein-coding genes 
could in principle be either pseudogenes or expressed, intact genes. 
To test whether cryptic paralogs of coding genes are expressed at 
the RNA level, we analyzed RNA sequencing (RNA-seq) data from  
the Human BodyMap 2.0 project. We focused on reads aligning to the 
DUSP22, PRIM2, HYDIN, MAP2K3 and KCNJ12 genes, all of which 
appear to have cryptic paralogs in pericentromeric regions (Fig. 3 and 
Supplementary Figs. 5, 9 and 10). To distinguish RNA arising from 
reference gene copies from RNA arising from the cryptic paralogs, 
we focused on reads covering PSVs identifiable from genomic DNA 
sequence (many of which were previously misannotated as SNPs); this 
makes it extremely likely that sequence differences observed in RNA 
have a genomic origin (Fig. 5 and Online Methods). We identified 
expressed RNA for all of the paralogs except MAP2K3 (Fig. 5).

The expression of cryptic, pericentromeric gene copies showed several 
kinds of relationship to the expression of their paralogs. Both DUSP22 and 
its recently duplicated paralog were expressed and showed similar distri-
bution across tissues. In contrast, the cryptic paralogs of PRIM2, which 
contain only exons 6–14 of the original transcript (Fig. 3a), gave rise to 
shorter transcripts that were expressed exclusively in the brain and testes 
(Fig. 5). For HYDIN, which is expressed in brain and several other tissues, 
this analysis indicated that the cryptic paralog at 1q21.1 was expressed in 
the brain, consistent with its earlier observation in a brain cDNA library28. 
For KCNJ12, we detected expression of the pericentromeric paralog 
KCNJ18 in testes (Supplementary Fig. 11), KCNJ18 is also expressed in 
skeletal muscle and is essential to muscle function44. The tissue specificity 
observed for paralogous copies is also evidence that these observations 
are not the result of sequencing errors at putative PSV sites.

These results suggest that many of these cryptic, pericentromeric 
gene paralogs are expressed genes and that their expression patterns 
can differ from those of their known paralogs.

DISCUSSION
We have described a population-based approach for helping to assem-
ble the rest of the euchromatic human genome, even when missing 
pieces are separated from known euchromatic sequence by extensive 
heterochromatic sequence. Because our approach uses data that are 
widely available or are quickly becoming so, its power will increase 
quickly in the coming years. We anticipate that this approach will help 
complete physical maps of the human genome.

Analysis of ancestry-informative markers in unlocalized scaffolds 
can be used to map the genomic locations of these scaffolds with 
a physical resolution comparable to that of FISH but with unam-
biguous mapping to individual loci, in a highly scalable way that 
will become inherently more powerful as sequence data sets grow. 
(Many aspects of the genome assembly will continue to require other 
methods—for example, our approach does not determine the physi-
cal orientation of novel sequence with respect to the chromosome.) 
Using this approach, we mapped ~4 Mb of unplaced euchromatic 
sequence, most of which we found to be embedded in the hetero-
chromatic regions of the genome. These regions are not included in 
the current human reference genome, and, with two exceptions, they 
do not overlap with any of the current patches included in the latest 
revision (Supplementary Table 8).

One limitation of our approach is that it relies on novel sequence 
having been correctly assembled and distinguished from paralogous 
sequence. Most sequences from HuRef unplaced scaffolds have a 
divergence greater than 2% from their closest paralogs; owing to limi-
tations of shotgun sequencing assembly, paralogous segments with 
<2% sequence divergence are likely to be under-represented in human 
genome assemblies45. Unfortunately, owing to their short read lengths, 
current whole-genome next-generation sequencing approaches do 
not provide better assemblies for such regions than those obtained 
with capillary-based sequencing approaches46. Nonetheless,  
we showed that admixture mapping of the SNPs ascertained in such 
regions can still allow the discovery and mapping of these cryptic  
paralogous sequences.

Our results have several potential implications for the mapping of 
disease-relevant genes in humans, particularly wherever genetic sig-
nals map near pericentromeric regions, assembly gaps and segmental 
duplications. (i) CNVs frequently straddle or are flanked by ambigu-
ous regions of the genome assembly. For example, deletions and dupli-
cations at 1q21.1 reported to affect ~1.5 Mb of genomic sequence 
associate with cardiac developmental defects47, schizophrenia48,49, 
mental retardation, autism, congenital anomalies50 and abnormal 
head size51. Fully defining the gene content of these CNVs will require 
interrogating the missing sequence hidden in the assembly gaps at 
1q21.1. (ii) Some regions implicated in genome-wide association stud-
ies may require reanalysis in light of the results here. For example, 
human height associates with rs17511102 and other markers in a long 
noncoding RNA (lincRNA)-containing segment of 2p22.2 (ref. 52) 
for which we found a cryptic segmental duplication (and paralogous 
lincRNA) in the pericentromeric region of chromosome 22. Following 
up this association will require that markers throughout the region be 
reassigned to the correct paralogous gene copies. (iii) The SERPINB6 
gene was associated with a clinical phenotype through homozygosity 
mapping by the identification of an homozygous region terminated by 
the heterozygous genotype of the rs7762811 SNP53, which our results 
suggest is incorrectly assigned to 6p25.3, although it in fact resides at 
16p11.2, leading to a slight underestimation of the correct homozygous 
region. (iv) The genes affected by cryptic segmental duplications may 
be functionally important and critical to include and explicitly model 
in exome sequencing studies. For example, mutations in KCNJ18,  
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a gene missing from the reference genome, have been shown to cause 
thyrotoxic hypokalemic periodic paralysis44. (v) An admixture map-
ping study found that African Americans with multiple sclerosis are 
more likely than healthy African Americans to have European ancestry 
around the centromere of chromosome 1 (ref. 15), a region to which 
our work has assigned more than a megabase of novel sequence.

We showed that CNVs are more common over cryptic paralogs 
missing from the reference genome, most likely owing to the physical 
instability of pericentromeric regions. We also showed that paralogous 
genes in these cryptic, pericentromeric duplications are transcribed, 
sometimes with patterns of expression that diverge from those of their 
paralogs, and therefore potentially serve unique biological functions.

The presence of duplicated regions complicates genome assem-
blies and SNP and CNV discovery (Supplementary Figs. 12–24). 
Notably, HYDIN and PRIM2 are among the most difficult genes to 
reconstruct using de novo assembly from short sequence reads54. 
PRIM2 and KCNJ12 are among the genes with the largest number 
of misidentified nonsynonymous SNPs55, most likely owing to the 
identification of PSVs as SNPs.

Approximately 6% of the human genome reference is currently 
considered unreliable for variant discovery by the 1000 Genomes 
Project23, owing to dearth or excess read coverage or poor alignment 
of sequence reads. Most of the regions we identified as harboring a 
cryptic segmental duplication (Table 1 and Supplementary Table 6) 
fall in this inaccessible part of the human genome. While waiting for 
a more complete version of the human genome reference, the 1000 
Genomes Project now aligns sequence data to an expanded genome 
reference that includes additional unlocalized sequences (termed 
‘decoy sequences’) to reduce false alignments in regions with cryptic 
segmental duplications. These additional sequences consist mainly 
of sequenced clones discarded by the Human Genome Project and 
sequence from the HuRef assembly (~30% of decoy sequences consist 
of HuRef unlocalized scaffolds). Of course, the eventual goal of such 
projects will be the alignment of all human sequence reads to their 
actual physical locations.

In completing maps of the human genome, the important remain-
ing challenges include mapping the human genome’s structure at all 
scales, fully cataloging the genome’s sequence content and appreciat-
ing how sequences are ordered and arranged along chromosomes. 
As the scientific community works toward a complete reference 
assembly of the human genome56, the analysis of genome-wide data 
from admixed populations will add unique value and help complete 
understanding of the human genome’s structure and evolution.

URLs. HuRef unplaced scaffolds, ftp://ftp.tigr.org/pub/data/huref/; 
GenBank database, ftp://ftp.ncbi.nih.gov/genbank/; database of 
Genotypes and Phenotypes (dbGaP), http://www.ncbi.nlm.nih.
gov/gap; Illumina iControlDB, http://www.illumina.com/science/ 
icontroldb.ilmn; HapMap interchromosomal LD, ftp://ftp.ncbi.
nlm.nih.gov/hapmap/inter_chr_ld/; Illumina Human BodyMap 
2.0 data, http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.
cgi?acc=GSE30611; decoy sequences, ftp://ftp-trace.ncbi.nih.gov/
1000genomes/ftp/technical/reference/phase2_reference_assembly_ 
sequence/; UCSC Genome Browser, http://genome.ucsc.edu/; 
RepeatMasker, http://www.repeatmasker.org/.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE	METhODS
Alignment of HuRef genome and GenBank BAC and fosmid clones. To align 
the HuRef genome and sequenced BAC and fosmid clones to the hg19 refer-
ence genome, we first downloaded all available sequence from The Institute 
for Genomic Research and GenBank websites (downloading scaffold-not-in-
chromosome.fasta files and all gbpri* files, respectively; see URLs), and we 
then used Burrows-Wheeler Aligner (BWA)57 (with bwa bwasw) for align-
ments against hg19. We identified repeats classified as satellite sequences on 
HuRef unplaced scaffolds using RepeatMasker (see URLs). Satellite sequence 
consists of large arrays of tandemly repeated units of noncoding DNA. The 
amount of satellite and missing sequence is reported for each unplaced scaffold 
(Supplementary Fig. 4 and Supplementary Table 2). To identify within these 
resources the presence of cryptic segmental duplications—that is, sequence 
missing from the current reference genome but present in a diverged, dupli-
cated form—we aligned all available contigs from HuRef and GenBank clones 
against hg19 (Supplementary Table 2).

Alignment and variant calls for 1000 Genomes Project data. For genotyping 
from sequence reads, we selected all the CEU and YRI samples available in the 
1000 Genomes Project22,23. Unmapped reads were aligned against the HuRef 
unplaced scaffolds using BWA58 (with bwa aln/sampe). Genotype calling in 
the unplaced contigs was performed using the Genome Analysis Toolkit59 
(GATK) with default settings for the UnifiedGenotyper walker.

Strategy for admixture mapping. To map the location of a SNP, genotypes 
were first adjusted by regressing for the amount of global West African ances-
try for each sample. The adjusted genotypes were then tested for correlation 
with local ancestry across the genome using a one-tailed Pearson’s correlation 
test. If the correlation of the genotypes with global West African ancestry was 
positive, a right-tailed test was chosen; otherwise, a left-tailed test was chosen. 
The location corresponding to the smallest P value was then recorded for 
each SNP, together with the location corresponding to the smallest P value in 
a different chromosome. All these steps were performed using custom scripts 
from MATLAB (2011b, The MathWorks).

It is intuitive to expect that the genotyping of SNPs over paralogous 
sequences, only one of which will be expected to be polymorphic, will often 
be incorrect, as it will not be possible to correctly infer the homozygous state 
for the alternate allele, leading to failure of the called genotypes to satisfy 
Hardy-Weinberg equilibrium, among other things. This is not always so for 
genotyping arrays, however, as the genotyping of SNPs is often based on a two-
dimensional Gaussian mixture model over summarized probe intensities for 
each of the two alleles60, enabling the correct distinction of the three possible 
genotypes, even without modeling the presence of a cryptic paralog.

SNP selection, sample selection and Sequenom genotyping. From all 
detected SNPs in hg19 unplaced contigs and HuRef unplaced scaffolds, we 
filtered out SNPs at loci for which the number of reads with mapping quality 
of 0 was at least four and at least 10% of all reads covering the site. We also 
filtered out clusters of four SNPs within a window size of 10 bp. The ration-
ale is that, in loci with ambiguous alignment, it is possible to call SNPs that 
actually belong to a paralogous region of the genome. Variants called in loci 
where many SNPs cluster together have a higher chance of being an artifact of 
misaligned reads originating from paralogous regions that are not present in 
the reference genome used for alignment. This methodology maximizes the 
chances that a SNP belongs to the unplaced scaffold where it is called. From the 
filtered list, up to seven ancestry-informative SNPs were chosen for each contig 
for which genotype was estimated to have Pearson’s correlation coefficient with 
the amount of local European ancestry satisfying r2 > 15%. SNPs were further 
filtered to fit within ten Sequenom plexes, prioritizing the degree of correlation 
with ancestry. We selected 380 samples from JHS24, which had been genotyped 
with the Affymetrix 6.0 array and analyzed with HAPMIX61. To achieve the 
maximum possible mapping resolution, we exclusively selected samples with at 
least 62 detected crossovers between ancestry groups (maximum of 115).

Most likely owing to the repetitiveness of the flanking sequences for 
which primers were designed, 86 assays failed completely; of the remainder,  
53 failed the Hardy-Weinberg equilibrium test (P < 1 × 10−6), and 175 passed. 
Nevertheless, we could still reliably identify the locations of 139 SNPs (Pearson’s 

correlation test P < 1 × 10−6), 106 of which had passed and 33 of which had 
failed the Hardy-Weinberg equilibrium test, showing that SNPs with unreli-
able genotypes can still be informative for mapping purposes (Supplementary  
Fig. 4 and Supplementary Table 1). By analyzing for each successfully mapped 
SNP the best correlation between the adjusted genotype and local ancestry on 
chromosomes other than the one where the SNP mapped, we estimated that 
the selected conservative P-value threshold of 1 × 10−6 gives a false discovery 
rate lower than 1%.

Analysis of cryptic paralogs from 1000 Genomes Project pilot data. To 
identify regions with an excess of PSVs suggesting the presence of large cryptic 
segmental duplications, we searched for SNPs across the reference genome 
whose probabilistic genotype from 1000 Genomes Project pilot low-pass 
sequencing data failed the Hardy-Weinberg equilibrium test62 (using bcftools 
view -c). We identified variants that failed the equilibrium test (P < 1 × 10−6) 
in CEU and YRI samples, grouped them together if they were <5 kb apart 
(using custom MATLAB scripts) and listed all resulting regions of >40 kb in 
size (Supplementary Table 6).

FISH. Peripheral blood mononuclear cells were stimulated with phytohemag-
glutinin and harvested. Metaphase spreads were prepared by standard proto-
cols. Fosmid clones spanning the regions of interest were selected for FISH 
mapping using the UCSC Genome Browser (see URLs). Fosmids were labeled 
with either SpectrumOrange- or SpectrumGreen-conjugated dUTP using a 
nick translation kit (Abbott Molecular). Labeled pairs were hybridized over-
night to metaphase chromosome preparations. After washes with 4× SSC/0.1% 
Tween, 2× SSC/0.3% Tween and phosphate-buffered detergent, chromosomes 
were counterstained with DAPI and analyzed by epifluorescence with a Zeiss 
Axioplan2 microscope and Applied Imaging CytoVision software.

Analysis of sequence read depth from 1000 Genomes Project data. To assess 
the copy number variability of the missing reference segments, we used an 
updated version of Genome STRiP63 to analyze read depth. Normalized 
read depth was measured by comparing the number of DNA fragments with 
sequencing reads aligned to the reference genome in a given region to the 
expected read depth per haploid copy on the basis of (i) the total sequencing 
depth for each sample, (ii) the alignability of each position, based on whether 
it would be uniquely mapped by a perfect 36-bp read and (iii) sequencing bias 
due to GC content.

We performed normalization for GC bias empirically, similar to the method 
described in ref. 38. We first identified a 588-Mb subset of the autosomal 
reference sequence with no known evidence of copy number variability to use 
as a baseline. We removed all positions within 200 bp of the annotated CNV 
regions listed in DGV and segmental duplications listed in the UCSC browser, 
repeats annotated by RepeatMasker and assembly gaps, yielding a subset that 
is highly likely to be copy number invariant in the majority of people. This  
reference subset was divided into 400-bp windows and stratified by the GC 
fraction within each window, and the observed read depth at each GC frac-
tion was compared to the total read depth across all windows to yield a GC 
normalization curve for each sequencing library.

Given a genomic locus, the estimation of diploid copy number for each sample  
was performed by fitting a Gaussian mixture model with sample-specific vari-
ance to the observed and expected read depth for each sample63, allowing the 
model to fit as many copy number classes as needed at each locus.

To analyze genome regions with known paralogs in sequences not in the 
hg19 reference (notably, 2p22.2), we used BWA58 (with bwa aln/sampe) 
to realign the 1000 Genomes Project reads from the genomic region to a  
synthetic reference containing the original reference sequence plus the 
sequence for the extra paralog. Estimation of copy number was then carried 
out as described above.

Analysis of RNA sequence expression data. To compare the expression of dif-
ferent paralogs of the DUSP22, PRIM2, HYDIN, MAP2K3 and KCNJ12 genes, 
we first identified PSVs over the predicted mRNA for these genes, looking at all 
heterozygous loci called for 1000 Genomes Project pilot high-coverage samples 
NA12878 CEU, NA12891 CEU, NA12892 CEU, NA19238 YRI, NA19239 YRI 
and NA19240 YRI, and then determined, when possible, which allele belonged 
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to each paralog (Supplementary Tables 9–13). Once we obtained a list of all 
PSVs, we counted reads from the Illumina Human BodyMap 2.0 project for 
each of the alleles observed at the locus using GATK59 (with default settings 
for the UnifiedGenotyper walker and custom scripts). To validate the findings 
and filter out possible artifacts, sequence reads were further manually analyzed 
using the Integrative Genomics Viewer64 (IGV).

57. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler 
transform. Bioinformatics 26, 589–595 (2010).
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