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Solving some mathematical problems such as NP-complete problems by conventional silicon-based computers is problematic and
takes so long time. DNA computing is an alternative method of computing which uses DNA molecules for computing purposes.
DNA computers have massive degrees of parallel processing capability. The massive parallel processing characteristic of DNA
computers is of particular interest in solving NP-complete and hard combinatorial problems. NP-complete problems such as
knapsack problem and other hard combinatorial problems can be easily solved by DNA computers in a very short period of time
comparing to conventional silicon-based computers. Sticker-based DNA computing is one of the methods of DNA computing. In
this paper, the sticker based DNA computing was used for solving the 0/1 knapsack problem. At first, a biomolecular solution space
was constructed by using appropriate DNA memory complexes. Then, by the application of a sticker-based parallel algorithm using

biological operations, knapsack problem was resolved in polynomial time.

1. Introduction

DNA encodes the genetic information of cellular organisms.
The unique and specific structure of DNA makes it one of the
favorite candidates for computing purposes. In comparison
with conventional silicon-based computers, DNA computers
have massive degrees of miniaturization and parallelism.
By recent technology, about 10'®* DNA molecules can be
produced and placed in a medium-sized laboratory test tube.
Each of these DNA molecules could act as a small proces-
sor. Biological operations such as hybridization, separation,
setting, and clearing can be performed simultaneously on all
of these DNA strands. Thus, in an in vitro assay, we could
handle about 10'® DNA molecules or we can say that 10'® data
processors can be executed in parallel.

In 1994, Adleman introduced the DNA computing as a
new method of parallel computing [1]. Adleman succeeded
in solving seven-point Hamiltonian path problem solely by
manipulating DNA molecules and suggested that DNA could
be used to solve complex mathematical problems.

In 1999, a new model of DNA computing (sticker model)
was introduced by Roweis et al. [2]. This model has a kind
of random access memory that requires no strand extension,
uses no enzymes, and its materials are reusable. Sticker-
based DNA computing has potential capability for being a
universal method in DNA computing. Roweis et al. [2] also
proposed specific machine architecture for implementing the
sticker model as a microprocessor-controlled parallel robotic
workstation. Thus, the operations used in sticker model can
be performed on fully automated devices, which is helpful in
reducing the error rates of operations.

In this paper, we applied sticker model for solving the
knapsack problem which is one of the NP-complete prob-
lems.

The paper is organized as follows. Section 2 introduces
the DNA structure and various DNA computing models and
discusses about the sticker based DNA computing and bio-
logical operations which are used in sticker model. Section 3
introduces a DNA-based algorithm for solving the knapsack
problem in sticker model.
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FIGURE 1: A DNA molecule.

2. Basics of DNA Computing

2.1. Structure of DNA and DNA Computing Models. DNA
is a polymeric and a double-stranded molecule which is
composed of monomers called nucleotides. Nucleotides are
building blocks of DNA, and each of them contains three
components: sugar, phosphate group, and nitrogenous base.
There are four different nitrogenous bases which contribute
in DNA structure: Thymine (T) and Cytosine (C) which
are called pyrimidines and Adenine (A) and Guanine (G)
which are called purines. Because nitrogenous bases are
variable components of nucleotides, different neucleotides
are distinguished by nitrogenous bases which contribute in
their structure. For this reason, the name of the bases are used
to refer to the neucleotides, and the neucleotides are simply
represented as A, G, C, and T. The nucleotides are linked
together by phosphodiester bonds and form a single-stranded
DNA (ssDNA). A ssDNA molecule can be likened to a string
consisting of a combination of four different symbols, A, G,
C, and T. Mathematically, this means that we have a four-
letter alphabet )’ = {A, G, C, T} to encode information. Two
ssDNA molecules join together to form a double-stranded
DNA (DsDNA) based on complementary rule: “A” always
pairs with “T;” and likewise “C” pairs with “G” In Figure 1,
a schematic picture of DNA is shown.

DNA computing was initially developed by Adleman in
1994. Adleman resolved an instance of Hamiltonian path
problem just by handling the DNA molecules [1]. In 1995,
Lipton presented a method for solving the satisfiability
(SAT) problem [3]. Adleman-Lipton model can be used to
solve different NP-complete problems. In Adleman-Lipton
model, DNA splints are used for the construction of solution
space. Adleman [4, 5] also presented a molecular algorithm
for solving the 3-coloring problem. Chang and Guo [6-8]
showed that the DNA operations in Adelman-Lipton model
could be used for developing DNA algorithms to resolve
the dominating set problem, the vertex cover problem, the
maximal clique problem, and the independent set problem.

In 1999, Roweis et al. [2] introduced the Sticker based
DNA computing model and applied it in solving the minimal
set cover problem, and this model also was applied for
breaking the Data Encryption Standard (DES) [9]. In our
previous work, we also applied sticker based model for
solving the independent set problem [10].

Other than Adleman-Lipton and Sticker based models,
other various models are also proposed in DNA computing
by researchers. Quyang et al. [11] solved the maximal clique
problem using DNA molecules and restriction endonuclease
enzymes. Amos et al. [12, 13] described a DNA computation
model using restriction endonuclease enzymes instead of
successive cycles of separation by DNA hybridization, which
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can reduce the error rate of computation. Hagiya et al. [14]
proposed a new method of DNA computing that involves
a self-acting DNA molecule containing both the input,
program, and working memory. In this method, a single-
stranded DNA molecule consists of an input segment on the
5" end, followed by a formula (program) segment, followed by
a spacer, and finally with a “head” on the 3’ end that moves
and performs the computation. Another method for DNA
computation is “computation by self-assembly” Winfree et al.
[15-17] introduced a linear and 2-dimensional self-assembly
model.

The surface-based model was introduced by Liu et al. [18].
This model uses DNA molecules attached to a solid surface,
instead of DNA molecules floating in a solution. The surface-
based model was used by Taghipour et al. for solving the
dominating set problem [19]. The computing by blocking was
introduced by Rozenberg and Spaink [20]. This model uses
a novel approach to filter the DNA molecules. Instead of
separating the DNA strands to distinct tubes, or destroying
and removing the DNA molecules that do not contribute to
finding a solution, it blocks (inactivates) them in a way that
the blocked strands can be considered as nonexistent during
the subsequent steps of computation.

2.2. Sticker-Based DNA Computation. The sticker model was
introduced by Roweis et al. [2]. In this model, there is a
memory strand with N bases in length subdivided into K
nonoverlapping regions each M bases long (N > MK).
M can be, for example, 20. The substrands (bit regions)
are significantly different from each other. One sticker is
designed for each subregion; each sticker has M bases long
and is complementary to one and only one of the K memory
regions. If a sticker is annealed to its corresponding region on
memory strand, then the particular region is said to be on. If
no sticker is annealed to a region, then the corresponding bit
is off. Each memory strand along with its annealed stickers
is called memory complex. In sticker model, a tube is a
collection of memory complexes, composed of large number
of identical memory strands each of which has stickers
annealed only at the required bit positions. This method of
representation of information differs from other methods in
which the presence or absence of a particular subsequence
in a strand corresponded to a particular bit being on or off.
In sticker model, each possible bit string is represented by
a unique association of memory strands and stickers. This
model has a kind of random access memory that requires
no strand extension and uses no enzymes [2]. Indeed, in
the sticker model, memory strands are used as registers,
and stickers are used to write and erase information in the
registers.

Another conception in sticker model is (K, L) library.
Each (K, L) library contains memory complexes with K bit
regions, the first L bit regions are either on or off, in all
possible ways, whereas the remaining K- L bit regions are off.
The last K-L bit regions can be used for intermediate data
storage. In every (K, L) library, there are at least 2 memory
complexes. In Figure 2, a memory complex with 7 bit regions
representing the binary number 1100101 is shown.
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FIGURE 2: A memory complex representing 1100101.

2.3. Biological Operations in Sticker Model. There are four
principal operations in sticker model: combination, sepa-
ration, setting, and clearing [2]. We also defined a new
operation called “divide” which is used in the construction
of solution space [10]. Here, we briefly discuss about these
operations.

(1) Combine (T,,T,, and T,). The memory complexes
from the tubes T, and T, are combined to form a new
tube, T, simply the contents of T} and T, are poured
into the tube T,,. (T, = T, U T)).

(2) Separate (T,,i) — (T, T"). This operation creates
two new tubes T and T7; T* contains the memory
complexes having the ith bit on (T* = +(T,, 1)), and
T~ contains the memory complexes having the ith bit
off (T™ = —(T,,1)).

(3) Set (T,,i). The ith bit region on every memory
complex in tube T, is set to 1 or turned on.

(4) Clear (T,,i). The ith bit region on every memory
complex in tube T, is set to 0 or turned off.

(5) Divide (T,), T,,and T,). By this operation, the contents
of tube T, is divided into two equal portions and
poured into the tubes T} and T5,.

3. Solving the 0/1 Knapsack Problem in
Sticker-Based DNA Computers

3.1. Definition of the Knapsack Problem. Knapsack problem
is one of the classical optimization problems which have two
variants: the 0/1 and fractional knapsack problems.

The 0/1 knapsack problem is posed as follows.

TherearenitemsIy, I, I, ..., I;; each item I; has a weight
W; and a value V;, where W; and V; are integers. We have a
knapsack which its capacity (weight) is C, where C is also an
integer. We want to take the most valuable set of items that fit
in our knapsack. Which items should we take? This is called
the 0/1 or binary knapsack problem because each item must
either be taken or left behind; we cannot take a fractional
amount of an item.

In the fractional knapsack problem, the setup is the same,
but we can take fractions of items, rather than having to make
a binary (0-1) choice for each item. The fractional knapsack
problem is solvable by a greedy strategy, where as the 0/1
knapsack problem is not. The 0/1 knapsack problem has been
proved to be an NP-complete problem [21].

FIGURE 3: Memory strand with at least # + W + V bit regions.

3.2. Construction of Sticker Based DNA Solution Space for
Knapsack Problem

3.2.1. Designing Appropriate DNA Memory Complexes. As
discussed before, there are n items I, I, I, ..., I;; each item
I; has a weight W; and a value V;, where W; and V; are
integers. Let us consider that the total weight of items is W

and total value of items is V.

n
W=W1+W2+W3+---+Wn=ZW-,
j=1

®
n
V=V +V,+ Va4 4V, =YV,
i1

n = total number of items.

We start with 2" or more identical memory strands, which
each of them has at least n + W + V bit regions. (Figure 3)
The first n bit regions (bit regions 1 to ) are used to represent
n items, the middle W bit regions (bit regions n + 1 to n +
W) represent the total weight of items W, and the next V bit
regions (bit regions n + W + 1 to n + W + V) represent the
total value of items V. Each bit region, for example can have
20 neucleotides, furthermore, every memory strand at least
contains 20 (n + W + V) neucleotides.

3.2.2. Production of DNA Memory Complexes Which Repre-
sent All Possible Subsets of Items. Itis clear that a set of nitems
has 2" subsets and each of these subsets has its own weight
and value. For construction of solution space, it is essential
to represent all subsets of items by appropriate DNA memory
complexes. Furthermore, by using at least 2” or more memory
strands and making the first n bit regions on or off in all
possible ways, we represent all 2" subsets of items by DNA
memory complexes. On the other hand, simply we design
a (n+ W +V, n) library. For this purpose, (Procedure 1) is
proposed.

Procedure 1 has # divide, n set and n combine operations.
At the end of procedure, tube T;, contains all of the memory
complexes which each of them represent one of the subsets of
items.

3.2.3. Representing the Weight and Value of Each Subset on
DNA Memory Complexes. In this step, based on the items
which are present in subsets, and by annealing corresponding
stickers in W and V regions of memory strands, the total
weight and value of subsets are represent on memory com-
plexes. Note, each item I; has a weight W; and a value V}, thus,
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(a) Divide (T, T}, T,)

(b) Set (T, i)
(c) Combine (T, T}, T,)
End for

(1) Input (T},), where T, contains 2" or more memory strands with at least (n + W + V) bit regions.
(2) Fori =1 to n, where n is the total number of items

PROCEDURE 1

Fori=1ton

{

Separate (T, i) — (T, T")
Forj=1to W,

Set (T%, n+ ¥, Wi + )
Forj=1toV;,

Set (T*,n+ Yi Wi + Yol Vi + j)
Combine (T, T, T")

PROCEDURE 2

for each item I ) Wj numbers of stickers are annealed to W
region and V; numbers of stickers are annealed to V' region
on memory strands. Furthermore, the numbers of annealed
stickers in W and V regions represent the weight and value of
corresponding subset, respectively. Procedure 2 is proposed
for representing the weight and value of each subset.

Now, our solution space is completely produced and
contains at least 2" memory complexes, which each of them
represent one of the subsets of items, and the numbers of
annealed stickers in W and V' regions represent the weight
and value of corresponding subset, respectively.

3.3. DNA Algorithm for Solving the 0/1 Knapsack Problem.
Algorithm 1 is proposed for solving the 0/1 knapsack prob-
lem.

According to the steps in the algorithm, the knapsack
problem can be resolved by sticker based DNA computation
in polynomial time.

By the execution of step 1, the memory complexes without
any annealed stickers in W region (represent the subset @)
are placed in tube T}, the memory complexes with only one
annealed sticker (represent the subsets of items which their
weight are 1) are placed in tube T;, the memory complexes
with 2 annealed stickers (represent the subsets of items which
their weight are 2) are placed in tubes T,, the memory
complexes with 3 annealed stickers (represent the subsets of
items which their weight are 3) are placed in tube T;, and
finally, the tube Ty,, contains the memory complexes witch all
bit regions located in W region are turned to “on” (represent
the subset which contains all items). On the other hands,
step 1 is a sorting procedure and sorts memory complexes
according to the number of annealed stickers in W region.
In this step, W + 1 tubes are produced (T, T}, T, - .., Ty),
and number of every tube indicate the number of annealed

stickers in W region. Step 1 contains W(W + 1)/2 separate
and W(W + 1)/2 combine operations, or totally it contains
W(W + 1) operations.

In step 2 of algorithm, the contents of tubes
To1>Te2sToys ... Ty are discarded, because memory
complexes which are present in these tubes, represent subset
of items that their weight are exceeded the capacity of
knapsack. Then, the contents of tubes Ty, T}, T,,..., T, are
mixed together and transferred to tube T,. Now, tube T}
contains memory complexes which represent the subsets
of items that their weight are not exceeded the capacity of
knapsack. Furthermore, at the end of step 2, the memory
complexes which represent the subsets of items that their
weight are exceeded the capacity of knapsack, removed
from solution space and only remain memory complexes
representing subsets that fit in our knapsack. It is clear that
the step 2 contains only 2 operations.

By the execution of step 3, sorting of memory complexes
are performed according to the number of annealed stickers
in V region. During this step, V + 1 tubes are produced
(Ty, Ty, T,,...,Tyy). The memory complexes without any
annealed stickers in V' region (represent the subset @) are
placed in tube T, the memory complexes with only one
annealed sticker (represent the subsets of items which their
value are 1) are placed in tube T}, the memory complexes with
2 annealed stickers (represent the subsets of items which their
value are 2) are placed in tubes T,, the memory complexes
with 3 annealed stickers (represent the subsets of items which
their value are 3) are placed in tube T, and finally, the tube T},
contains the memory complexes with all bit regions located
in V region are turned to “on” (represent the subset which
contains all items). Step 3 contains V(V + 1)/2 separate and
V(V +1)/2 combine operations, or totally it contains V(V +1)
operations.
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(1) Fori=nton+W -1
For j =idownton
Separate (T_,,i + 1) — (T,
Combine (Tj—n+1 > Tj—n+1’ T(j—n+1)’)

T.,)

j—n+1)”

(2) The capacity of knapsack is C,
Discard tubes T.,,, T.,5, Teyz - - > Ty
Combine (T, Ty, T}, Ty, ..., T)

(B)Fori=n+Wton+W+V -1
For j =idownton+ W
Separate (Tj—n—W’i +1) — (T(j—n—wn)” j-"-W)
Combine (Tj—n—W+l’ ijn—w+1 > T( j—n—w+1)’)

(4) Read Ty; else if it was empty then:
Read Ty,_; else if it was empty then:

Read T};

Read T,_,; else if it was empty then:

Read T,; else if it was empty then:

ALGORITHM 1

In step 4, all of tubes (from Ty, to T;) are evaluated for
presence of memory complexes, and the first tube which
is not empty and contains memory complexes represent
the most valuable set. Step 4, maximally contains V' Read
operations.

Finally, it is clear that the total number of operations in
our algorithm is: W? + V2 + W +2 % V + 2.

4. Conclusion

In this paper, the sticker based DNA computing was used
for solving the 0/1 knapsack problem. This method could
be used for solving other NP-complete problems. There are
four principal operations in sticker model: Combination,
Separation, Setting and Clearing. We also defined a new
operation called “divide” and applied it in construction of
solution space.

As mentioned earlier, one of the important properties of
DNA computing is its real massive parallelism, which makes
it a favorite and powerful tool for solving NP-complete and
hard combinatorial problems. In sticker model, as in other
DNA based computation methods, the property of DNA
molecules to making duplexes is used as main biological
operation. The main difference between the sticker model and
Adleman-Lipton model is that in the sticker model there is a
kind of Random access memory and the computations do not
depend on DNA molecules extension as seen in Adleman-
Lipton model.
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