On Sorting by Translocations

A. Bergeron¹ J. Mixtacki² J. Stoye³

¹LaCIM Université du Québec à Montréal

²International NRW Graduate School in Bioinformatics and Genome Research Universität Bielefeld

> ³Technische Fakultät Universität Bielefeld

LaCIM

Universität Bielefeld Technische Fakultät AG Genominformatik

RECOMB 2005, Cambridge, MA, May 14–18, 2005

Outline

Introduction

- Biological background
- Translocation distance problem
- 2 Definitions and examples
 - Elementary intervals and cycles
 - Components
- 3 Computing the translocation distance
 - The distance formula
 - Algorithms

Outline

Introduction

- Biological background
- Translocation distance problem
- Definitions and examples
 Elementary intervals and cycles
 Components
- Computing the translocation distance
 The distance formula
 Algorithms
 - Algorithms

Biological background

Genome rearrangements change the content and/or the order of genes of a genome:

- inversions
- transpositions
- translocations
- fusions
- fissions
- ..

The number of rearrangements needed to transform one genome into another is a measure for the evolutionary distance between two species

Biological background

Genomes with the same gene content and number of chromosomes:

- A gene is represented by a signed integer
- A chromosome is a sequence of genes and does not have an orientation, i.e. (6 -8 9) = (-9 8 -6)

$$A_1 = \{(4 \ 3), (1 \ 2 \ -7 \ 5), (6 \ -8 \ 9)\}$$

An internal translocation exchanges two *non-empty* chromosome ends:

$$A_{1} = \{(4 \underline{3}), (1 2 \underline{-7 5}), (6 -8 9)\}$$
$$A'_{1} = \{(4 -7 5), (1 2 3), (6 -8 9)\}$$

Translocation distance problem

Problem: How many internal translocations do we need to transform one genome into the other?

$$A_1 = \{(4 \ 3), (1 \ 2 \ -7 \ 5), (6 \ -8 \ 9)\}$$

{(-9 <u>-4</u>), (1 2 3), (-5 <u>-8 -7 -6)</u>}

$$B_1 = \{(1 \ 2 \ 3), (4 \ 5), (6 \ 7 \ 8 \ 9)\}$$

Definition

Translocation distance d(A): minimum number of translocations needed to transform A into the identity permutation split in chromosomes sharing the ends of A

Bergeron, Mixtacki, and Stoye

Theorem (Hannenhalli, 1996)

For a genome A with N chromosomes and n genes

$$d(A) = n - N - c + s + o + 2i$$

where c is the number of cycles, s the number of minimal subpermutations, o = 1 if the number of minimal

subpermutations is odd and o = 0 otherwise, and i = 1 if A has an even-isolation and i = 0 otherwise.

Summary of our results

Let A be a genome with c cycles and whose forest F_A has L leaves and T trees.
 Then

$$d(A) = n - N - c + t$$

where

$$t = \begin{cases} L+2 & \text{if } L \text{ is even and } T = 1\\ L+1 & \text{if } L \text{ is odd}\\ L & \text{if } L \text{ is even and } T \neq 1. \end{cases}$$

First correct algorithm for sorting by translocations.

The translocation distance problem

Definition

Concatenation:

- Glue the chromosomes in any order
- Add the elements 0 and n + 1

$$A_1 = \{(4 \ 3), (1 \ 2 \ -7 \ 5), (6 \ -8 \ 9)\}$$

$$P_{A_1} = (0 \ 4 \ 3 \ 1 \ 2 \ -7 \ 5 \ 6 \ -8 \ 9 \ 10)$$

Definition

Inversion:

$$P_{A_1} = (0 \ 4 \ 3 \ 1 \ 2 \ -7 \ 5 \ 6 \ -8 \ 9 \ 10)$$

 $P'_{A_1} = (0 \ 4 \ 3 \ 1 \ -5 \ 7 \ -2 \ 6 \ -8 \ 9 \ 10)$

Bergeron, Mixtacki, and Stoye

The translocation distance problem

$P_{A_{1}} = (0 \ 4 \ 3 \ 0 \ 1 \ 2 \ -7 \ 5 \ 0 \ 6 \ -8 \ 9) \} \qquad (0 \ 4 \ 3 \ -5 \ 7 \ -2 \ -1 \ 6 \ -8 \ 9) \\ (1 \ 2 \ 3), (1 \ 2 \ 3), (-9 \ 8 \ -6)) \qquad (0 \ 4 \ -7 \ 5 \ -3 \ -2 \ -1 \ 6 \ -8 \ 9) \\ (0 \ 4 \ -7 \ -5 \ -3 \ -2 \ -1 \ 6 \ -8 \ 9) \\ (0 \ 4 \ -7 \ -5 \ -3 \ -2 \ -1 \ 6 \ -8 \ 9) \\ (0 \ 4 \ -7 \ -5 \ -3 \ -2 \ -1 \ 6 \ -8 \ 9) \\ (0 \ 4 \ -7 \ -5 \ -3 \ -2 \ -1 \ 6 \ -8 \ 9) \\ (0 \ 4 \ -7 \ -5 \ -3 \ -2 \ -1 \ 6 \ -8 \ 9) \\ (0 \ 4 \ -7 \ -5 \ -3 \ -2 \ -1 \ 6 \ -8 \ 9) \\ (0 \ 4 \ -7 \ -5 \ -3 \ -2 \ -1 \ 6 \ -7 \ 8 \ 9) \\ (0 \ 4 \ -7 \ -6 \ 1 \ 2 \ 3 \ -9 \ -5 \ -8 \ 9) \\ (0 \ 4 \ -7 \ -6 \ 1 \ 2 \ 3 \ -9 \ -5 \ -8 \ 9) \\ (0 \ 4 \ -7 \ -6 \ 1 \ 2 \ 3 \ -9 \ -5 \ -8 \ 9) \\ (0 \ 4 \ -7 \ -6 \ 1 \ 2 \ 3 \ -9 \ -8 \ -7 \ -6 \ 1 \ 2 \ 3 \ -9 \ -8 \ -8 \ 9) \\ (0 \ -9 \ -4 \ -3 \ -2 \ -1 \ 6 \ 7 \ 8 \ 9) \\ (0 \ -9 \ -6 \ -7 \ -6 \ 1 \ 2 \ 3 \ -7 \ -6 \ 1 \ 2 \ 3 \ -9 \ -8 \ -8 \ -8 \ -7 \ -6 \ 1 \ -8 \ -8 \ -8 \ -8 \ -8 \ -8 \ -8 $	Sorting by translocations:									Sorting by inversions:												
$A_{1} = \{ (4 \underline{3}), (1 2 \underline{-7 5}), (6 -8 9) \} $ $\{ (4 -7 \underline{5}), (1 2 3), (-9 8 \underline{-6}) \} $ $\{ (4 -7 \underline{5}), (1 2 3), (-9 8 \underline{-6}) \} $ $\{ (0 4 -7 \underline{5} -3 -2 -1 6 -8 9 \\ (0 4 -7 \underline{5} -3 -2 -1 6 -8 9 \\ (0 4 -7 -6 1 2 3 \underline{6} -5 -8 9 \\ (0 4 -7 -6 1 2 3 \underline{6} -5 -8 9 \\ (0 4 -7 -6 1 2 3 \underline{6} -5 -8 9 \\ (0 4 -7 -6 1 2 3 -9 8 -8 -8 -8 \\ (0 4 -7 -6 1 2 3 -9 -8 -7 -6 1 2 3 -9 -8 -7 \\ (0 -9 -4 -3 -2 -1 6 7 8 -8 \\ (0 -9 -9 -8 -7 -6 1 2 3 4 -8 -8 \\ (0 -9 -9 -8 -7 -6 1 2 3 4 -8 -8 \\ (0 -9 -9 -8 -7 -6 1 2 3 4 -8 -8 \\ (0 -9 -9 -8 -7 -6 1 2 3 4 -8 -8 \\ (0 -9 -9 -8 -7 -6 1 2 -3 -4 -8 \\ (0 -9 -9 -8 -7 -6 1 2 -3 -4 -8 \\ (0 -9 -9 -8 -7 -6 1 2 -3 -4 -8 \\ (0 -9 -9 -8 -7 -6 1 2 -3 -4 -8 \\ (0 -9 -9 -8 -7 -6 1 2 -3 -4 -8 \\ (0 -9 -9 -8 -7 -6 1 2 -3 -4 -8 \\ (0 -9 -9 -8 -7 -6 1 2 -3 -4 -8 \\ (0 -9 -9 -8 -7 -6 1 2 -3 -4 -8 \\ (0 -9 -9 -8 -7 -6 1 2 -3 -4 -8 \\ (0 -9 -9 -8 -7 -6 1 -2 -3 -4 -8 \\ (0 -9 -9 -8 -7 -6 1 -2 -3 -4 -8 \\ (0 -9 -9 -8 -7 -6 1 -8 -8 \\ (0 -9 -9 -8 -7 -6 1 -8 -8 \\ (0 -9 -9 -8 -7 -6 1 -8 -8 \\ (0 -9 -9 -8 -7 -6 1 -8 -8 \\ (0 -9 -9 -8 -7 -6 1 -8 -8 \\ (0 -9 -9 -8 -7 -6 1 -8 -8 \\ (0 -9 -9 -8 -7 -6 -8 -7 -6 -8 -8 \\ (0 -9 -9 -8 -7 -6 -8 -8 -8 \\ (0 -9 -9 -8 -7 -6 -8 -7 -6 -8 -8 \\ -8 -8 -8 -8 -8 \\ (0 -9 -9 -8 -7 -6 -8 -8 -8 \\ -8 -8 -8 -8 -8$											$P_{A_{1}} =$	(0	4	3 ⊙	1	2	-7	_5 ⊚	6	-8	9	10)
$ \{ (4 -7 \underline{5}), (1 2 3), (-9 8 \underline{-6}) \} $ $ (0 4 -7 \underline{5} \underline{-3} \underline{-2} \underline{-1} \underline{6} \underline{-8} \underline{6} \\ (0 4 -7 -6 1 2 3 \underline{0} \underline{-5} \underline{-8} \underline{6} \\ (0 4 -7 -6 1 2 3 \underline{0} \underline{-5} \underline{-8} \underline{6} \\ (0 4 \underline{-7} -6 1 2 3 \underline{0} \underline{-5} \underline{-8} \underline{6} \\ (0 4 \underline{-7} -6 1 2 3 \underline{0} \underline{-5} \underline{-8} \underline{6} \\ (0 4 \underline{-7} -6 1 2 3 \underline{-9} \underline{8} \underline{6} \\ (0 \underline{-9} \underline{-4} \underline{-3} \underline{-2} -1 6 7 8 \underline{6} \\ (0 \underline{-9} \underline{-4} -3 -2 -1 6 7 8 \underline{6} \\ (0 \underline{-9} \underline{-4} -3 -2 -1 6 7 8 \underline{6} \\ (0 \underline{-9} \underline{-6} \underline{-7} -6 1 2 3 4 \underline{6} \\ (0 \underline{-9} \underline{-6} -7 -6 1 2 3 4 \underline{6} \\ (0 \underline{-9} \underline{-6} -7 -6 1 2 3 4 \underline{6} \\ (0 \underline{-9} \underline{-6} -7 -6 1 2 3 4 \underline{6} \\ (0 \underline{-9} \underline{-6} -7 -6 1 2 3 4 \underline{6} \\ (0 \underline{-9} \underline{-6} -7 -6 1 2 3 4 \underline{6} \\ (0 \underline{-9} -6 -7 -6 1 2 3 4 \underline{6} \\ (0 \underline{-9} -6 -7 -6 1 2 3 4 \underline{6} \\ (0 \underline{-9} -6 -7 -6 1 2 3 4 \underline{6} \\ (0 \underline{-9} -6 -7 -6 1 2 3 4 \underline{6} \\ (0 \underline{-9} -6 -7 -6 1 2 -7 -6 1 2 -7 -6 1 2 -7 -6 -7 -7$	<i>A</i> ₁ =	{(4		(1	2	-7	5),	(6	-8	9)}		(0	4.	3	-5	7.	-2	-1	6	-8	9	10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		{(4	-7	5),	(1	2	3),	(-9	8	-6)}		(0	4	-7 •	5	-3	-2	-1	6	-8	9	10)
$\{(4 \underline{-7 -6}), (1 2 3), (-5 -8 \underline{9})\} \qquad (0 4 \underline{-7 -6 1 2 3 -9 8 4 \\ (0 \underline{-4 9 -4}), (1 2 3), (-5 \underline{-8 -7 -6})\} \qquad (0 4 -7 -6 1 2 3 -9 8 4 \\ (0 \underline{-4 9 -3 -2 -1 6 7 8 -9 \\ (0 -9 \underline{-4 -3 -2 -1 6 7 8 -9 \\ (0 \underline{-9 -4 -3 -2 -1 6 7 8 -9 \\ (0 \underline{-9 -4 -3 -2 -1 6 7 8 -9 \\ (0 \underline{-5 -4 -3 -3 -4 -3 -2 -1 6 7 8 -9 \\ (0 -5 -4 -3 -3 -3 -4 -3 -3 -3$												(0	4	-7	-6	1	2	3 ©	-5	-8	9	10)
$\{(-9 \underline{-4}), (1 2 3), (-5 \underline{-8} \underline{-7} \underline{-6})\} \qquad (0 \underline{-9} \underline{-4} \underline{-3} \underline{-2} \underline{-1} 6 7 8 \underline{-8} \underline{-7} \underline{-6})\} \\ (0 \underline{-9} \underline{-4} \underline{-3} \underline{-2} \underline{-1} 6 7 8 \underline{-8} \underline{-7} \underline{-6} \underline{-7} \underline{-8} \underline{-7} \underline{-7} \underline{-8} \underline{-7} \underline{-7} \underline{-8} \underline{-7} \underline{-8} \underline{-7} \underline{-7} \underline{-8} \underline{-7} \underline{-8} \underline{-7} \underline{-7} \underline{-7} \underline{-8} \underline{-7} \underline{-7} \underline{-8} \underline{-7} -7$		{(4	-7	-6),	(1	2	3),	(-5	-8	9)}		(0	4.	-7	-6	1	2	3	-9	8	5	10)
$\{(-9 \underline{-4}), (1 2 3), (-5 \underline{-8} \underline{-7} \underline{-6})\} \qquad (0 \underline{-9} \underline{-4} \underline{-3} \underline{-2} \underline{-1} \underline{6} \overline{7} \underline{8} \underline{9} \\ (0 \underline{-9} \underline{-8} \underline{-7} \underline{-6} \underline{1} \underline{2} \underline{3} \underline{4} \underline{9} \\ (0 \underline{-5} \underline{-4} \underline{-3} \underline{-2} \underline{-1} \underline{6} \overline{7} \underline{8} \underline{9} \\ B_{1} = \{(1 2 3), (4 5), (6 \overline{7} \underline{8} \underline{9})\} Id = (0 1 \underline{2} \underline{3} \underline{4} 5 \overline{6} \overline{7} \underline{8} \underline{9} \\ \end{bmatrix}$												(0 ©	4	@	-3	-2	-1	6	7	8	5	10)
$(0_{\odot} -9 -8 -7 -6 1 2 3 4 9)$ $(0_{\odot} -5 -4 -3 -2 -1_{\odot} 6 7 8 9)$ $B_{1} = \{(1 2 3), (4 5), (6 7 8 9)\} Id = (0 1 2 3 4 5 6 7 8 9)$		{(-9	-4),	(1	2	3),	(-5	-8	-7	-6)}		(0	-9	-4	-3	-2	-1	6	7	8	5	10)
(0 - 5 - 4 - 3 - 2 - 1 - 6 - 7 - 8 - 9) $B_1 = \{(1 - 2 - 3), (4 - 5), (6 - 7 - 8 - 9)\}$ $Id = (0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9)$												(0 _⊙	-9	-8	-7	-6	1	2	3	4	5	10)
$B_1 = \{(1 \ 2 \ 3), (4 \ 5), (6 \ 7 \ 8 \ 9)\}$ $Id = (0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9)$												(0 ₀	-5	-4	-3	-2	-1 ®	6	7	8	9	10)
	<i>B</i> ₁ =	{(1	2	3),	(4	5)	, (6	7	8	9)}	ld =	(0	1	2	3	4	5	6	7	8	9	10)

Outline

Introduction

- Biological background
- Translocation distance problem
- Definitions and examples
 Elementary intervals and cycles
 - Components

3 Computing the translocation distance

- The distance formula
- Algorithms

Elementary intervals

Definitions

• Signed permutation:

$$P_{A_1} = (0 \ 4 \ 3 \ 1 \ 2 \ -7 \ 5 \ 6 \ -8 \ 9 \ 10)$$

- Point: pair of consecutive elements p · q
- Adjacency: point of the form *i* · *i* + 1 or −(*i* + 1) · −*i*, otherwise breakpoint

Definition

Black points are points inside chromosomes, all others points are white points

$$A_{1} = \{ (4 \quad 3), (1 \quad 2 \quad -7 \quad 5), (6 \quad -8 \quad 9) \}$$

$$P_{A_{1}} = (0 \quad 4 \quad 3 \quad 1 \quad 2 \quad -7 \quad 5 \quad 6 \quad -8 \quad 9 \quad 10)$$

Elementary intervals

Definition

The elementary interval I_k is the interval whose endpoints are:

- 1) the right point of *k*, if *k* is positive, otherwise its left point
- 2) the left point of k + 1, if k + 1 is positive, otherwise its right point.

$$P_{A_{1}} = \begin{pmatrix} 0 & 4 & 3 & 1 & 2 & -7 & 5 & 6 & -8 & 9 & 10 \end{pmatrix}$$

$$I_{0} \circ \cdots \circ I_{1} \circ I_{1} \circ I_{2} \circ I_{5} \circ I_{6} \circ I_{9} \circ I$$

Observation: Exactly two elementary intervals of the same color meet at each breakpoint.

Bergeron, Mixtacki, and Stoye

On Sorting by Translocations

12

Cycles

Definition

- Black (white) cycle: sequence of black (white) points such that two successive points are the endpoints of an elementary interval
- Adjacencies define trivial cycles

Observation: The number of black cycles equals n - N, if and only if genome A is sorted.

Lemma 1 (Kececioglu and Ravi, 1995)

A translocation in genome A modifies the number of black cycles of P_A by 1, 0 or -1.

A translocation is called ...

- proper, if it increases the number of black cycles by 1
- improper, if it leaves the number of black cycles unchanged
- bad, if it decreases the number of black cycles by 1.

Cycles

Definition

Interchromosomal elementary interval: whose endpoints belong to different chromosomes, otherwise intrachromosomal

Lemma 2

For each interchromosomal elementary interval in P_A , there exists a proper translocation in the genome A.

Bergeron, Mixtacki, and Stoye

On Sorting by Translocations

RECOMB 2005

15

Components

Definitions

- Component: an interval from *i* to *i* + *j* or from -(*i* + *j*) to

 i, where *j* > 0, whose set of elements is {*i*, ..., *i* + *j*}, and that is not the union of smaller such intervals
- Intrachromosomal component: its elements belong to the same chromosome

$$A_2 = \{(1 -2 3 8 4 -5 6), (7 9 -10 11 -12 13 14 -15 16)\}$$

Intrachromosomal components:

$$P_{A_2} = (0 \ 1 \ -2 \ 3 \ 8 \ 4 \ -5 \ 6 \ 7 \ 9 \ -10 \ 11 \ -12 \ 13 \ 14 \ -15 \ 16 \ 17)$$

Components

An intrachromosomal component is called ...

- minimal, if it does not contain any other intrachromosomal component
- trivial, if it is an adjacency, otherwise non-trivial

$$P_{A_2} = (0 \ 1 \ -2 \ 3 \ 8 \ 4 \ -5 \ 6 \ 7 \ 9 \ -10 \ 11 \ -12 \ 13 \ 14 \ -15 \ 16 \ 17)$$

Chain: successive linked intrachromosomal components Maximal chain: cannot be extended to the left or right

Definitions

The forest F_X of a chromosome X is defined by the following construction:

- 1) Each non-trivial intrachromosomal component is a round node
- 2) Each maximal chain is a square node whose (ordered) children are the round nodes
- A square node is the child of the smallest intrachromosomal component that contains this chain

The forest F_A of a genome A is the set of forests $\{F_{X_1}, \ldots, F_{X_N}\}$.

Components

How can we destroy intrachromosomal components?

- Apply a translocation with one endpoint in the component, and one endpoint in another chromosome
- Such translocations are always bad
- A translocation destroying component *C* destroys all components that contain *C*
- A translocation can destroy at most 2 minimal components (leaves)

Let F_A be a forest with *L* leaves and *T* trees.

If *L* even and T > 1, destroy the forest optimally:

- Separate the forest (Lemma 3)
- Destroy two leaves (Lemma 4)

Lemma 3

If T > 1 and all trees belong to the same chromosome, then the trees can be separated by proper translocations without modifying F_A .

Lemma 4

If *L* is even and T > 1, then there always exists a sequence of proper translocations, followed by a bad translocation, such that the resulting genome *A*' has L' = L - 2 leaves and $T' \neq 1$ trees.

Bergeron, Mixtacki, and Stoye

Outline

Introduction

- Biological background
- Translocation distance problem
- Definitions and examples
 Elementary intervals and cycles
 Components
- Computing the translocation distance
 - The distance formula
 - Algorithms

The distance formula

Theorem 1

Let *A* be a genome with *c* black cycles and F_A be the forest associated to *A*. Then

$$d(A) = n - N - c + t$$

where

$$t = \begin{cases} L+2 & \text{if } L \text{ is even and } T = 1 \\ L+1 & \text{if } L \text{ is odd} \\ L & \text{if } L \text{ is even and } T \neq 1. \end{cases}$$

Bergeron, Mixtacki, and Stoye

Algorithms

Algorithm for computing the translocation distance

- Cycle identification: by a left-to-right scan of the permutation
- Component identification: by a linear-time algorithm (Bergeron, Heber and Stoye, 2002)
- Construction of *F_A*: by a simple pass over the components (Bergeron, Mixtacki and Stoye, 2004)

Algorithms

Theorem 2

The translocation distance can be computed in linear time.

$$d(A_2) = n - N - c + t = 16 - 2 - 7 + 6 = 13$$

Bergeron, Mixtacki, and Stoye

On Sorting by Translocations

24

Algorithms

Algorithm for sorting by translocations

- 1: *L* is the number of leaves, and *T* the number of trees in the forest *F*_A associated to the genome *A*
- 2: if L is even and T = 1 then
- 3: destroy one leaf such that L' = L 1
- 4: end if
- 5: if L is odd then
- 6: perform a bad translocation such that T' = 0, or T' > 1 and L' = L 1
- 7: end if
- 8: while A is not sorted do
- 9: if there exist intrachromosomal components on different chromosomes then
- 10: perform a bad translocation such that T' = 0, or T' > 1 and L' is even
- 11: else
- 12: perform a proper translocation such that *T* and *L* remain unchanged
- 13: end if
- 14: end while

Summary

- Modified concepts from the uni-chromosomal case are applied to multi-chromosomal genomes
- New formula for the translocation distance
- Linear-time algorithm to compute the translocation distance
- First correct sorting by translocation algorithm