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ABSTRACT 

This paper describes detailed information about our approach to 

the task 2 of KDD Cup 2012. It presents the problem of ranking 

the click-through rate (CTR) of advertisements. The CTR is used 

in search advertising to rank ads and to price clicks. 

We cast this task as a binary classification problem and addressed 

it utilizing gradient boosted decision trees. To make this possible, 

we created five sets of predictive features: ad-based statistical 

features, unknown-users imputation features, user-based statistical 

features, context-based statistical features and cross product 

statistical features. These statistical features were created using 

linear mixed effects and bag of words models. This approach 

granted us 4th place, above the performance mark of 0.8 (AUC). 

Categories and Subject Descriptors 

I.2.6 [Machine Learning]: Engineering applications 

General Terms 

Algorithms, Experimentation  
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1. INTRODUCTION 
The “KDD Cup 2012 Track 2” contest posed the challenge of 

ranking advertisements’ CTRs. A dataset containing ads’ click 

history was provided by Tecent [12], and our task was to rank the 

CTRs of about 20 million ads-user sessions. A detailed 

description of the dataset can be found on [1].  

A big challenge in this task was dealing with a massive dataset: 

there were 22,023,547 users, 641,707 ads over 149,639,105 

sessions. For a dataset this size, commonly statistical software like 

R [14] cannot be efficiently used without proper big data counter-

measures. As we used R in this project, we had to keep that 

constantly in mind. 

Another huge challenge was to create efficient features. Feature 

creation is one of the most important steps in solving a supervised 

learning problem. To this end we developed many features which 

can be grouped into the following sets: ad-based statistical 

features, unknown-users imputation features, user-based statistical 

features, context-based statistical features and cross-product 

statistical features.  

In this paper, we describe how we handled the challenges 

described above. Section 2 briefly describes the dataset and how 

we split this data for model training. Section 3 outlines the 

algorithms we used. Section 4 shows the performance 

measurement. Section 5 is about our approach to this task, it 

describes our training methods and features. Section 6 presents 

our results, section 7 discusses some aspects of our solution, and 

section 8 presents our conclusions. 

2. DATASET 
The provided dataset [1] consisted of two datasets, one for 

performance evaluation (test set) with 20,297,594 instances and 

another for training with 149,639,105 instances. The datasets 

structure is presented in  Table 1.  

 Table 1. Description of KDD dataset.  

Column Description Type 

Click Number of times an ad 

was clicked 

Output 

(train only) 

Impression Number of times an ad 

was printed 

Output 

(train only) 

Depth Number of printed ads in 

the user screen 

Context-based 

Position Position of ad in the user 

screen 

Context-based 

DisplayURL Hash of URL Ad-based 

AdID Advertise id Ad-based 

AdvertiserID Advertiser id Ad-based 

KeywordID Keyword id Ad-based 

KeywordTokens Word tokens expanded 

from KeywordID 

Ad-based 

TitleID Title id Ad-based 

TitleTokens Word tokens expanded 

from TitleID 

Ad-based 

DescriptionID Description id Ad-based 

DescriptionTokens Word tokens expanded 

from DescriptionID 

Ad-based 

UserID User id User-based 

Age Age of an user, expanded 

from UserID 

User-based 

Gender Gender of an user, 

expanded from UserID. 

User-based 

QueryID Query id User-based 

QueryTokens Word tokens expanded 

from QueryID 

User-based 

 

Table 1 shows the dataset structure. As we can see KDD data was 

grouped in four categories:  

 Output: the data to be predicted and presented only in 

training set. 



 Context-based: represents interaction’s properties 

between user and the advertisement 

 Ad-based: features representing properties of the 

advertisement. Some of them point to a list of word 

tokens. 

 User-based: features representing user properties. The 

UserID feature points to a file mapping age and gender 

and the QueryID points to a list of word tokens. 

This classification scheme of input variables was very important 

in the feature creation step as it allowed us to define the cross-

context interactions we used to build our final model. 

2.1 Training set split 
The training set was split in two parts, trying to replicate between 

these parts the same relationship the original training set and test 

set had. It was done to ensure that our training method had to deal 

with a significant number of ad/users with no history.  That 

decision played a huge role in our final standing as it allowed our 

internal training sets to reflect properly the competition test set.  

Since the instances didn’t have a timestamp to do a temporal 

separation, this was done keeping the history distribution of ads 

and users as in test set. Figure 1 shows the distribution for the 

official test set, and Figure 2 shows the distribution of ads’ history 

size for the internal sampled set.  

 

Figure 1. Histogram of previous occurrences of Ads - Test set 

 

 

Figure 2. Histogram of previous occurs of Ads – Internal set 

 

After doing this for the AdID feature, that history size likeliness 

followed for all other ad-related features. Unfortunately, that 

didn’t happen for the user-based features QueryID and UserID. In 

that case, we synthetically anonymized the users of about 3 

million instances. We randomly sampled in our internal set 

(changed their ids to an unknown one) and selecting about 1.5 

million instances of queries independently using the same 

procedure. 

3. ALGORITHMS 
In this work we have used mainly three machine learning 

algorithms, most of them on the R statistical environment. Table 2 

gives a brief description of how each algorithm was employed. 

The rest of this section outlines these algorithms in more detail. 

Table 2. Used algorithms 

Algorithm Used for 

Vowpal Wabbit [2] Bag of words related models 

LME [3] Statistical features creation 

GBM [4] Model training 

3.1 Vowpal Wabbit 
The Vowpal Wabbit (VW) project is an intrinsically fast out-of-

core learning system, sponsored by Yahoo! [2], that runs on a 

online learning platform. It provides several loss functions as well 

as learning algorithms. VW also provide a sparse matrix input 

format which easily allows a bag of words model.    

In our solution it was used for two different tasks as described 

next. 

3.1.1 One against all 
VW provides built-in one against all (OOA) training mode (-ooa 

option). It just needs to be fed with a multi-class dataset. In this 

work we used OOA to do gender and age imputation. Squared 

loss function (1) was used for this:   

  (   )  
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where 

 p represents the prediction.  

 y the desired output.  

 l(p, y) represents the deviation  between this values.  

In OOA, as many models as distinct output classes are trained. 

Each model describes the probability of an output class occurring. 

The predicted class is chosen based on the highest probability 

found. 

3.1.2 Bag of words 
In a bag of words model, a sparse binary vector is used to 

represent the presence of a word. VW input format natively 

supports this.  

In our approach, the bag of words model was used to predict the 

probability of each word based feature (word tokens) being 

present on a clicked instance. The loss function (1) was also used 

for this model. 

3.2 LME – Linear Mixed Effects 
The linear mixed effects (LME) model may be viewed as a 

generalization of the variance component and regression analysis 

models. When the number of categorical values is small and the 

number of observations per category is large, we treat the cluster-

specific coefficients as fixed and ordinary regression analysis with 

dummy variables applies. Such a model is called a fixed effects 

model. Vice versa, when the number of categorical values is large 

but the number of observations per category is relatively small, 

and a random effects model would be more appropriate. Penalized 

likelihood is frequently used to cope with parameter 

multidimensionality [6].  



We used the R nlme library [3] for statistical features creation. 

The lme (linear mixed effects) function in the nlme library 

employs the Laird-Ware form of the linear mixed model [7]. 
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where 

 yij is the value of the response variable. 

 β are the fixed-effect coefficients. 

 x are the fixed-effect regressors. 

 b are the random-effect coefficients for each categorical 

value. 

 z are the random-effect regressors. 

 ψ2
k are the variances and ψkk’ the covariances among 

the random effects. 

 ε is the error. 

 σ2λijj’ are the covariances between errors. 

3.3 GBM – Generalized Boosted Models 
GBM was used to train our final submission models. We used the 

GBM package [4] in the R environment with the AdaBoost 

distribution function [8].  

The R GBM package implements boosting for models commonly 

used in statistics. The GBM algorithm is as follows [9]: 

 

Algorithm 1 - Boosting algorithm 

where:  

 F(x) is the function we want to minimize 

 L(y, p) is the loss function 

 y is the output 

 p is the prediction 

 M is number of trees 

 h(x; a) is a “weak learner”or “base learner” usually trees 

4. EVALUATION METRIC 
The evaluation metric for task 2 was Area Under Curve (AUC), 

which can be viewed as the probability that a classifier will rank a 

randomly chosen positive instance higher than a randomly chosen 

negative one [15]. An AUC score of 1 indicates the perfect 

classifier and an AUC score of 0.5 indicates that a classifier is 

close to the random classifier and has no statistical value. More 

details about this metric can be found in [10]. 

5. OUR APPROACH 
In this work, we split the training set as explained in section 2 

generating two training subsets tr1 and tr2.   

Features were created using tr1 subset for model training and 

using the full training set for prediction.  

Models were trained using likelihood calculated with tr1 (history 

set) applied to tr2 (training/validation set). Next, submission 

outputs were predicted using likelihood calculated with the whole 

training set (submission history set) and the model previously 

trained. Figure 3 summarize this process. 

 

Figure 3. Diagram summarizing our approach. 

5.1 Features creation 
Features were created in three fashions: imputation, bag of words 

features and statistical history features. These three sets of 

features are explained next. 

5.1.1 Imputation 
Over 25% of the dataset consisted of unknown users. That’s a 

considerable amount of data. To work around this, missing gender 

and age were imputed using the query word tokens since they 

were user generated. This prediction was made with the one 

against all option of the VW algorithm with default options. No 

feature pre-processing was needed because VW provides native 

support for this kind of input.  

Known users in the submission set were used to train the 

imputation model. Accuracy was measured in the known users of 

the training set. Table 3 shows the imputation accuracy. The low 

level of accuracy for age and the large discrepancy in age/gender 

accuracy can be partially explained by the fact that gender has two 

distinct classes and age has six. Another reason behind this is the 

fact that the only feature we could use here was the QueryID. 

Table 3. Imputation accuracy 

Feature Accuracy  

Age 33.28% 

Gender 62.85% 

 

In order to not introduce some noise due to inaccuracy of 

imputation, the calculated values were not imputed as real class 



values. Instead, new levels were introduced creating the concept 

of “maybe man”, “maybe woman”, maybe 0-12 years” and so on. 

The unknown user ids were also replaced by a combination of 

imputed gender and age, effectively clustering them based on the 

query tokens. 

 

Figure 4. AUC of Original x Imputed cross feature 

In Figure 4, we can see the AUC of a cross-product (DisplayURL 

x Age and DisplayURL x Gender) feature with both the original 

and imputed versions of Age and Gender. In both cases it shows 

an improvement of 0.135 in the AUC when using the imputed 

version. These values of AUC were measured in the internal 

validation set. 

5.1.2 Bag of words 
Likelihoods of keyword, query and title were calculated using 

their tokens lists with the VW algorithm. The likelihood of the 

cross-product (more on this soon) of these tokens with user-based 

variables (Gender, Age) and context-based variables (Deph, 

Position) were also calculated.  

Figure 5 shows the AUC score difference between the original 

word feature (e.g. KeywordID) and the token based feature 

(KeywordTokens).  The original feature usually scores higher, but 

for features with lower history it is better to use the token based 

one (shrinkage). That trend is also shown on the figure. The 

KeywordID feature has a higher average history size (125 

previous ocurrences per id) than the QueryID feature (7.5 

previous occurrences per ID); hence, the overall performance 

difference of the two versions of the KeywordID is higher when 

compared to the QueryID one. 

 

Figure 5. WordFeatureID x WordFeatureToken AUC 

5.1.3 LME 
LME were used to transform categorical variables with many 

values (more than 15) in likelihood using shrinkage. To check the 

quality of this shrunken likelihood, we compared the AUC of 

some these features with the equivalent benchmark scores posted 

on the leaderboard (raw likelihood benchmarks). It is shown on 

Figure 6. 

As shown in Figure 6, most of the gain occurs in “UserID” and 

“QueryID”. These two variables have lower average history sizes 

(7.5 previous occurrences per ID) and therefore lower confidence 

in calculated averages. On the other hand, “AdvertiserID”  has the 

highest average history size (15,000 previous occurrences per ID).  

 

Figure 6. LME x Benchmark AUC comparison 

Another reason to use the LME feature instead of raw averages 

was to gather the low confidence likelihoods around the same 

value, making it easier for the training method to identify these 

values and apply the shrinkage procedure. Table 4 presents this 

comparison. It compares some rank variation statistics between 

the LME and benchmark ad feature when the AdID have less than 

6 previous occurrences. The most clickable variable is ranked 1 

and the worst clickable instance 20,297,594. Their scores 

measured in AUC are about the same, but the LME places all of 

them closer: around the 7,652,317 position with a standard 

deviation of 641,480 positions. The raw maximum likelihood 

benchmark places them around the 7,962,020 position with a 

standard deviation of 4,081,248. 

Table 4. LME x Benchmark rank variation for ads with 

history lower than 5. Rank 1 is best and 20,29,759 worst. Total 

of 1,207,387 instances 

Method Mean STD Min Max 

LME 7,652,317 641,480 333,855  9,288,149 

Raw ML 7,962,020 4,081,248 1,067 19,828,987 

5.1.4 Cross-product features 
Cross-product features were made by combining categorical 

variables of large domain (all IDs) and the ones with little domain 

(Gender, Age, Depth, Position). These new variables were also 

used in the likelihood calculations as discussed previously.  

Cross-products between two variables are made by collapsing 

their ids into a single composite id, e.g., AdID_1 (ad with ID 1) 

and Gender_1 (Gender with value 1) will produce the new 

composite id “AdID_1_Gender_1” which is different from the id 

produced by the cross-product of AdID_1 and Gender_2 

(“AdID_1_Gender_2”).  

5.1.5 Feature List 
Table 5 presents all calculated features, and the method used for 

calculating each. An underscore is used to indicate a cross-product 

between features. The features are grouped by the base feature 

used to produce it (Origin). 



These features were inspired on [11], but instead of using decision 

rules, we decided to create cross-products and let the training 

method express that rule with coefficients. 

Our motivation for generating such cross-product features was to 

get a glimpse of the most specific measurement for each instance 

(e.g., likelihood of a male teenager user when shown ad X at 

position Y …), and at the same time have more generic features to 

be used when that context didn’t have enough history. That 

decision was left up to the training algorithm to detect once the 

low confidence values were placed around each other by the LME 

calculation. 

Table 5. List of calculated features 

Origin Method  Features 

AdID LME 

AdID, AdID_Gender, 

AdID_Gender_Age, AdID_Pos, 

AdID_Pos_Dep, 
AdID_Pos_Dep_Gender 

DisplayURL LME 

DisplayURL, DisplayURL_Gender, 

DisplayURL_Gender_Age, 
DisplayURL_Pos, 

DisplayURL_Pos_Dep, 

DisplayURL_Pos_Dep_Gender 

AdvertiserID LME 

AdvertiserID, AdvertiserID_Gender, 

AdvertiserID_Gender_Age, 

AdvertiserID_Pos, 
AdvertiserID_Pos_Dep, 

AdvertiserID_Pos_Dep_Gender 

KeywordID LME 

KeywordID, KeywordID_Gender, 
KeywordID_Gender_Age, 

KeywordID_Pos, KeywordID_Pos_Dep, 

KeywordID_Pos_Dep_Gender 

KeywordID 

Tokens 
VW 

KeywordTokens, KeywordTokens_Age, 

KeywordTokens_Gender, 

KeywordTokens_Pos_Dep_Gender 

TitleID LME 

TitleID, TitleID_Gender, 
TitleID_Gender_Age, TitleID_Pos, 

TitleID_Pos_Dep, 

TitleID_Pos_Dep_Gender 

TitleID Tokens VW 
TitleTokens, TitleTokens_Age, 

TitleTokens_Gender, 

TitleTokens_Pos_Dep_Gender 

DescriptionID LME 

DescriptionID, DescriptionID_Gender, 

DescriptionID_Gender_Age, 

DescriptionID_Pos, 
DescriptionID_Pos_Dep, 

DescriptionID_Pos_Dep_Gender 

DescriptionID 

Tokens 
VW 

DescriptionTokens, 
DescriptionTokens_Age, 

DescriptionTokens_Gender, 

DescriptionTokens_Pos_Dep_Gender 

UserID LME 
UserID,  UserID_Pos,  

UserID_Pos_Depth 

QueryID LME 

QueryID, QueryID_Gender, 
QueryID_Gender_Age, QueryID_Pos, 

QueryID_Pos_Dep, 

QueryID_Pos_Dep_Gender 

QueryID 

Tokens 
VW 

QueryTokens, QueryTokens_Age, 
QueryTokens_Gender, 

QueryTokens_Pos_Dep_Gender 

5.2 Training Method 
After creating the statistical features as described above, we 

trained our models with GBM. For this training, we built the 

features with tr1 subset only (Figure 3) and used them on tr2 

subset for training and validation.  

Before training, we exploded tr2 subset creating one instance per 

impression (i.e., click instances positive and the remainder 

negative). After this, the GBM training had about 20 million 

training instances of binary outputs.  

That training was made in three flavors:  

1. Using a sampling of four millions instances and the 

adaboost distribution, once it optimizes AUC [12] 

(Birutas’s team).  

2. With a downsampling of two millions with a proportion 

of one positive to one negative sample and used the 

Bernoulli distribution (Birutas’s team). 

3. Same sampling as before but with a different set of 

features and instances of the dataset to train on (Team 

DL). 

The final model was an ensemble of them all.   

5.3 Model Ensemble 
The ensemble was introduced in our model a few days before the 

competition ended. At that time it wasn’t possible to do a proper 

ensemble because we lost some internal data and had only the 

submitted data at reach. There wasn’t enough time to generate it 

again.  

Because of these constraints the ensemble was done using only 

the submission files for our models. We calculated the ranks of 

each prediction, 1 being the most likely to be clicked and 

20,297,594 the most unlikely one. The final model was just a 

simple average of these ranks. It is very likely that this procedure 

produced a suboptimal ensemble and probably impacted our final 

standings. The results of this ensemble will be presented in the 

results section. 

5.4 Implementation Details 
As mentioned in the introduction, one of challenges of this task 

was to deal with a fairly large datasets. To handle it, we had to 

constantly use file-backed solutions and do some sampling. 

Actions we took to work this out: 

 We always processed the data in chunks. In R we used 

the ff package [16] , and always processed it in chunks. 

As for VW, it is already an on-line learning platform 

with native chunk processing. 

 LME requires loading the whole data in memory, and 

for this dataset it was not feasible. Our solution was to 

build a table with the raw counts of click and 

impression whenever we want to calculate a statistical 

feature with LME. The effect of this method was to 

group all occurrences of each id (composite included) 

into a single instance and use weights for each instance 

when training. 

 For the GBM training we couldn’t load all data into 

memory, so we sampled it. We did a uniform sampling 

of 4 million positive instances and a downsampling of 

the negative instances. 

6. RESULTS 
Figure 7 shows the milestones of our solution. As we built the 

features described in section 5, our score was slowly evolving.  

As we can see in Figure 7, our first model was a single feature 

model, analogous to the advertiser benchmark, which scored 0.69. 

Then we made small adjustments until we beat the benchmark 

with a 0.72 AUC score. Next, we built more single features (no 

cross-product) and did a linear regression with them, reaching 

0.74. The next milestone was very similar, except that the features 

were ensembled with GBM. It scored about 0.78. Finally we 

included query tokens features (bag of words) as a proof of 



concept and the score went up again. So we added all cross-

products and reached over 0.79. After this, we merged our teams 

(Birutas & Team DL) and ensembled our models, achieving 0.8. 

In our final attempt, we could only train a version of our 

imputated model once, without any parameter tuning, and 

achieved our final score of 0.80166.  

 

Figure 7. Score evolution 

Our procedure generalizes well since the best solution has 

0.80166 AUC score on private leaderboard (unknown during 

competition) against 0.79808 in public leaderboard (known during 

competition), a difference consistent with the one seem on most 

leading teams as we can see in Table 6. 

Table 6. Final results 

Rank Team Public Score Final Score 

1 Catch up 0.80697 0.80893 

2 Opera Solutions 0.80524 0.80824 

3 Steffen Rendle 0.79857 0.80178 

4 Birutas & Team DL 0.79872 0.80166 

5 UCenter 0.79801 0.79995 

7. DISCUSSION 
In this work, we provide a simple and efficient approach to predict 

CTR. Our solution was to create simple and composite statistical 

features, as described in section 5 and use them to train a GBM 

model. The authors of [11] suggest that CTR is influenced by an 

ads’ content and its position. They propose an approach where the 

probability of an ad being clicked is calculated as a function of its 

position and its content independently and then multiplied to find 

the joint probability given both position and content. Our method 

was loosely based on the proposed method. We took into account 

not just the context-based variables (position and depth) and ad-

based features but also user-based ones. We create several 

statistical features for each group (context, content and user) and 

then cross-product features were created mixing these three 

groups (Table 5). These cross-products features were the 

equivalent (not equal) in our work to the product of probabilities 

proposed in [11]. 

To calculate the likelihood of statistical features either simple or 

composite, we use VW and LME, mostly the latter (Table 5). As 

described in [6]. LME handles well large categorical variables 

with many values and data with low confidence by doing 

shrinkage on this data. The gain of using LME over raw 

likelihood of cross-products is expected to be greater than the gain 

for single features (red bars in Figure 6). That’s because cross-

product features in general have larger domain than the simple 

features. In addition to LME, we used VW to create statistical 

features based on bag of words and to do imputation. We choose 

VW for this task because it can handle huge datasets, and it has a 

very flexible input format.  

Finally, we trained our models with GBM using adaboost and 

bernoulli distributions. Some of the models weren’t trained with 

the same samples, and due to the deadline we couldn’t generate 

features to do a proper ensemble, instead using a simple 

arithmetic mean of the instances’ rank. The results for doing a 

proper ensemble using a good ML technique is expected to be 

greater.  

8. CONCLUSION 
Our proposed solution was quite simple and yet efficient. We 

have shown that with simple feature engineering and a good 

training algorithm it is possible to achieve high precision CTR 

prediction. The most important steps were choosing a reliable 

dataset for training, creating good composite features and 

handling large categorical variables with low average history. 

Some improvement was also achieved with the imputation 

procedure for unknown users. And finally, to sum it up, choosing 

a classification algorithm capable of discovering the relationship 

between the features was crucial to have some accuracy in 

predicting sessions for new users and advertisements. 

9. ACKNOWLEDGMENTS 
We would like to thank the organizers of this year’s KDD Cup 

competition as well as Tecent for making the dataset available. 

We would also like to acknowledge DTI Sistemas for helping us 

to present at the KDD workshop. 

10. REFERENCES 
[1] Yanzhi Niu, Yi Wang, Gordon Sun, Aden Yue, Brian 

Dalessandro, Claudia Perlich, Ben Hamner "The Tencent 

Dataset and KDD-Cup'12". KDD-Cup Workshop, 2012. 

[2] John Langford, Alekh Agarwal, Miroslav Dudik, Daniel Hsu, 

Nikos Karampatziakis, Olivier Chapelle, Paul Mineiro, Matt 

Hoffman, Jake Hofman, Sudarshan Lamkhede, Shubham 

Chopra, Ariel Faigon, Lihong Li, Gordon Rios, and Alex 

Strehl. 2012. Vowpal Wabbit a fast out-of-core learning 

system. 

https://github.com/JohnLangford/vowpal_wabbit/wiki. 

[3] Douglas Bates, Martin Maechler and Ben Bolker. 2012. 

LME4: Linear mixed-effects models using S4 classes. 

http://cran.r-project.org/web/packages/lme4//index.html. 

[4] Greg Ridgeway. gbm: Generalized Boosted Regression 

Models. http://cran.r-

project.org/web/packages/gbm/index.html, 2012 

[5] Salford Systems. TreeNet® Gradient Boosting. 

http://www.salford-systems.com/en/products/treenet, 2012 

[6] Eugene Demidenko. Mixed Models: Theory and 

Applications. 

http://www.dartmouth.edu/~eugened/index.php?section=sum

mary_points, 2012 

[7] Laird, N. M. & J. H. Ware. 1982. “Random-Effects Models 

for Longitudinal Data.” Biometrics 38:963—974. 



[8] Greg Ridgeway. Generalized Boosted Models: A guide to the 

gbm package, 2007 

[9] Jerome H. Friedman. Greedy Function Approximation: A 

Gradient Boosting Machine. Reitz Lecture, 2001 

[10] Tom Fawcett. ROC Graphs: Notes and Practical 

Considerations for Researchers. 2004. 

[11] Krzysztof Dembczy´ nski, Wojciech Kotłowski, Dawid 

Weiss. Predicting Ads’ Click-Through Rate with Decision 

Rules. 2008. 

[12] Cynthia Rudin, Robert E. Schapire . Margin-based Ranking 

and an Equivalence between AdaBoost and RankBoost. The 

Journal of Machine Learning Research. p 2193-2232, vol. 10, 

2009. 

[13] Tecent. http://www.tencent.com/zh-cn/index.shtml. 2012 

[14] R. The R Project for Statistical Computing. http://www.r-

project.org/, 2012 

[15] KDD Cup 2012 evaluation Metric. 

https://www.kddcup2012.org/c/kddcup2012-

track2/details/Evaluation, 2012 

[16] Daniel Adler, Christian Gläser, Oleg Nenadic, Jens 

Oehlschlägel, Walter Zucchini. ff: memory-efficient storage 

of large data on disk and fast access functions. http://cran.r-

project.org/web/packages/ff/index.html, 2012 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


