
A Feature Engineering Approach for Click-Through Rate

Prediction: KDD CUP Track 2
Lucas Silva

Belo Horizonte 30330-110, Brazil

lucas.eustaquio@gmail.com

Aaron Davis
DataLabs

Maryland 20876-4063, USA

aaron@datalabusa.com

Henrique Ribeiro
UFMG - ICB

Belo Horizonte 30330-220, Brazil

deassis.info@gmail.com

ABSTRACT

This paper describes detailed information about our approach to

the task 2 of KDD Cup 2012. It presents the problem of ranking

the click-through rate (CTR) of advertisements. The CTR is used

in search advertising to rank ads and to price clicks.

We cast this task as a binary classification problem and addressed

it utilizing gradient boosted decision trees. To make this possible,

we created five sets of predictive features: ad-based statistical

features, unknown-users imputation features, user-based statistical

features, context-based statistical features and cross product

statistical features. These statistical features were created using

linear mixed effects and bag of words models. This approach

granted us 4th place, above the performance mark of 0.8 (AUC).

Categories and Subject Descriptors

I.2.6 [Machine Learning]: Engineering applications

General Terms

Algorithms, Experimentation

Keywords

KDD Cup, feature engineering, linear-mixed-effects, gradient

boosted decision trees, bag of words, machine learning,

recommender systems.

1. INTRODUCTION
The “KDD Cup 2012 Track 2” contest posed the challenge of

ranking advertisements’ CTRs. A dataset containing ads’ click

history was provided by Tecent [12], and our task was to rank the

CTRs of about 20 million ads-user sessions. A detailed

description of the dataset can be found on [1].

A big challenge in this task was dealing with a massive dataset:

there were 22,023,547 users, 641,707 ads over 149,639,105

sessions. For a dataset this size, commonly statistical software like

R [14] cannot be efficiently used without proper big data counter-

measures. As we used R in this project, we had to keep that

constantly in mind.

Another huge challenge was to create efficient features. Feature

creation is one of the most important steps in solving a supervised

learning problem. To this end we developed many features which

can be grouped into the following sets: ad-based statistical

features, unknown-users imputation features, user-based statistical

features, context-based statistical features and cross-product

statistical features.

In this paper, we describe how we handled the challenges

described above. Section 2 briefly describes the dataset and how

we split this data for model training. Section 3 outlines the

algorithms we used. Section 4 shows the performance

measurement. Section 5 is about our approach to this task, it

describes our training methods and features. Section 6 presents

our results, section 7 discusses some aspects of our solution, and

section 8 presents our conclusions.

2. DATASET
The provided dataset [1] consisted of two datasets, one for

performance evaluation (test set) with 20,297,594 instances and

another for training with 149,639,105 instances. The datasets

structure is presented in Table 1.

 Table 1. Description of KDD dataset.

Column Description Type

Click Number of times an ad

was clicked

Output

(train only)

Impression Number of times an ad

was printed

Output

(train only)

Depth Number of printed ads in

the user screen

Context-based

Position Position of ad in the user

screen

Context-based

DisplayURL Hash of URL Ad-based

AdID Advertise id Ad-based

AdvertiserID Advertiser id Ad-based

KeywordID Keyword id Ad-based

KeywordTokens Word tokens expanded

from KeywordID

Ad-based

TitleID Title id Ad-based

TitleTokens Word tokens expanded

from TitleID

Ad-based

DescriptionID Description id Ad-based

DescriptionTokens Word tokens expanded

from DescriptionID

Ad-based

UserID User id User-based

Age Age of an user, expanded

from UserID

User-based

Gender Gender of an user,

expanded from UserID.

User-based

QueryID Query id User-based

QueryTokens Word tokens expanded

from QueryID

User-based

Table 1 shows the dataset structure. As we can see KDD data was

grouped in four categories:

 Output: the data to be predicted and presented only in

training set.

 Context-based: represents interaction’s properties

between user and the advertisement

 Ad-based: features representing properties of the

advertisement. Some of them point to a list of word

tokens.

 User-based: features representing user properties. The

UserID feature points to a file mapping age and gender

and the QueryID points to a list of word tokens.

This classification scheme of input variables was very important

in the feature creation step as it allowed us to define the cross-

context interactions we used to build our final model.

2.1 Training set split
The training set was split in two parts, trying to replicate between

these parts the same relationship the original training set and test

set had. It was done to ensure that our training method had to deal

with a significant number of ad/users with no history. That

decision played a huge role in our final standing as it allowed our

internal training sets to reflect properly the competition test set.

Since the instances didn’t have a timestamp to do a temporal

separation, this was done keeping the history distribution of ads

and users as in test set. Figure 1 shows the distribution for the

official test set, and Figure 2 shows the distribution of ads’ history

size for the internal sampled set.

Figure 1. Histogram of previous occurrences of Ads - Test set

Figure 2. Histogram of previous occurs of Ads – Internal set

After doing this for the AdID feature, that history size likeliness

followed for all other ad-related features. Unfortunately, that

didn’t happen for the user-based features QueryID and UserID. In

that case, we synthetically anonymized the users of about 3

million instances. We randomly sampled in our internal set

(changed their ids to an unknown one) and selecting about 1.5

million instances of queries independently using the same

procedure.

3. ALGORITHMS
In this work we have used mainly three machine learning

algorithms, most of them on the R statistical environment. Table 2

gives a brief description of how each algorithm was employed.

The rest of this section outlines these algorithms in more detail.

Table 2. Used algorithms

Algorithm Used for

Vowpal Wabbit [2] Bag of words related models

LME [3] Statistical features creation

GBM [4] Model training

3.1 Vowpal Wabbit
The Vowpal Wabbit (VW) project is an intrinsically fast out-of-

core learning system, sponsored by Yahoo! [2], that runs on a

online learning platform. It provides several loss functions as well

as learning algorithms. VW also provide a sparse matrix input

format which easily allows a bag of words model.

In our solution it was used for two different tasks as described

next.

3.1.1 One against all
VW provides built-in one against all (OOA) training mode (-ooa

option). It just needs to be fed with a multi-class dataset. In this

work we used OOA to do gender and age imputation. Squared

loss function (1) was used for this:

 ()

() (1)

where

 p represents the prediction.

 y the desired output.

 l(p, y) represents the deviation between this values.

In OOA, as many models as distinct output classes are trained.

Each model describes the probability of an output class occurring.

The predicted class is chosen based on the highest probability

found.

3.1.2 Bag of words
In a bag of words model, a sparse binary vector is used to

represent the presence of a word. VW input format natively

supports this.

In our approach, the bag of words model was used to predict the

probability of each word based feature (word tokens) being

present on a clicked instance. The loss function (1) was also used

for this model.

3.2 LME – Linear Mixed Effects
The linear mixed effects (LME) model may be viewed as a

generalization of the variance component and regression analysis

models. When the number of categorical values is small and the

number of observations per category is large, we treat the cluster-

specific coefficients as fixed and ordinary regression analysis with

dummy variables applies. Such a model is called a fixed effects

model. Vice versa, when the number of categorical values is large

but the number of observations per category is relatively small,

and a random effects model would be more appropriate. Penalized

likelihood is frequently used to cope with parameter

multidimensionality [6].

We used the R nlme library [3] for statistical features creation.

The lme (linear mixed effects) function in the nlme library

employs the Laird-Ware form of the linear mixed model [7].

 (
) () (2)

 () ()

where

 yij is the value of the response variable.

 β are the fixed-effect coefficients.

 x are the fixed-effect regressors.

 b are the random-effect coefficients for each categorical

value.

 z are the random-effect regressors.

 ψ2
k are the variances and ψkk’ the covariances among

the random effects.

 ε is the error.

 σ2λijj’ are the covariances between errors.

3.3 GBM – Generalized Boosted Models
GBM was used to train our final submission models. We used the

GBM package [4] in the R environment with the AdaBoost

distribution function [8].

The R GBM package implements boosting for models commonly

used in statistics. The GBM algorithm is as follows [9]:

Algorithm 1 - Boosting algorithm

where:

 F(x) is the function we want to minimize

 L(y, p) is the loss function

 y is the output

 p is the prediction

 M is number of trees

 h(x; a) is a “weak learner”or “base learner” usually trees

4. EVALUATION METRIC
The evaluation metric for task 2 was Area Under Curve (AUC),

which can be viewed as the probability that a classifier will rank a

randomly chosen positive instance higher than a randomly chosen

negative one [15]. An AUC score of 1 indicates the perfect

classifier and an AUC score of 0.5 indicates that a classifier is

close to the random classifier and has no statistical value. More

details about this metric can be found in [10].

5. OUR APPROACH
In this work, we split the training set as explained in section 2

generating two training subsets tr1 and tr2.

Features were created using tr1 subset for model training and

using the full training set for prediction.

Models were trained using likelihood calculated with tr1 (history

set) applied to tr2 (training/validation set). Next, submission

outputs were predicted using likelihood calculated with the whole

training set (submission history set) and the model previously

trained. Figure 3 summarize this process.

Figure 3. Diagram summarizing our approach.

5.1 Features creation
Features were created in three fashions: imputation, bag of words

features and statistical history features. These three sets of

features are explained next.

5.1.1 Imputation
Over 25% of the dataset consisted of unknown users. That’s a

considerable amount of data. To work around this, missing gender

and age were imputed using the query word tokens since they

were user generated. This prediction was made with the one

against all option of the VW algorithm with default options. No

feature pre-processing was needed because VW provides native

support for this kind of input.

Known users in the submission set were used to train the

imputation model. Accuracy was measured in the known users of

the training set. Table 3 shows the imputation accuracy. The low

level of accuracy for age and the large discrepancy in age/gender

accuracy can be partially explained by the fact that gender has two

distinct classes and age has six. Another reason behind this is the

fact that the only feature we could use here was the QueryID.

Table 3. Imputation accuracy

Feature Accuracy

Age 33.28%

Gender 62.85%

In order to not introduce some noise due to inaccuracy of

imputation, the calculated values were not imputed as real class

values. Instead, new levels were introduced creating the concept

of “maybe man”, “maybe woman”, maybe 0-12 years” and so on.

The unknown user ids were also replaced by a combination of

imputed gender and age, effectively clustering them based on the

query tokens.

Figure 4. AUC of Original x Imputed cross feature

In Figure 4, we can see the AUC of a cross-product (DisplayURL

x Age and DisplayURL x Gender) feature with both the original

and imputed versions of Age and Gender. In both cases it shows

an improvement of 0.135 in the AUC when using the imputed

version. These values of AUC were measured in the internal

validation set.

5.1.2 Bag of words
Likelihoods of keyword, query and title were calculated using

their tokens lists with the VW algorithm. The likelihood of the

cross-product (more on this soon) of these tokens with user-based

variables (Gender, Age) and context-based variables (Deph,

Position) were also calculated.

Figure 5 shows the AUC score difference between the original

word feature (e.g. KeywordID) and the token based feature

(KeywordTokens). The original feature usually scores higher, but

for features with lower history it is better to use the token based

one (shrinkage). That trend is also shown on the figure. The

KeywordID feature has a higher average history size (125

previous ocurrences per id) than the QueryID feature (7.5

previous occurrences per ID); hence, the overall performance

difference of the two versions of the KeywordID is higher when

compared to the QueryID one.

Figure 5. WordFeatureID x WordFeatureToken AUC

5.1.3 LME
LME were used to transform categorical variables with many

values (more than 15) in likelihood using shrinkage. To check the

quality of this shrunken likelihood, we compared the AUC of

some these features with the equivalent benchmark scores posted

on the leaderboard (raw likelihood benchmarks). It is shown on

Figure 6.

As shown in Figure 6, most of the gain occurs in “UserID” and

“QueryID”. These two variables have lower average history sizes

(7.5 previous occurrences per ID) and therefore lower confidence

in calculated averages. On the other hand, “AdvertiserID” has the

highest average history size (15,000 previous occurrences per ID).

Figure 6. LME x Benchmark AUC comparison

Another reason to use the LME feature instead of raw averages

was to gather the low confidence likelihoods around the same

value, making it easier for the training method to identify these

values and apply the shrinkage procedure. Table 4 presents this

comparison. It compares some rank variation statistics between

the LME and benchmark ad feature when the AdID have less than

6 previous occurrences. The most clickable variable is ranked 1

and the worst clickable instance 20,297,594. Their scores

measured in AUC are about the same, but the LME places all of

them closer: around the 7,652,317 position with a standard

deviation of 641,480 positions. The raw maximum likelihood

benchmark places them around the 7,962,020 position with a

standard deviation of 4,081,248.

Table 4. LME x Benchmark rank variation for ads with

history lower than 5. Rank 1 is best and 20,29,759 worst. Total

of 1,207,387 instances

Method Mean STD Min Max

LME 7,652,317 641,480 333,855 9,288,149

Raw ML 7,962,020 4,081,248 1,067 19,828,987

5.1.4 Cross-product features
Cross-product features were made by combining categorical

variables of large domain (all IDs) and the ones with little domain

(Gender, Age, Depth, Position). These new variables were also

used in the likelihood calculations as discussed previously.

Cross-products between two variables are made by collapsing

their ids into a single composite id, e.g., AdID_1 (ad with ID 1)

and Gender_1 (Gender with value 1) will produce the new

composite id “AdID_1_Gender_1” which is different from the id

produced by the cross-product of AdID_1 and Gender_2

(“AdID_1_Gender_2”).

5.1.5 Feature List
Table 5 presents all calculated features, and the method used for

calculating each. An underscore is used to indicate a cross-product

between features. The features are grouped by the base feature

used to produce it (Origin).

These features were inspired on [11], but instead of using decision

rules, we decided to create cross-products and let the training

method express that rule with coefficients.

Our motivation for generating such cross-product features was to

get a glimpse of the most specific measurement for each instance

(e.g., likelihood of a male teenager user when shown ad X at

position Y …), and at the same time have more generic features to

be used when that context didn’t have enough history. That

decision was left up to the training algorithm to detect once the

low confidence values were placed around each other by the LME

calculation.

Table 5. List of calculated features

Origin Method Features

AdID LME

AdID, AdID_Gender,

AdID_Gender_Age, AdID_Pos,

AdID_Pos_Dep,
AdID_Pos_Dep_Gender

DisplayURL LME

DisplayURL, DisplayURL_Gender,

DisplayURL_Gender_Age,
DisplayURL_Pos,

DisplayURL_Pos_Dep,

DisplayURL_Pos_Dep_Gender

AdvertiserID LME

AdvertiserID, AdvertiserID_Gender,

AdvertiserID_Gender_Age,

AdvertiserID_Pos,
AdvertiserID_Pos_Dep,

AdvertiserID_Pos_Dep_Gender

KeywordID LME

KeywordID, KeywordID_Gender,
KeywordID_Gender_Age,

KeywordID_Pos, KeywordID_Pos_Dep,

KeywordID_Pos_Dep_Gender

KeywordID

Tokens
VW

KeywordTokens, KeywordTokens_Age,

KeywordTokens_Gender,

KeywordTokens_Pos_Dep_Gender

TitleID LME

TitleID, TitleID_Gender,
TitleID_Gender_Age, TitleID_Pos,

TitleID_Pos_Dep,

TitleID_Pos_Dep_Gender

TitleID Tokens VW
TitleTokens, TitleTokens_Age,

TitleTokens_Gender,

TitleTokens_Pos_Dep_Gender

DescriptionID LME

DescriptionID, DescriptionID_Gender,

DescriptionID_Gender_Age,

DescriptionID_Pos,
DescriptionID_Pos_Dep,

DescriptionID_Pos_Dep_Gender

DescriptionID

Tokens
VW

DescriptionTokens,
DescriptionTokens_Age,

DescriptionTokens_Gender,

DescriptionTokens_Pos_Dep_Gender

UserID LME
UserID, UserID_Pos,

UserID_Pos_Depth

QueryID LME

QueryID, QueryID_Gender,
QueryID_Gender_Age, QueryID_Pos,

QueryID_Pos_Dep,

QueryID_Pos_Dep_Gender

QueryID

Tokens
VW

QueryTokens, QueryTokens_Age,
QueryTokens_Gender,

QueryTokens_Pos_Dep_Gender

5.2 Training Method
After creating the statistical features as described above, we

trained our models with GBM. For this training, we built the

features with tr1 subset only (Figure 3) and used them on tr2

subset for training and validation.

Before training, we exploded tr2 subset creating one instance per

impression (i.e., click instances positive and the remainder

negative). After this, the GBM training had about 20 million

training instances of binary outputs.

That training was made in three flavors:

1. Using a sampling of four millions instances and the

adaboost distribution, once it optimizes AUC [12]

(Birutas’s team).

2. With a downsampling of two millions with a proportion

of one positive to one negative sample and used the

Bernoulli distribution (Birutas’s team).

3. Same sampling as before but with a different set of

features and instances of the dataset to train on (Team

DL).

The final model was an ensemble of them all.

5.3 Model Ensemble
The ensemble was introduced in our model a few days before the

competition ended. At that time it wasn’t possible to do a proper

ensemble because we lost some internal data and had only the

submitted data at reach. There wasn’t enough time to generate it

again.

Because of these constraints the ensemble was done using only

the submission files for our models. We calculated the ranks of

each prediction, 1 being the most likely to be clicked and

20,297,594 the most unlikely one. The final model was just a

simple average of these ranks. It is very likely that this procedure

produced a suboptimal ensemble and probably impacted our final

standings. The results of this ensemble will be presented in the

results section.

5.4 Implementation Details
As mentioned in the introduction, one of challenges of this task

was to deal with a fairly large datasets. To handle it, we had to

constantly use file-backed solutions and do some sampling.

Actions we took to work this out:

 We always processed the data in chunks. In R we used

the ff package [16] , and always processed it in chunks.

As for VW, it is already an on-line learning platform

with native chunk processing.

 LME requires loading the whole data in memory, and

for this dataset it was not feasible. Our solution was to

build a table with the raw counts of click and

impression whenever we want to calculate a statistical

feature with LME. The effect of this method was to

group all occurrences of each id (composite included)

into a single instance and use weights for each instance

when training.

 For the GBM training we couldn’t load all data into

memory, so we sampled it. We did a uniform sampling

of 4 million positive instances and a downsampling of

the negative instances.

6. RESULTS
Figure 7 shows the milestones of our solution. As we built the

features described in section 5, our score was slowly evolving.

As we can see in Figure 7, our first model was a single feature

model, analogous to the advertiser benchmark, which scored 0.69.

Then we made small adjustments until we beat the benchmark

with a 0.72 AUC score. Next, we built more single features (no

cross-product) and did a linear regression with them, reaching

0.74. The next milestone was very similar, except that the features

were ensembled with GBM. It scored about 0.78. Finally we

included query tokens features (bag of words) as a proof of

concept and the score went up again. So we added all cross-

products and reached over 0.79. After this, we merged our teams

(Birutas & Team DL) and ensembled our models, achieving 0.8.

In our final attempt, we could only train a version of our

imputated model once, without any parameter tuning, and

achieved our final score of 0.80166.

Figure 7. Score evolution

Our procedure generalizes well since the best solution has

0.80166 AUC score on private leaderboard (unknown during

competition) against 0.79808 in public leaderboard (known during

competition), a difference consistent with the one seem on most

leading teams as we can see in Table 6.

Table 6. Final results

Rank Team Public Score Final Score

1 Catch up 0.80697 0.80893

2 Opera Solutions 0.80524 0.80824

3 Steffen Rendle 0.79857 0.80178

4 Birutas & Team DL 0.79872 0.80166

5 UCenter 0.79801 0.79995

7. DISCUSSION
In this work, we provide a simple and efficient approach to predict

CTR. Our solution was to create simple and composite statistical

features, as described in section 5 and use them to train a GBM

model. The authors of [11] suggest that CTR is influenced by an

ads’ content and its position. They propose an approach where the

probability of an ad being clicked is calculated as a function of its

position and its content independently and then multiplied to find

the joint probability given both position and content. Our method

was loosely based on the proposed method. We took into account

not just the context-based variables (position and depth) and ad-

based features but also user-based ones. We create several

statistical features for each group (context, content and user) and

then cross-product features were created mixing these three

groups (Table 5). These cross-products features were the

equivalent (not equal) in our work to the product of probabilities

proposed in [11].

To calculate the likelihood of statistical features either simple or

composite, we use VW and LME, mostly the latter (Table 5). As

described in [6]. LME handles well large categorical variables

with many values and data with low confidence by doing

shrinkage on this data. The gain of using LME over raw

likelihood of cross-products is expected to be greater than the gain

for single features (red bars in Figure 6). That’s because cross-

product features in general have larger domain than the simple

features. In addition to LME, we used VW to create statistical

features based on bag of words and to do imputation. We choose

VW for this task because it can handle huge datasets, and it has a

very flexible input format.

Finally, we trained our models with GBM using adaboost and

bernoulli distributions. Some of the models weren’t trained with

the same samples, and due to the deadline we couldn’t generate

features to do a proper ensemble, instead using a simple

arithmetic mean of the instances’ rank. The results for doing a

proper ensemble using a good ML technique is expected to be

greater.

8. CONCLUSION
Our proposed solution was quite simple and yet efficient. We

have shown that with simple feature engineering and a good

training algorithm it is possible to achieve high precision CTR

prediction. The most important steps were choosing a reliable

dataset for training, creating good composite features and

handling large categorical variables with low average history.

Some improvement was also achieved with the imputation

procedure for unknown users. And finally, to sum it up, choosing

a classification algorithm capable of discovering the relationship

between the features was crucial to have some accuracy in

predicting sessions for new users and advertisements.

9. ACKNOWLEDGMENTS
We would like to thank the organizers of this year’s KDD Cup

competition as well as Tecent for making the dataset available.

We would also like to acknowledge DTI Sistemas for helping us

to present at the KDD workshop.

10. REFERENCES
[1] Yanzhi Niu, Yi Wang, Gordon Sun, Aden Yue, Brian

Dalessandro, Claudia Perlich, Ben Hamner "The Tencent

Dataset and KDD-Cup'12". KDD-Cup Workshop, 2012.

[2] John Langford, Alekh Agarwal, Miroslav Dudik, Daniel Hsu,

Nikos Karampatziakis, Olivier Chapelle, Paul Mineiro, Matt

Hoffman, Jake Hofman, Sudarshan Lamkhede, Shubham

Chopra, Ariel Faigon, Lihong Li, Gordon Rios, and Alex

Strehl. 2012. Vowpal Wabbit a fast out-of-core learning

system.

https://github.com/JohnLangford/vowpal_wabbit/wiki.

[3] Douglas Bates, Martin Maechler and Ben Bolker. 2012.

LME4: Linear mixed-effects models using S4 classes.

http://cran.r-project.org/web/packages/lme4//index.html.

[4] Greg Ridgeway. gbm: Generalized Boosted Regression

Models. http://cran.r-

project.org/web/packages/gbm/index.html, 2012

[5] Salford Systems. TreeNet® Gradient Boosting.

http://www.salford-systems.com/en/products/treenet, 2012

[6] Eugene Demidenko. Mixed Models: Theory and

Applications.

http://www.dartmouth.edu/~eugened/index.php?section=sum

mary_points, 2012

[7] Laird, N. M. & J. H. Ware. 1982. “Random-Effects Models

for Longitudinal Data.” Biometrics 38:963—974.

[8] Greg Ridgeway. Generalized Boosted Models: A guide to the

gbm package, 2007

[9] Jerome H. Friedman. Greedy Function Approximation: A

Gradient Boosting Machine. Reitz Lecture, 2001

[10] Tom Fawcett. ROC Graphs: Notes and Practical

Considerations for Researchers. 2004.

[11] Krzysztof Dembczy´ nski, Wojciech Kotłowski, Dawid

Weiss. Predicting Ads’ Click-Through Rate with Decision

Rules. 2008.

[12] Cynthia Rudin, Robert E. Schapire . Margin-based Ranking

and an Equivalence between AdaBoost and RankBoost. The

Journal of Machine Learning Research. p 2193-2232, vol. 10,

2009.

[13] Tecent. http://www.tencent.com/zh-cn/index.shtml. 2012

[14] R. The R Project for Statistical Computing. http://www.r-

project.org/, 2012

[15] KDD Cup 2012 evaluation Metric.

https://www.kddcup2012.org/c/kddcup2012-

track2/details/Evaluation, 2012

[16] Daniel Adler, Christian Gläser, Oleg Nenadic, Jens

Oehlschlägel, Walter Zucchini. ff: memory-efficient storage

of large data on disk and fast access functions. http://cran.r-

project.org/web/packages/ff/index.html, 2012

