
An Exact Algorithm to Compute the DCJ Distance
for Genomes with Duplicate Genes

Mingfu Shao1, Yu Lin1,2, and Bernard Moret1

1 Laboratory for Computational Biology and Bioinformatics, EPFL, Lausanne, Switzerland
2 Department of Computer Science and Engineering, University of California, San Diego,

La Jolla, California
{mingfu.shao,yu.lin,bernard.moret}@epfl.ch

Abstract. Computing the edit distance between two genomes is a basic prob-
lem in the study of genome evolution. The double-cut-and-join (DCJ) model has
formed the basis for most algorithmic research on rearrangements over the last
few years. The edit distance under the DCJ model can be computed in linear time
for genomes without duplicate genes, while the problem becomes NP-hard in
the presence of duplicate genes. In this paper, we propose an ILP (integer linear
programming) formulation to compute the DCJ distance between two genomes
with duplicate genes. We also provide an efficient preprocessing approach to sim-
plify the ILP formulation while preserving optimality. Comparison on simulated
genomes demonstrates that our method outperforms MSOAR in computing the
edit distance, especially when the genomes contain long duplicated segments. We
also apply our method to assign orthologous gene pairs among human, mouse and
rat genomes, where once again our method outperforms MSOAR.

Keywords: DCJ distance, adjacency graph, maximum cycle decomposition,
orthology assignment.

1 Introduction

The combinatorics and algorithmics of genomic rearrangements have been the sub-
ject of much research since the problem was formulated in the 1990s [1]. The advent
of whole-genome sequencing has provided us with masses of data on which to study
genomic rearrangements. Genomic rearrangements include inversions, transpositions,
circularizations, and linearizations, all of which act on a single chromosome, and translo-
cations, fusions, and fissions, which act on two chromosomes. These operations can all
be described in terms of the single double-cut-and-join (DCJ) operation [2, 3], which
has formed the basis for most algorithmic research on rearrangements over the last few
years [4–8]. A DCJ operation makes two cuts in the genome, either in the same chromo-
some or in two different chromosomes, producing four cut ends, then rejoins the four
cut ends in a different order.

A basic problem in genome rearrangements is to compute the edit distance between
two genomes, i.e., the minimum number of operations needed to transform one genome
into another. Under the inversion model, Hannenhalli and Pevzner gave the first
polynomial-time algorithm to compute the edit distance for unichromosomal genomes

R. Sharan (Ed.): RECOMB 2014, LNBI 8394, pp. 280–292, 2014.
c© Springer International Publishing Switzerland 2014



An Exact Algorithm to Compute the DCJ Distance for Genomes with Duplicate Genes 281

[9], which was later improved to linear time [10]. As for the multichromosomal genomes,
the edit distance under the Hannenhalli-Pevzner model (inversions and translocations)
has been studied through a series of papers [9, 11–13], culminating in a fairly complex
linear-time algorithm [4]. Under the DCJ model, the edit distance can be computed in
linear time for two multichromosomal genomes in a simple and elegant way [2].

All of these algorithms assume genomes contain no duplicate genes. However, gene
duplications are widespread events and have long been recognized as a major driving
force of evolution [14, 15]. For example, in human genomes segmental duplications
are hotspots for non-allelic homologous recombination leading to genomic disorders,
copy-number polymorphisms, and gene and transcript innovations [16]. The problem
of computing the inversion distance for genomes in the presence of duplicate genes
has been proved NP-hard [17]. Suksawatchon et al. proposed a heuristic for this prob-
lem using binary integer programming [18], which was later extended to handle gene
deletion [19]. Chen et al. decomposed this problem into two new optimization prob-
lems, called the minimum common partition and the maximum cycle decomposition, for
which efficient heuristics were designed [17]. They packaged the whole algorithms into
the SOAR software system, and applied SOAR to assign orthologs on a genome-wide
scale. Later, they extended SOAR to unite rearrangements and single-gene duplications
as a new software package, called MSOAR, which can be applied to detect inparalogs
in addition to orthologs [20]. Recently, they incorporated tandem duplications into their
model, and demonstrated that the new system achieved a better sensitivity and speci-
ficity than MSOAR [21].

In this paper, we focus on the problem of computing the edit distance for two genomes
with duplicate genes under the DCJ model. This problem is also NP-hard, which can
be proved by a reduction from the NP-hard problem of breakpoint graph decomposi-
tion [22]. We first reduce this problem to the problem of finding the optimal consistent
decomposition of the corresponding adjacency graph, then formulate the latter problem
as an integer linear program. We also provide an efficient preprocessing approach to re-
duce the ILP formulation while preserving optimality. Finally, we compare our method
with MSOAR on both simulated and biological datasets.

2 Problem Statement

We model one genome as a set of chromosomes, and each chromosome as a linear
or circular list of genes. Homologous genes are grouped into gene families. In this
paper, we study two genomes with the same gene content: each gene family has the
same number of genes in both genomes. Assuming that two genomes G1 and G2 have
the same gene content, we say a bijection between G1 and G2 is valid if it specifies
n homologous gene pairs, where n is the number of genes in each genome. If G1

and G2 contain only singleton gene families (exactly one gene in each family in each
genome), then there is a unique valid bijection between G1 and G2, and the DCJ dis-
tance between G1 and G2 can be computed in linear time [2]. If G1 and G2 contain
gene families with multiple genes in each genome, then there are many valid bijections
between G1 and G2. Different valid bijections define different one-to-one correspon-
dences between homologous genes, yielding possibly different DCJ distances between



282 M. Shao, Y. Lin, and B. Moret

a1
t a1

h b1t b1h a2
t a2

h c1t c1h

a3
h a3

t b
2
h b2t c2h c2t a4

t a4
h

(a)

a1
t a1

h b1t b1h a2
t a2

h c1t c1h

a3
h a3

t b
2
h b2t c2h c2t a4

t a4
h

(b)

a1
t a1

h b1t b1h a2
t a2

h c1t c1h

a3
h a3

t b
2
h b2t c2h c2t a4

t a4
h

(c)

Fig. 1. An example of adjacency graph and its two consistent decompositions. Genome 1 con-
tains one linear chromosome, (a1,b1,a2,c1), and genome 2 also contains one linear chromosome
(−a3,−b2,−c2,a4). Genes in the same gene family are represented by the same label, and distin-
guished by different superscripts. All black edges are represented by long thin lines, and all grey
edges are represented by short thick lines. (a) The corresponding adjacency graph, in which head
extremities are represented by circles, while tail extremities are represented by diamonds. (b) A
consistent decomposition with 2 odd-length paths, whose corresponding valid bijection maps a1

to a3 and a2 to a4. (c) Another consistent decomposition with 2 odd-length paths and 1 cycle,
whose corresponding valid bijection maps a1 to a4 and a2 to a3.

G1 and G2. In this paper, we study the following generalized DCJ distance problem:
given two genomes G1 and G2 with the same gene content, find a valid bijection be-
tween G1 and G2 that minimizes the DCJ distance. We denote the generalized DCJ
distance between G1 and G2 as d(G1,G2).

We use the notation introduced by Bergeron et al. [2] for gene orders. The two ends
of a gene g are called extremities, the head as gh and the tail as gt . If genes f and g
are homologous, its corresponding extremities ( fh and gh, ft and gt) are also homol-
ogous. Two consecutive genes a and b can be connected by one adjacency, which is
represented by a set of two extremities; thus adjacencies come in four types: {at ,bt},
{ah,bt}, {at ,bh}, and {ah,bh}. If gene g lies at one end of a linear chromosome, then
this end can be represented by a set of one extremity, {gt} or {gh}, called a telomere.
The set of all extremities of a genome is called the extremity set.

Let G1 and G2 be two genomes with the same gene content, and let S1 and S2 be
the extremity sets of G1 and G2, respectively. The adjacency graph with respect to G1

and G2 can be written as AG = (V,E), with V = S1 ∪ S2 and where E is composed of
two types of edges, black edges and grey edges. Two extremities in different extremity
sets (one is in S1 and the other one is in S2) are connected by one black edge if they are
homologous, and two extremities in the same extremity set are connected by one grey
edge if they form an existing adjacency. Figure 1a gives an example.

We say that a cycle (or path) in the adjacency graph is alternating if any two adjacent
edges in this cycle (or path) consist of one black edge and one grey edge. The length
of a cycle (or path) is defined as the number of its black edges. A decomposition of
the adjacency graph is a set of vertex-disjoint alternating cycles and paths that cover
all vertices and all grey edges. We say a decomposition is consistent if for any two
homologous genes f and g, either both ( fh,gh) and ( ft ,gt) are in this decomposition,



An Exact Algorithm to Compute the DCJ Distance for Genomes with Duplicate Genes 283

or neither of them is in this decomposition. Figure 1b and 1c give two examples of
consistent decompositions.

Given two genomes G1 and G2 with the same gene content, there is a natural one-to-
one correspondence between the set of all possible valid bijections from G1 to G2 and
the set of all possible consistent decompositions of the adjacency graph with respect to
G1 and G2. In fact, if one valid bijection is given, which maps gene f in G1 to a homol-
ogous gene g in G2, then we can keep the black edges ( fh,gh) and ( ft ,gt) in the decom-
position. We do the same thing for every pair of genes specified by this valid bijection;
this process culminates in a consistent decomposition. On the other hand, if we are
given a consistent decomposition of the corresponding adjacency graph, we can collect
all homologous gene pairs ( f ,g) indicated by black edges ( fh,gh) and ( ft ,gt), which
form a valid bijection from G1 to G2. Given a consistent decomposition with c cycles
and o odd-length paths, exactly (|V |/4− c− o/2) DCJ operations are needed to trans-
form G1 into G2 [2]. Thus, we can write d(G1,G2) = minD∈D(|V |/4− cD − oD/2) =
|V |/4−maxD∈D(cD + oD/2), where D is the space of all consistent decompositions,
and cD and oD are the numbers of cycles and odd-length paths in a decomposition D,
respectively. This formula transforms the generalized DCJ distance problem into the
maximum cycle decomposition problem, which asks for a consistent decomposition of
the adjacency graph such that the number of cycles plus half the number of odd-length
paths in this decomposition is maximized.

3 ILP for the Maximum Cycle Decomposition Problem

In [23], we described a capping method to remove telomeres by introducing null ex-
tremities. All null extremities are homologous to each other, but none is homologous
to any other extremity. Let AG = (V = S1 ∪S2,E) be the adjacency graph with respect
to two given genomes G1 and G2. Suppose that G1 and G2 contain 2 · k1 and 2 · k2

telomeres respectively. The “telomere removal” proceeds as follows (see Figure 2 for
an example). For each extremity u ∈ S1 coming from each telomere in G1, we add one
null extremity τ to S1 and add one grey edge to E that connects u and τ. Similarly, for
each extremity v ∈ S2 coming from each telomere in G2, we add one null extremity τ to
S2 and add one grey edge to E that connects v and τ. If we additionally have k1 < k2,
we then add (k2 − k1) pairs of null extremities to S1, each of which is connected by one
more grey edge added to E . We finally add black edges connecting all possible pairs
of null extremities between S1 and S2. We can prove that this telomere removal process
does not change d(G1,G2) using the same argument as in [7, 23]. In the following we
assume that each vertex is adjacent to exactly one grey edge in the adjacency graph, and
that the consistent decompositions consist of only cycles.

Now we formulate the maximum cycle decomposition problem as an integer linear
program. Let AG = (V,E) be the adjacency graph with respect to two given genomes
G1 and G2 with the same gene content. For each edge e ∈ E , we create binary variable
xe to indicate whether e will be in the final decomposition. First, we require that all grey
edges be in the final decomposition:

xe = 1, ∀e that are grey

Second, we require that the final decomposition be consistent:



284 M. Shao, Y. Lin, and B. Moret

a1
t a1

h b1t b1h a2
t a2

h c1t c1h

a3
ha4

h a3
t b2h b2t c2h c2t a4

t

(a)

τ 1 a1
t a1

h b1t b1h a2
t a2

h c1t c1h τ 2

a3
ha4

h a3
t b2h b2t c2h c2t a4

t τ 3 τ 4

(b)

Fig. 2. An example of the telomere removal. Genome 1 contains one linear chromosome,
(a1,b1,a2,c1), and genome 2 contains one circular chromosome (−a3,−b2,−c2,a4). (a) The
corresponding adjacency graph. (b) The adjacency graph after the telomere removal, in which
null extremities are represented by squares.

x( fh,gh) = x( ft ,gt), ∀ f ∈ G1 and ∀g ∈ G2 that are homologous

Third, we require that for each vertex exactly one adjacent black edge adjacent be
chosen:

∑
(u,v)∈E, v∈S2

x(u,v) = 1, ∀u ∈ S1

∑
(u,v)∈E, u∈S1

x(u,v) = 1, ∀v ∈ S2

These three groups of constraints guarantee that all selected edges form a consistent
decomposition.

Now we count the number of cycles. We first index the vertices arbitrarily, V =
{v1,v2, · · · ,v|V |}. For each vertex vi, we create variable yi to indicate the label of vi. We
set a distinct positive bound i for each yi:

0 ≤ yi ≤ i, 1 ≤ i ≤ |V |
We require that all vertices in the same cycle in the final decomposition have the same
label, which can be guaranteed by requiring that, for each selected edge, the two adja-
cent vertices have the same label:

yi ≤ y j + i · (1− xe), ∀e = (vi,v j) ∈ E

y j ≤ yi + j · (1− xe), ∀e = (vi,v j) ∈ E

Then, for each vertex vi, we create binary variable zi to indicate whether yi is equal to
its upper bound i:

i · zi ≤ yi, 1 ≤ i ≤ |V |
Since all vertices in the same cycle have the same label and all upper bounds are distinct,
there is exactly one vertex in each cycle whose label can be equal to its upper bound.
Finally, we set the objective to



An Exact Algorithm to Compute the DCJ Distance for Genomes with Duplicate Genes 285

max ∑
1≤i≤|V |

zi,

which is equal to the number of cycles.
There are O(|E|) variables and O(|E|) constraints in this ILP formulation.

4 Fixing Cycles of Length Two

A cycle of length two in the adjacency graph indicates one shared adjacency. The fol-
lowing theorem gives a sufficient condition to fix this cycle while preserving optimality,
which can be used to narrow the search for an optimal bijection.

Theorem 1. Given an adjacency graph AG = (V,E), if a length-two cycle C contains
some vertex with total degree 2, then there exists an optimal consistent decomposition
of AG that contains C.

Proof. Let
{

a1
h,b

1
h,a

2
h,b

2
h

}
be the four vertices of C, where a1

h and b1
h form an adjacency

in G1 while a2
h and b2

h form an adjacency in G2, and (a1
h,a

2
h) and (b1

h,b
2
h) are the two

black edges of C. Let a1
h be the vertex of total degree 2; then the gene family of {a1,a2}

is a singleton family, and thus edge (a1
h,a

2
h) appears in every consistent decomposi-

tion. Now we prove the theorem by contradiction. Suppose that edge (b1
h,b

2
h) is not in

any optimal consistent decomposition. Take any optimal consistent decomposition D,
in which b1

h is linked to b4
h and b2

h is linked to b3
h. Since D is consistent, we know that

edges (b1
t ,b

4
t ) and (b2

t ,b
3
t ) are also in D. We now transform D into a new decomposition

D′′ that contains edge (b1
h,b

2
h) by exchanging two pairs of edges. Figure 3 illustrates this

process. First, we remove edges (b1
h,b

4
h) and (b3

h,b
2
h) from D and add edges (b1

h,b
2
h) and

(b3
h,b

4
h); denote this inconsistent decomposition by D′. Since in this step one cycle is

split into two small cycles, we have that cD′ = cD + 1. Now, we remove edges (b1
t ,b

4
t )

and (b3
t ,b

2
t ) from D′ and add edges (b1

t ,b
2
t ) and (b3

t ,b
4
t ) to obtain the consistent de-

composition D′′. This step involves at most two cycles of D′, and merges these two

a1
h b1h b1t b3h b3t

a2
h b2h b2t b4h b4t

(a)

a1
h b1h b1t b3h b3t

a2
h b2h b2t b4h b4t

(b)

a1
h b1h b1t b3h b3t

a2
h b2h b2t b4h b4t

(c)

Fig. 3. The process of building a new optimal consistent decomposition that contains edge
(b1

h,b
2
h). (a) One optimal consistent decomposition D without edge (b1

h,b
3
h). Star represents unre-

lated extremities. (b) The inconsistent decomposition D′. (c) The consistent decomposition D′′.



286 M. Shao, Y. Lin, and B. Moret

cycles together in the worst case. Thus, we have cD′′ ≥ cD′ − 1. Overall, we have that
cD′′ ≥ cD, which means D′′ is also an optimal consistent decomposition—the desired
contradiction. 	


If all four vertices in a cycle of length two have degree larger than 2, then it is possible
that this cycle is not part of any optimal consistent decomposition. Figure 4 gives such
an example. Moreover, this example also shows that if a shared adjacency appears ex-
actly once in each genome, it is still possible that the corresponding cycle of length two
is not part of any optimal consistent decomposition.

5 Experimental Results

We compare our method with MSOAR on both simulated and biological datasets. The
input for both methods is two genomes with the same gene content, and the output
is a bijection between the two genomes, plus the DCJ distance calculated as n− c−
o/2, where n is the number of genes in each genome, and c and o are the numbers of
cycles and odd-length paths in the adjacency graph induced by the bijection. We use
both the accuracy of the bijection, which is defined as the percentage of correct gene
pairs (compared with a reference bijection), and the deviation from the true evolutionary
distances, to evaluate the performance of the two methods.

a2
t c1h a2

h c1t a1
t d1h a1

h b1h b1t d1t b2h e1t b2t f1
t e1h f1

h

a4
t d2h a4

h e2t a3
t c2h a3

h b3h b3t f2
t b4h f2

t b4t d2t c2h e2h

(a)

a2
t c1h a2

h c1t a1
t d1h a1

h b1h b1t d1t b2h e1t b2t f1
t e1h f1

h

a4
t d2h a4

h e2t a3
t c2h a3

h b3h b3t f2
t b4h f2

t b4t d2t c2h e2h

(b)

Fig. 4. An example of a cycle of length two that is not part of any optimal consistent decom-
position. (a) A consistent decomposition with 4 cycles that contains the cycle of length two of
{a1

h,b
1
h,a

3
h,b

3
h}. (b) An optimal consistent decomposition with 5 cycles.



An Exact Algorithm to Compute the DCJ Distance for Genomes with Duplicate Genes 287

For our method, given two genomes, we first build the adjacency graph and then em-
ploy the telomere removal technique to obtain a new adjacency graph without telom-
eres. Then we apply Theorem 1 to fix possible cycles of length two, and finally invoke
GUROBI [24] to solve the ILP formulation. Since the ILP solver might take a long time,
we set a time limit of two hours for each instance in our experiments—the best solution
will be returned if the ILP solver does not terminate in two hours. For MSOAR, we run
its binary version downloaded from http://msoar.cs.ucr.edu/. We compare our
method with MSOAR, rather than the latest version MSOAR 2.0, because we focus on
genomes with the same gene content, which implicitly requires that, after the speciation
event, only DCJ operations are involved. Compared with MSOAR, MSOAR 2.0 aims to
identify tandem duplications of genes after the speciation. Thus, under our evolutionary
model that does not contain postspeciation duplications, MSOAR and MSOAR 2.0 are
equivalent.

5.1 Simulation Results

We simulate artificial genomes under an evolutionary model including segmental du-
plications and DCJs. We introduce duplicated genes through segmental duplications.
For each segmental duplication, we uniformly select a position to start duplicating a
segment of the genome and place the new copy to a new position. Since the average
copy number of each gene in human, mouse and rat genomes, are 1.46, 1.55 and 1.28,
respectively, we set the average copy number to 1.5 in our simulation. From a genome
of 1,000 distinct genes, we generate an ancestor genome with 1,500 genes, by randomly
performing 500/L segmental duplications of length L (in terms of the number of genes
in the segment). We then simulate two extant genomes from the ancestor by randomly
performing N DCJs (in terms of inversions) independently. Thus, the true evolutionary
distance between the two extant genomes is 2 ·N. The reference bijection consists of
those gene pairs that correspond to the same gene in the ancestor. We test three different
lengths for segmental duplications (L = 1,2,5); results illustrate the trends and capabil-
ities of the two methods in handling genomes with duplicated segments. We also vary
the number of DCJs over a broad range (N = 200,210, · · · ,500) that reaches beyond the
saturation point. For each setting, we randomly simulate 5 independent instances, and
calculate the average accuracy of the bijection and the average deviation from the true
evolutionary distances over these 5 instances for both methods.

Figure 5 shows the deviation from the true evolutionary distances for both methods.
The first observation is that saturation starts occurring for a true evolutionary distance of
720: the DCJ distance obtained from the reference bijection is smaller than the true evo-
lutionary distance, and the gap increases along with the increase of the true evolution-
ary distance. Second, when the true evolutionary distance is less than 720, our method
obtains very accurate DCJ distances while MSOAR usually overestimates the DCJ dis-
tance. The difference is particularly pronounced for L ≥ 2: in such cases, there exist
identical segments in each genome, a situation that creates problems when MSOAR
tries to partition each genome into a minimum number of common segments [17].



288 M. Shao, Y. Lin, and B. Moret

400 500 600 700 800 900 1000

-2
0

0
20

40
60

80
10

0

True Evolutionary Distance

D
ev

ia
ti

on
fr

om
th

e
T
ru

e
E

vo
lu

ti
on

ar
y

D
is

ta
nc

es

L=1, Reference
L=2, Reference
L=5, Reference

L=1, ILP
L=1, MSOAR
L=2, ILP
L=2, MSOAR
L=5, ILP
L=5, MSOAR

Fig. 5. Deviation from the true evolutionary distances on simulation data. Diamonds track
MSOAR, circles track our method, and triangles track the reference bijection.

400 500 600 700 800 900 1000

75
80

85
90

95
10

0

True Evolutionary Distance

A
cc

ur
ac

y
of

B
ije

ct
io

ns
(%

)

L=1, ILP
L=1, MSOAR
L=2, ILP
L=2, MSOAR
L=5, ILP
L=5, MSOAR

Fig. 6. The accuracy of the bijections on simulation data. Diamonds track MSOAR, while circles
track our method.



An Exact Algorithm to Compute the DCJ Distance for Genomes with Duplicate Genes 289

Figure 6 shows the the accuracy of the bijections for both methods. For L = 1, both
methods can correctly identify most gene pairs. For L ≥ 2, our method significantly
outperforms MSOAR. For large L, the accuracy of our method decreases rapidly beyond
saturation, but continues to dominate MSOAR.

The running time of MSOAR grows slowly as the the true evolutionary distance
increases. For the most complicated case of L = 5 and the true evolutionary distance is
1000, MSOAR can finish in less than 2000 seconds. Regarding our method, when the
true evolutionary distance is relatively small (≤ 640 when L = 5, ≤ 740 when L = 2,
and ≤ 820 when L = 1), the preprocessing method can fix a considerable portion of
the adjacency graph, leaving a small ILP instance that can be solved very quickly (even
faster than MSOAR). When the true evolutionary distance is relatively large, the ILP
solver cannot terminate in two hours and a sub-optimal solution is obtained. Usually,
this solution is equal or very close to the optimal solution, because the ILP solver can
find the optimal solution very quickly, but must spend more time to verify that it is
optimal. This observation is also verified by the very high accuracy before the saturation
point shown in Figure 6.

5.2 Application to Orthology Assignment

Under a parsimonious evolutionary scenario, the optimal valid bijection between two
genomes with the same gene content minimizes the number of DCJs after speciation,
and thus infers the orthologous gene pairs [17]. We test both methods for assigning
orthologous genes between pairs of genomes. Human, mouse, and rat genomes are
well annotated, so we chose them to evaluate the performance of the two methods.
For each species, we downloaded the information for all protein-coding genes from
Ensembl (http://www.ensembl.org), including gene family names, positions on the
chromosomes and gene symbols. If a gene has multiple alternative products, we keep its
longest isoform. Two genes are considered homologous if they have the same Ensembl
gene family name; they are considered orthologous if they have the same gene symbol.
(Note that two orthologous genes are necessarily homologous, but two homologous
genes need not be orthologous.) For a pair of genomes, we keep only orthologous gene
pairs, thereby obtaining two genomes with the same gene content; our reference bijec-
tion is then defined by these orthologous gene pairs. For both methods, we use gene
family and position information to infer orthologous relationships and compare them to
the reference bijection.

The results of comparing these three genomes are shown in Table 1. Both methods
mostly agree with annotation, indicating that the parsimonious model is appropriate

Table 1. Comparison of human, mouse and rat genomes

species pairs gene pairs
accuracy of bijection (%) DCJ distance
MSOAR our method MSOAR our method

human mouse 14876 98.63 99.18 933 894
human rat 12971 98.79 99.28 1320 1294
mouse rat 13525 98.60 99.26 968 916



290 M. Shao, Y. Lin, and B. Moret

a1 b1 b2 c1

a2 b3 b4 c2

(a)

a1
t a1

h b1t b1h b2t b2h c1t c1h

a2
t a2

h b3t b3h b4t b4h c2t c1h

(b)

a1
t a1

h b1t b1h b2t b2h c1t c1h

a2
t a2

h b3t b3h b4t b4h c2t c1h

(c)

Fig. 7. Comparison of the reference bijection with our bijection. (a) Two identical segments.
Our bijection is shown by solid lines while reference bijection is shown by dashed lines. (b) The
adjacency graph corresponding to the our bijection, in which there are 3 cycles. (c) The adjacency
graph corresponding to the reference bijection, in which there is only 1 cycle.

when comparing these genomes; our method obtains slightly better accuracy. On human
and mouse for example, our bijection has 122 different gene pairs compared with the
reference bijection. Among these pairs, 34 of them can be explained by a simple struc-
ture, illustrated in Figure 7. For two identical segments, our method outputs a sequential
bijection for which no DCJ operation is needed, while the reference bijection contains
a crossover, for which at least two DCJ operations are needed. The other 87 pairs can
be explained by 32 pairs of segments, for each of which our bijection needs fewer DCJ
operations than the reference bijection. On the comparison of the DCJ distance, our
method gets fewer DCJ operations than MSOAR in all three pairs of genomes.

6 Conclusion

We formulated the maximum cycle decomposition problem as an integer linear pro-
gram. We proved a theorem that can be used to reduce the complexity while preserving
optimality. The combination of the two gives a practical method to compute the exact
DCJ distance for genomes with duplicate genes. Such a method is crucial for compara-
tive genomics, since duplicate genes are commonly observed in most species.

The ILP formulation can be extended in various ways. First, we can use the relaxed
LP (linear programming) techniques to design possible approximation algorithms.
Second, when we apply it to do orthology assignment, we can also take the sequence
similarity information into account, by adding a term of the form ∑e∈E we · xe to the
objective function, where we can be set to the similarity of the two genes. How to com-
bine sequence similarity and DCJ distances remains an unexplored problem, but our
ILP formulation provides a first step by allowing us to study linear combinations of the
two.

We assumed that, after a speciation event, only DCJ operations are involved. This
assumption is clearly unrealistic—it was made to simplify the problem and enable us to
devise a first exact solution. However, now that our ILP method has proved successful,
we can combine it with our previous work [23] to include single-gene deletion and
single-gene insertion in the model.



An Exact Algorithm to Compute the DCJ Distance for Genomes with Duplicate Genes 291

References

1. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rear-
rangements. MIT Press (2009)

2. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher,
P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Hei-
delberg (2006)

3. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by
translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

4. Bergeron, A., Mixtacki, J., Stoye, J.: A new linear-time algorithm to compute the genomic
distance via the double cut and join distance. Theor. Comput. Sci. 410(51), 5300–5316
(2009)

5. Chen, X.: On sorting permutations by double-cut-and-joins. In: Thai, M.T., Sahni, S. (eds.)
COCOON 2010. LNCS, vol. 6196, pp. 439–448. Springer, Heidelberg (2010)

6. Chen, X., Sun, R., Yu, J.: Approximating the double-cut-and-join distance between unsigned
genomes. BMC Bioinformatics 12(suppl. 9), S17 (2011)

7. Yancopoulos, S., Friedberg, R.: Sorting genomes with insertions, deletions and duplications
by DCJ. In: Nelson, C.E., Vialette, S. (eds.) RECOMB-CG 2008. LNCS (LNBI), vol. 5267,
pp. 170–183. Springer, Heidelberg (2008)

8. Moret, B.M.E., Lin, Y., Tang, J.: Rearrangements in phylogenetic inference: Compare,
model, or encode? In: Chauve, C., El-Mabrouk, N., Tannier, E. (eds.) Models and Algo-
rithms for Genome Evolution. Computational Biology, vol. 19, pp. 147–172. Springer, Berlin
(2013)

9. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for
sorting signed permutations by reversals). In: Proc. 27th Ann. ACM Symp. Theory of Com-
put. (STOC 1995), pp. 178–189. ACM Press, New York (1995)

10. Bader, D.A., Moret, B.M.E., Yan, M.: A fast linear-time algorithm for inversion distance
with an experimental comparison. J. Comput. Biol. 8(5), 483–491 (2001)

11. Jean, G., Nikolski, M.: Genome rearrangements: a correct algorithm for optimal capping.
Inf. Proc. Letters 104(1), 14–20 (2007)

12. Ozery-Flato, M., Shamir, R.: Two notes on genome rearrangement. J. Bioinf. Comp.
Bio. 1(1), 71–94 (2003)

13. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput.
Syst. Sci. 65(3), 587–609 (2002)

14. Bailey, J.A., Eichler, E.E.: Primate segmental duplications: crucibles of evolution, diversity
and disease. Nature Reviews Genetics 7(7), 552–564 (2006)

15. Lynch, M.: The Origins of Genome Architecture. Sinauer (2007)
16. Jiang, Z., Tang, H., Ventura, M., Cardone, M.F., Marques-Bonet, T., She, X., Pevzner, P.A.,

Eichler, E.E.: Ancestral reconstruction of segmental duplications reveals punctuated cores of
human genome evolution. Nature Genetics 39(11), 1361–1368 (2007)

17. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assignment of orthol-
ogous genes via genome rearrangement. ACM/IEEE Trans. on Comput. Bio. & Bioinf. 2(4),
302–315 (2005)

18. Suksawatchon, J., Lursinsap, C., Bodén, M.: Computing the reversal distance between
genomes in the presence of multi-gene families via binary integer programming. Journal
of Bioinformatics and Computational Biology 5(1), 117–133 (2007)

19. Laohakiat, S., Lursinsap, C., Suksawatchon, J.: Duplicated genes reversal distance under
gene deletion constraint by integer programming. Bioinformatics and Biomedical Engineer-
ing, 527–530 (2008)



292 M. Shao, Y. Lin, and B. Moret

20. Fu, Z., Chen, X., Vacic, V., Nan, P., Zhong, Y., Jiang, T.: MSOAR: a high-throughput or-
tholog assignment system based on genome rearrangement. Journal of Computational Biol-
ogy 14(9), 1160–1175 (2007)

21. Shi, G., Zhang, L., Jiang, T.: MSOAR 2.0: Incorporating tandem duplications into ortholog
assignment based on genome rearrangement. BMC Bioinformatics 11(1), 10 (2010)

22. Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for sorting by reversals,
with application to genome rearrangement. Algorithmica 13(1), 180–210 (1995)

23. Shao, M., Lin, Y.: Approximating the edit distance for genomes with duplicate genes under
DCJ, insertion and deletion. BMC Bioinformatics 13(suppl. 19), S13 (2012)

24. Gurobi Optimization Inc. Gurobi optimizer reference manual (2013)


	An Exact Algorithm to Compute the DCJ Distance
for Genomes with Duplicate Genes
	1 Introduction
	2 Problem Statement
	3 ILP for the Maximum Cycle Decomposition Problem
	4 Fixing Cycles of Length Two
	5 Experimental Results
	5.1 Simulation Results
	5.2 Application to Orthology Assignment

	6 Conclusion
	References




