Algorithms for Genome Rearrangements

Pedro Feijão

Lecture 10 - Algebraic Theory for Genome Rearrangements

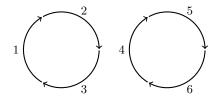
Summer 2014

pfeijao@cebitec.uni-bielefeld.de

Introduction

- The Algebraic theory for genome rearrangements was introduced in 2000, by Meidanis and Dias.
- Its motivation is to use permutation group theory for solving rearrangement problems.
- It has been used to solve several rearrangement problems.

- A **permutation** is a bijection in a set *E*. When $E = \{1, ..., n\}$, we use the notation S_n .
- Permutations are composed by k-cycles, where k is the number of elements in the cycle.
- For instance, $\pi = (1 \ 2 \ 3)(4 \ 5 \ 6)$ has two 3-cycles:



The same cycle can be represented in different ways, by rotating its elements:

$$(1 2 3 4) = (2 3 4 1) = (3 4 1 2) = (4 1 2 3)$$

• A **1-cycle** represents a fixed element, and can be omitted in the notation of a permutation.

Example: $\pi = (1\ 2)(3)(4\ 5\ 6) = (1\ 2)(4\ 5\ 6)$

The **product** of α , β is denoted by $\alpha\beta$, defined as $\alpha\beta(x) = \alpha(\beta(x))$ for $x \in E$.

(1 2 3 4)(4 1 3) = (1 4 2 3)

- The identity permutation *i* is the permutation where every element is fixed.
- Every permutation π has an **inverse** π^{-1} such that $\pi\pi^{-1} = \pi^{-1}\pi = i$.
- The inverse of a cycle is obtained by reversing its elements.

$$\pi = (1 \ 2 \ 3 \ 4) \Rightarrow \pi^{-1} = (4 \ 3 \ 2 \ 1)$$

 A k-cycle decomposition of a permutation α is a representation of α as a product of k-cycles, not necessarily disjoint.

$$\alpha = (1 2 3 4 5) = (1 2)(2 3)(3 4)(4 5) = (1 5)(1 4)(1 3)(1 2)$$

= (1 2 3)(3 4 5)

All permutations have a 2-cycle decomposition.

The norm of a permutation α , denoted by $\|\alpha\|$, is the minimum number of 2-cycles needed to decompose α . It can be seen as a measure of its *rearrangement power*.

Example: $\pi = (1 \ 2 \ 3 \ 4) = (1 \ 2)(2 \ 3)(3 \ 4) \Rightarrow ||\pi|| = 3$

The norm of a k-cycle is k - 1.

Alternative equation: $||\alpha|| = n - c$, where *n* is the number of elements and *c* the number of cycles of α .

Examples:

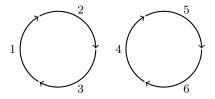
$$\pi = (1 \ 2 \ 3 \ 4) \Rightarrow \|\pi\| = n - c = 4 - 1 = 3$$
$$\pi' = (1 \ 2 \ 3 \ 4)(5)(6 \ 7) \Rightarrow \|\pi\| = n - c = 7 - 3 = 4$$

Modeling Genomes

An (unsigned) permutation π models a genome where each cycle corresponds to a circular chromosome.

Example:

 $\pi = (1 \ 2 \ 3)(4 \ 5 \ 6)$ models a genome with 2 circular chromosomes:



Modeling Rearrangements

• A **rearrangement** in a genome π can be modeled by a product with a permutation ρ . For instance:

Consider the permutation $\pi = (1 \ 2 \ 3 \ 4 \ 5)$. Applying $\rho = (2 \ 4 \ 5)$, we have

$$\rho\pi = (2\ 4\ 5)(1\ 2\ 3\ 4\ 5) = (1\ \underline{4}\ \underline{2\ 3}\ 5)$$

In this case, ρ is a *transposition* of the blocks [2, 3] and [4].

The weight of a rearrangement operation ρ is $\|\rho\|$.

Modeling Rearrangements

Applying a 2-cycle $\rho = (a \ b)$ to a permutation has the following effect:

- If a and b are in the same cycle, this cycle is split in two, separating a and b. (Fission)
- If a and b are in different cycles, the cycles are joined in one.
 (Fusion)

Examples:

$$\pi = (1 \ 2 \ 3 \ 4 \ 5)$$
 and $\rho = (2 \ 4) \Rightarrow \rho \pi = (1 \ 4 \ 5)(2 \ 3)$

$$\pi = (1 \ 2 \ 3)(4 \ 5)$$
 and $\rho = (2 \ 4) \Rightarrow \rho \pi = (1 \ 4 \ 5 \ 2 \ 3)$

Genome Rearrangement Problem

The Algebraic Rearrangement Problem can be defined as:

Given genomes π and σ , find permutations $\rho_1, \rho_2, \ldots, \rho_k$ that **minimally** transform π into σ .

Formally:

$$\rho_k \dots \rho_2 \rho_1 \pi = \sigma$$

The algebraic distance, defined as $d(\pi, \sigma) = \sum_{i=1}^{n} ||\rho_i||$, is minimum.

Solving the Rearrangement Problem

Since

$$\rho_k \dots \rho_2 \rho_1 \pi = \sigma$$

we arrive at

- Eq. (1) shows that rearrangement operations are obtained by decomposing $\sigma \pi^{-1}$.
- Eq. (2) shows that $\|\sigma\pi^{-1}\|$ is a lower bound to the distance.

Sorting by Fusions and Fissions

- The simplest way to decompose $\sigma \pi^{-1}$ is choosing $\rho_k \dots \rho_2 \rho_1$ as the 2-cycles in a minimal decomposition of $\sigma \pi^{-1}$.
- Then, each 2-cycle is a fusion or fission, and by definition we have $d(\pi, \sigma) = \|\sigma\pi^{-1}\|.$

Example:

$$\pi = (1 \ 3 \ 2 \ 5 \ 4 \ 6)$$
 and $\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$

 $\sigma \pi^{-1} = (2\ 4\ 6\ 5\ 3) = (2\ 4)(4\ 6)(6\ 5)(5\ 3)$ and $d(\pi, \sigma) = \|\sigma \pi^{-1}\| = 4$

 π can be transformed into σ with 4 fusion/fission operations.

Example

$$\pi = (1 \ 3 \ 2 \ 5 \ 4 \ 6) \text{ and } \sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$$

 $\sigma \pi^{-1} = (2 \ 4 \ 6 \ 5 \ 3) = (2 \ 4)(4 \ 6)(6 \ 5)(5 \ 3)$

Applying each 2-cycle gives the complete scenario:

$$(5 3)(1 3 2 5 4 6) = (1 5 4 6)(2 3)$$

$$(6 5)(1 5 4 6)(2 3) = (1 6)(5 4)(2 3)$$

$$(4 6)(1 6)(5 4)(2 3) = (1 4 5 6)(2 3)$$

$$(2 4)(1 4 5 6)(2 3) = (1 2 3 4 5 6)$$

Adding Transpositions

Repeating the same example,

$$\pi = (1 \ 3 \ 2 \ 5 \ 4 \ 6)$$
 and $\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$

we can find a different decomposition

$$\sigma\pi^{-1} = (2\ 4\ 6\ 5\ 3) = (5\ 3\ 2\ 4\ 6) = (5\ 3)(3\ 2)(2\ 4)(4\ 6)$$

Applying the first two 2-cycles (2 4) and (4 6) separately results in a fission followed by a fusion, but the combined result is of a **transposition**.

The same happens with (5 3) and (3 2).

Example

$$\pi = (1 \ 3 \ 2 \ 5 \ 4 \ 6)$$
$$(4 \ 6)\pi = (1 \ 3 \ 2 \ 5 \ 6)(4)$$
$$(2 \ 4)(1 \ 3 \ 2 \ 5 \ 6)(4) = (1 \ 3 \ 4 \ 2 \ 5 \ 6)$$
$$(3 \ 2)(1 \ 3 \ 4 \ 2 \ 5 \ 6) = (1 \ 2 \ 5 \ 6)(3 \ 4)$$
$$(5 \ 3)(1 \ 2 \ 5 \ 6)(3 \ 4) = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$$

or using the transpositions: (2 4)(4 6) = (1 4 6) and (5 3)(3 2) = (5 3 2):

$$\pi = (1 3 2 5 4 6)$$
$$(2 4 6)\pi = (1 3 4 2 5 6)$$
$$(5 3 2)(1 3 4 2 5 6) = (1 2 3 4 5 6)$$

The distance is still $d(\pi, \sigma) = 4$, because the weight of a transposition is 2.

General formula for Transpositions

If elements *a*, *b* and *c* are in the same cycle in π and appear in this order, then $\rho = (a \ b \ c)$ is a transposition in π .

Example:

$$\pi = (1 \ 3 \ 2 \ 5 \ 4 \ 6)$$
 and $\rho = (1 \ 2 \ 4)$.
 $\rho \pi = (1 \ 3 \ \underline{4 \ 6 \ 2 \ 5})$

 $\rho' = (1 4 2)$, on the other hand, is **not** a transposition on π .

Good Transpositions

- If $\rho = (a \ b \ c)$ is a transposition on π , and elements a, b and c are in the same cycle and in this order in $\sigma \pi^{-1}$, then there exists an optimal decomposition of $\sigma \pi^{-1}$ that contains $(a \ b \ c)$.
- Such a $\rho = (a \ b \ c)$ is called a **good transposition**, bringing π closer to σ , that is,

$$d(\rho\pi,\sigma) = d(\pi,\sigma) - \|\rho\| = d(\pi,\sigma) - 2$$

Finding decompositions of Transpositions

If ρ is a good transposition, to find a decomposition of $\sigma \pi^{-1}$ that contains ρ , we multiply $\rho^{-1}\rho$ to the right of $\sigma \pi^{-1}$.

Example:

$$\pi = (1 \ 3 \ 2 \ 5 \ 4 \ 6)$$
 and $\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6) \Rightarrow \sigma \pi^{-1} = (2 \ 4 \ 6 \ 5 \ 3)$

 $\rho = (2 \ 6 \ 3)$ is a good transposition. Decomposing $\sigma \pi^{-1}$ we get:

$$\sigma\pi^{-1} = \sigma\pi^{-1}(\rho^{-1}\rho) = (2\ 4\ 6\ 5\ 3)(3\ 6\ 2)(2\ 6\ 3) = (3\ 5)(4\ 6)(2\ 6\ 3)$$

 ρ is a good transposition because:

$$\|\sigma\pi^{-1}\| = \|(2\ 4\ 6\ 5\ 3)\| = \|(3\ 5)(4\ 6)(2\ 6\ 3)\| = 4$$

 $\rho' = (256)$, for instance, would not be a good transposition. (why?)

Sorting by Fusions, Fissions and Transpositions (FFT)

Given permutations π and σ , the FFT distance between π and σ is given by

$$d(\pi,\sigma) = \|\sigma\pi^{-1}\|$$

where fissions and fusions have weight 1, and transpositions have weight 2.

The rearrangement operations can be found by decomposing $\sigma \pi^{-1}$ in 2-cycles (fissions and fusions) and 3-cycles (good transpositions).

Summary

- The algebraic theory uses permutation group properties to solve rearrangement problems.
- The distance is based on the norm of $\sigma \pi^{-1}$, and rearrangement events are found by decomposing $\sigma \pi^{-1}$.
- It can also be used in multichromosomal signed genomes, and on linear chromosomes, not only circular.
- The resulting model is similar to the Double-Cut-and-Join, but with different weights.