Algorithms for Genome Rearrangements

Pedro Feijão

Lecture 10 - Algebraic Theory for Genome Rearrangements

Summer 2014

```
pfeijao@cebitec.uni-bielefeld.de
```


Introduction

- The Algebraic theory for genome rearrangements was introduced in 2000, by Meidanis and Dias.
- Its motivation is to use permutation group theory for solving rearrangement problems.

■ It has been used to solve several rearrangement problems.

Definitions

- A permutation is a bijection in a set E. When $E=\{1, \ldots, n\}$, we use the notation S_{n}.
- Permutations are composed by \mathbf{k}-cycles, where k is the number of elements in the cycle.
- For instance, $\pi=\left(\begin{array}{ll}1 & 2\end{array}\right)(456)$ has two 3-cycles:

Definitions

- The same cycle can be represented in different ways, by rotating its elements:

$$
\left(\begin{array}{ll}
1 & 2
\end{array} 34\right)=\left(\begin{array}{lll}
2 & 3 & 4
\end{array}\right)=\left(\begin{array}{lll}
3 & 4 & 1
\end{array}\right)=\left(\begin{array}{lll}
4 & 1 & 2
\end{array}\right)
$$

- A 1-cycle represents a fixed element, and can be omitted in the notation of a permutation.

Example: $\pi=(12)(3)(456)=(12)(456)$

Definitions

■ The product of α, β is denoted by $\alpha \beta$, defined as $\alpha \beta(x)=\alpha(\beta(x))$ for $x \in E$.

$$
(1234)(413)=\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right)
$$

■ The identity permutation i is the permutation where every element is fixed.

■ Every permutation π has an inverse π^{-1} such that $\pi \pi^{-1}=\pi^{-1} \pi=i$.

- The inverse of a cycle is obtained by reversing its elements.

$$
\pi=\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right) \Rightarrow \pi^{-1}=\left(\begin{array}{llll}
4 & 3 & 2 & 1
\end{array}\right)
$$

Definitions

- A k-cycle decomposition of a permutation α is a representation of α as a product of k-cycles, not necessarily disjoint.

$$
\begin{aligned}
\alpha & =(12345)=(12)(23)(34)(45)=(15)(14)(13)(12) \\
& =(123)(345)
\end{aligned}
$$

- All permutations have a 2-cycle decomposition.

Definitions

- The norm of a permutation α, denoted by $\|\alpha\|$, is the minimum number of 2 -cycles needed to decompose α. It can be seen as a measure of its rearrangement power.

Example: $\pi=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right) \Rightarrow\|\pi\|=3$
The norm of a k-cycle is $k-1$.

- Alternative equation: $\|\alpha\|=n-c$, where n is the number of elements and c the number of cycles of α.

Examples:

$$
\begin{gathered}
\pi=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \Rightarrow\|\pi\|=n-c=4-1=3 \\
\pi^{\prime}=\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)(5)(67) \Rightarrow\|\pi\|=n-c=7-3=4
\end{gathered}
$$

Modeling Genomes

An (unsigned) permutation π models a genome where each cycle corresponds to a circular chromosome.

Example:

$\pi=(123)(456)$ models a genome with 2 circular chromosomes:

Modeling Rearrangements

- A rearrangement in a genome π can be modeled by a product with a permutation ρ. For instance:

Consider the permutation $\pi=(1234$ 5). Applying $\rho=(24$ 5), we have

$$
\rho \pi=(245)(12345)=(1 \underline{4} 235)
$$

In this case, ρ is a transposition of the blocks [2,3] and [4].

- The weight of a rearrangement operation ρ is $\|\rho\|$.

Modeling Rearrangements

Applying a 2-cycle $\rho=(a b)$ to a permutation has the following effect:

- If a and b are in the same cycle, this cycle is split in two, separating a and b. (Fission)
- If a and b are in different cycles, the cycles are joined in one. (Fusion)

Examples:

$$
\begin{aligned}
& \pi=\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right) \text { and } \rho=\left(\begin{array}{ll}
2 & 4
\end{array}\right) \Rightarrow \rho \pi=\left(\begin{array}{lll}
1 & 4 & 5
\end{array}\right)\left(\begin{array}{l}
2
\end{array}\right) \\
& \pi=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{ll}
4 & 5
\end{array}\right) \text { and } \rho=\left(\begin{array}{ll}
2 & 4
\end{array}\right) \Rightarrow \rho \pi=\left(\begin{array}{llll}
1 & 4 & 5 & 2
\end{array}\right)
\end{aligned}
$$

Genome Rearrangement Problem

The Algebraic Rearrangement Problem can be defined as:
Given genomes π and σ, find permutations $\rho_{1}, \rho_{2}, \ldots, \rho_{k}$ that minimally transform π into σ.

Formally:

- $\rho_{k} \ldots \rho_{2} \rho_{1} \pi=\sigma$
- The algebraic distance, defined as $d(\pi, \sigma)=\sum_{i=1}^{k}\left\|\rho_{i}\right\|$, is minimum.

Solving the Rearrangement Problem

Since

$$
\rho_{k} \ldots \rho_{2} \rho_{1} \pi=\sigma
$$

we arrive at

$$
\begin{align*}
\rho_{k} \ldots \rho_{2} \rho_{1} & =\sigma \pi^{-1} \tag{1}\\
\left\|\rho_{k} \ldots \rho_{2} \rho_{1}\right\| & =\left\|\sigma \pi^{-1}\right\| \\
\sum_{i=1}^{n}\left\|\rho_{i}\right\| & \geq\left\|\sigma \pi^{-1}\right\| \\
d(\pi, \sigma) & \geq\left\|\sigma \pi^{-1}\right\|
\end{align*}
$$

- Eq. (1) shows that rearrangement operations are obtained by decomposing $\sigma \pi^{-1}$.
- Eq. (2) shows that $\left\|\sigma \pi^{-1}\right\|$ is a lower bound to the distance.

Sorting by Fusions and Fissions

- The simplest way to decompose $\sigma \pi^{-1}$ is choosing $\rho_{k} \ldots \rho_{2} \rho_{1}$ as the 2 -cycles in a minimal decomposition of $\sigma \pi^{-1}$.
- Then, each 2-cycle is a fusion or fission, and by definition we have $d(\pi, \sigma)=\left\|\sigma \pi^{-1}\right\|$.

Example:

$$
\begin{gathered}
\pi=(132546) \text { and } \sigma=(123456) \\
\sigma \pi^{-1}=(24653)=(24)(46)(65)(53) \text { and } d(\pi, \sigma)=\left\|\sigma \pi^{-1}\right\|=4
\end{gathered}
$$

π can be transformed into σ with 4 fusion/fission operations.

Example

$$
\begin{gathered}
\pi=(132546) \text { and } \sigma=(123456) \\
\sigma \pi^{-1}=(24653)=(24)(46)(65)(53)
\end{gathered}
$$

Applying each 2-cycle gives the complete scenario:

$$
\begin{aligned}
(53)(132546) & =(1546)(23) \\
(65)(1546)(23) & =(16)(54)(23) \\
(46)(16)(54)(23) & =(1456)(23) \\
(24)(1456)(23) & =(123456)
\end{aligned}
$$

Adding Transpositions

Repeating the same example,

$$
\pi=\left(\begin{array}{ll}
1 & 32546) \text { and } \sigma=(123456) ~
\end{array}\right.
$$

we can find a different decomposition

$$
\sigma \pi^{-1}=(24653)=\left(\begin{array}{ll}
5 & 3
\end{array}\right) \text { 6)}=\binom{5}{3}(32)(24)(46)
$$

Applying the first two 2-cycles (2 4) and (4 6) separately results in a fission followed by a fusion, but the combined result is of a transposition.

The same happens with (53) and (3 2).

Example

$$
\begin{aligned}
\pi & =(132546) \\
(46) \pi & =(13256)(4) \\
(24)(13256)(4) & =(134256) \\
(32)(134256) & =(1256)(34) \\
(53)(1256)(34) & =(123456)
\end{aligned}
$$

or using the transpositions: $(24)(46)=(146)$ and $\binom{5}{$\hline}$\left(\begin{array}{ll}3 & 2\end{array}\right)=\left(\begin{array}{ll}5 & 2\end{array}\right)$:

$$
\begin{aligned}
\pi & =(132546) \\
(246) \pi & =(134256) \\
(532)(134256) & =(123456)
\end{aligned}
$$

The distance is still $d(\pi, \sigma)=4$, because the weight of a transposition is 2 .

General formula for Transpositions

If elements a, b and c are in the same cycle in π and appear in this order, then $\rho=(a b c)$ is a transposition in π.

Example:

$$
\begin{aligned}
& \pi=\left(\begin{array}{ll}
1 & 3
\end{array} 2546\right) \text { and } \rho=(124) \\
& \rho \pi=(13 \underline{46} \underline{25})
\end{aligned}
$$

$\rho^{\prime}=\left(\begin{array}{ll}1 & 4\end{array}\right)$, on the other hand, is not a transposition on π.

Good Transpositions

- If $\rho=(a b c)$ is a transposition on π, and elements a, b and c are in the same cycle and in this order in $\sigma \pi^{-1}$, then there exists an optimal decomposition of $\sigma \pi^{-1}$ that contains ($a b c$).
- Such a $\rho=(a b c)$ is called a good transposition, bringing π closer to σ, that is,

$$
d(\rho \pi, \sigma)=d(\pi, \sigma)-\|\rho\|=d(\pi, \sigma)-2
$$

Finding decompositions of Transpositions

- If ρ is a good transposition, to find a decomposition of $\sigma \pi^{-1}$ that contains ρ, we multiply $\rho^{-1} \rho$ to the right of $\sigma \pi^{-1}$.

Example:

$$
\pi=(132546) \text { and } \sigma=(123456) \Rightarrow \sigma \pi^{-1}=\left(\begin{array}{ll}
2 & 4653
\end{array}\right)
$$

$\rho=(263)$ is a good transposition. Decomposing $\sigma \pi^{-1}$ we get:

$$
\sigma \pi^{-1}=\sigma \pi^{-1}\left(\rho^{-1} \rho\right)=(2465 \text { 3)(362)(263)=(35)(46)(263) }
$$

ρ is a good transposition because:

$$
\left\|\sigma \pi^{-1}\right\|=\|(24653)\|=\|(35)(46)(263)\|=4
$$

$\rho^{\prime}=(256)$, for instance, would not be a good transposition. (why?)

Sorting by Fusions, Fissions and Transpositions (FFT)

■ Given permutations π and σ, the FFT distance between π and σ is given by

$$
d(\pi, \sigma)=\left\|\sigma \pi^{-1}\right\|
$$

where fissions and fusions have weight 1, and transpositions have weight 2.

- The rearrangement operations can be found by decomposing $\sigma \pi^{-1}$ in 2-cycles (fissions and fusions) and 3-cycles (good transpositions).

Summary

- The algebraic theory uses permutation group properties to solve rearrangement problems.
- The distance is based on the norm of $\sigma \pi^{-1}$, and rearrangement events are found by decomposing $\sigma \pi^{-1}$.
- It can also be used in multichromosomal signed genomes, and on linear chromosomes, not only circular.
- The resulting model is similar to the Double-Cut-and-Join, but with different weights.

