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Preliminaries
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Organization
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Turnip (Speiserübe) vs. Cabbage (Weißkohl)

Although cabbages and turnips share a recent common ancestor, they
look and taste different.
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Genome Rearrangements - Background

In the 1980s Jeffrey Palmer studied evolution of plant organelles by
comparing mitochondrial genomes of cabbage and turnip.

He found 99% similarity between genes.

These surprisingly similar gene sequences differed in gene order.

This study helped pave the way to analyzing genome
rearrangements in molecular evolution.
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Genome Rearrangements - Background

1 2 3

1 −2 3
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Reversal Example

5’ ATGCCTGTACTA 3’

3’ TACGGACATGAT 5’

5’ ATGTACAGGCTA 3’

3’ TACATGTCCGAT 5’

Break
and
Invert
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Human vs. Mouse

Pevzner, P.A. and Tesler, G. 2003. Genome rearrangements in mammalian evolution: Lessons
from human and mouse genomic sequences. Genome Res. 13: 13-26.
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Human vs. Mouse

 1    -7  6    -10    9     -8     2          -11       -3   5   4

 1       2      3     4   5  6   7    8      9    10          11

How many rearrangements do we need to transform one genome
into the other?
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X Chromosome history

Rat Consortium, Nature, 2004

Pedro Feijão Genome Rearrangements Summer 2014 10 / 47



Genome Rearrangements

Genome rearrangements are evolutionary events that shuffle the
genome.
Important questions:

What is the minimum number of rearrangement operations needed
to transform one genome into another? (Distance)
Can we find a rearrangement scenario with this minimum number
of operations? (Sorting)

Several types of rearrangement operations were studied:
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Common Rearrangement Operations

1 2 3 4 5

1 3 2 4 5

Unsigned Reversal/Inversion
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Common Rearrangement Operations

1 2 3 4 5

1 −4 −3 −2 5

Signed Reversal/Inversion
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Common Rearrangement Operations

1 2 3 4 5

1 4 2 3 5

Transposition
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Common Rearrangement Operations

1 2 3 4 5 6

1 5 4 2 3 6

Block Interchange
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Common Rearrangement Operations

1 2 3 4 5

1 5 4 2 3

Translocation (multichromosomal operation)
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Genome Rearrangement Models

Several models were proposed, allowing only one operation or
combining two or more.

Each different models results in a combinatorial problem that must
be solved.

Usually polinomially solvable, notable exceptions: Unsigned reversal
and Transposition (NP-hard)
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Reversal Models

Since 1990, beginning with Sankoff in 1992, many papers have
been devoted to the subject of reversal distance.
The unsigned reversal distance is NP-hard (Caprara 1997)

The signed reversal was solved polynomially by Hannenhalli and
Pevzner in 1995.
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Definitions

A genome will be represented by a permutation, which is a
bijection on the set {1, . . . , n}.

π = ( π1 π2 · · · πn )

For example:

π = ( 2 1 4 3 5 8 6 7 )
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Definitions

A reversal ρ(i , j) reverts the order of elements in interval (i , j).

π = ( 2 1 4 3 5 8 6 7 )

Applying ρ(3, 6):

π = ( 2 1 8 5 3 4 6 7 )
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Reversal Distance Problem

Problem: Given two permutations π and σ, find the shortest series
of reversals that transforms π into σ.

Input: Permutations π and σ.

Output: A series of reversals ρ1, . . . , ρd transforming π into σ,
such that d is minimum.
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Reversal Distance Problem

Problem: Given a permutation π, find the shortest series of
reversals that transforms π into the identity ( 1 2 · · · n ).
(Sorting π)

Input: Permutation π.

Output: A series of reversals ρ1, . . . , ρd transforming π into the
identity, such that d is minimum.

d is called the reversal distance, and it is denoted here d(π).
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Example

How can we sort this permutation?

π = ( 2 1 5 3 4 )
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First Algorithm Idea

In the i-th step, put the i-th element in position

( 2 1 5 3 4 )

( 1 2 5 3 4 )

( 1 2 3 5 4 )

( 1 2 3 4 5 )

At most n − 1 reversals are needed.
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Worst case scenario

π = ( 5 1 2 3 4 )

is sorted with 4 reversals, but it is possible to sort it with only 2.
In general:

( n 1 . . . n − 1 )
( n n − 1 . . . 1 )

( 1 2 . . . n )

In this case, the ratio between this and the optimal solution is
n − 1
2

,
which is not good.
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Approximation Algorithms

Find approximate rather than optimal solutions.

The approximation ratio of an algorithm A on input π is:

r =
A(π)

OPT(π)

where:
A(π) is the solution by algorithm A.
OPT(π) is the optimal solution.
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Fixing the algorithm

Why is the algorithm bad?

Because it breaks some “good” parts.

π = ( 5 1 2 3 4 )

Applying the reversal ρ(1, 2) to put 1 in its position breaks the “good”
connection 1, 2
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Adjacencies and Breakpoints

For a permutation π = ( π1 π2 · · · πn )

Two elements πi and πi+1 are adjacent if |πi − πi+1| = 1.
Otherwise, πi and πi+1 form a breakpoint.

Example:
π = ( 2 1 4 3 5 8 6 7 )

(1, 4), (3, 5), (5, 8), and (8, 6) are breakpoints.

The number of breakpoints in π, denoted by b(π), is already a simple
measure of rearrangement distance.
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Reversals and Breakpoints

To solve the reversal problem, it is common to add two new
elements: 0 and n + 1.

For instance,

π = ( 1 3 2 4 6 5 )

becomes
π = ( 0 1 3 2 4 6 5 7 )

This is to verify if the elements 1 and n form adjacencies (in the
correct position) or breakpoints.
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Reversals and Breakpoints

The only permutation without breakpoints is the identity.

i = ( 0 1 2 3 4 5 6 7 )

We can think of a rearrangement problem as reducing the number of
breakpoints, until reaching 0.

Idea: Apply a reversal that reduce the maximum number of breakpoints.
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Reversals and Breakpoints

Let’s sort the permutation π = ( 2 3 1 4 6 5 ).

π = ( 0 | 2 3 | 1 | 4 | 6 5 | 7 ) (5 BPs)

π = ( 0 | 2 3 | 1 | 4 5 6 7 ) (3 BPs)

π = ( 0 1 | 3 2 | 4 5 6 7 ) (2 BPs)

π = ( 0 1 2 3 4 5 6 7 ) (0 BPs)

Pedro Feijão Genome Rearrangements Summer 2014 31 / 47



Reviewing the Worst Case Example

π = ( 5 1 2 3 4 )

π = ( 0 | 5 | 1 2 3 4 | 6) (3 BPs)

There are 3 BPs, and each BP defines a reversal that fixes that BP.
Which of the 3 reversals eliminates more breakpoints?
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Lower Bound with Breakpoint

Each reversal can eliminate at most 2 breakpoints (one at the left
end and one at the right end).

Therefore, we have the following lower bound for the reversal
distance d(π):

d(π) ≥
b(π)

2
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Approximation Algorithm

If we can find an algorithm that always eliminates at least 1 BP per
reversal, we have a 2-approximation algorithm. Why?

Let A(π) be the number of reversals that this algorithm needs to sort π.
Since A(π) ≤ BP(π), we have

d(π) ≥
b(π)

2
≥
A(π)

2

which implies

r =
A(π)

d(π)
≤ 2
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Breakpoint Algorithm

Is is always possible to destroy at least one breakpoint? NO! :-(

Example:
π = ( 0 4 5 6 1 2 3 7 )

How can we know when these “bad cases” happen?
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Increasing and Decreasing Strips

Any permutation can be partitioned into increasing strips
(overlined) and decreasing strips (underlined).

π = ( 0 2 1 3 4 5 7 8 6 9 )

A strip with one element is increasing for 0 and n + 1, decreasing
otherwise.

In the example, 0 and 9 are increasing strips, but 6 is a decreasing strip.
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Decreasing Strip Reversal

Observation: If there is at least one decreasing strip, there is a
reversal that reduces the number of breakpoints.

Proof: Consider the smallest element k in all decreasing strips, say,
element 5. The element k − 1 must be in a increasing strip. (Why?)

Case 1: ( . . . 7 6 5 . . . 3 4 9 . . . )

Case 2: ( . . . 3 4 9 . . . 7 6 5 . . . )
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Dealing with Bad cases

All the strips in this permutation are increasing:

π = ( 0 4 5 6 1 2 3 7 )

What can we do to guarantee that we can decrease the number of
breakpoints?

We can apply a reversal in a increasing strip (the number of breakpoints
does not change), and then we will have a decreasing strip. For instance,

π = ( 0 6 5 4 1 2 3 7 )
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A Breakpoint reversal sorting algorithm

1: procedure BreakpointReversalSort(π)

2: while b(π) > 0 do
3: if π has a decreasing strip then
4: → Apply a reversal that decreases b(π)

5: else
6: → Apply a reversal in an increasing strip

7: end if
8: end while
9: end procedure
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Approximation Factor

BreakpointReversalSort is a 4-approximation algorithm

Proof:

In the worst case, this algorithm will need 2b(π) reversals to sort a
permutation. (Why?)
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How to improve?

If there is a decreasing strip, there is a “good” reversal.

The bad case is that when there are no decreasing strips.

Can we always apply a reversal that decreases b(π) and always
mantains a decreasing strip?

No, but there is the following result:

Theorem: If all reversals on π that reduce b(π) create a permutation
without decreasing strips, then there exists a reversal that reduces b(π)
by two [Kececioglu and Sankoff, 1993].
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2-Approximation by Kececioglu & Sankoff

1: procedure KS_ReversalSort(π)

2: while b(π) > 0 do
3: → Apply a reversal that decreases b(π) by the largest

amount, preferring reversals that leave a decreasing strip.

4: end while
5: end procedure
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Approximation Algorithms

2-Approximation [Kececioglu and Sankoff, 1993].

7/4-Approximation [Bafna and Pevzner, 1996]

3/2-Approximation [Christie, 1998]

1.375-Approximation [Berman et al., 2002]
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Pancake Flipping Problem

Given a stack of pancakes of different sizes, how can we flip the
pancakes to arrange them from smallest to largest?

This is called the Prefix Reversal Distance.
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Pancake Flipping Problem

Christos Papadimitriou and Bill Gates proposed an approximation algorithm in a
paper from 1979, that was only improved recently, in 2008.
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Burnt Pancake Flipping

Similar to the previous problem, but now the bottom of each pancake is
burnt, and the sort is completed only when all pancakes are ordered and
the burnt side is down.

This is called the Signed Prefix Reversal Distance.

http://www.sciencedirect.com/science/article/pii/
0166218X94000093

One of the authors, David S. Cohen, is a writer for Simpsons and
Futurama.
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