The DCJ-indel model and its potential to improve homology assignment

Marília Braga

Inmetro - Brazil

Overview

(1) Motivation
(2) DCJ model

Master graph and its components
DCJ distance
Handling indels
(3) Using the DCJ model to improve annotation
(Ongoing work)
Substitution or missing homology?
The Rickettsia database
Resolving duplications
(4) Summary

Motivation

Overview

(1) Motivation

2 DCJ model
Master graph and its components
DCJ distance
Handlina indels
(3) Using the DCJ model to improve annotation
(Ongoing work)
Substitution or missing homology?
The Rickettsia database
Resolving duplications
4) Summary

Motivation

Comparing genomes

A

B \qquad

Motivation

Comparing genomes

A

1. Finding genes

B \qquad
\qquad

Motivation

Comparing genomes

1. Finding genes

Motivation

Comparing genomes

1. Finding genes

Motivation

Comparing genomes

A

2. Annotation (homology assignment)

B

Motivation

Comparing genomes

Common genes: Unique genes:
$\begin{array}{rlrl}\mathcal{G}=\{a, b, c, d, e\} & \mathcal{A} & =\{u, v, w\} \\ \mathcal{B} & =\{x, z\}\end{array}$

2. Annotation (homology assignment)
$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{c} \xrightarrow{d} \xrightarrow{z}$

Motivation

Comparing genomes

Common genes: Unique genes:
$\begin{array}{rlrl}\mathcal{G}=\{a, b, c, d, e\} & \mathcal{A} & =\{u, v, w\} \\ \mathcal{B} & =\{x, z\}\end{array}$

3. Computing distance and/or sorting scenario
$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{c} \xrightarrow{d} \xrightarrow{z}$

Motivation

Comparing genomes

Common genes: Unique genes:

$$
\begin{array}{ll}
\mathcal{G}=\{a, b, c, d, e\} & \mathcal{A}=\{u, v, w\} \\
\mathcal{B}=\{x, z\}
\end{array}
$$

$\boldsymbol{A} \xrightarrow{b} \xrightarrow{a} \mid \xrightarrow{u} \xrightarrow[\downarrow \text { inversion }]{d} \xrightarrow{e} \xrightarrow{v}$

$$
\left.\xrightarrow{b} \xrightarrow{a} \stackrel{e}{\stackrel{d}{d}}\right|_{\text {deletion } \downarrow} \stackrel{u}{v} \xrightarrow{w} \mid \stackrel{c}{\leftarrow}
$$

$$
\xrightarrow{b} \xrightarrow{a} \xrightarrow[\text { insertion }]{\stackrel{e}{d}} \downarrow^{c}
$$

$$
\xrightarrow{b} \mid \underset{\text { fission }}{a} \xrightarrow{e} \xrightarrow{d} \underbrace{z} \underbrace{x}
$$

$$
\xrightarrow{b} \underset{\downarrow \text { translocation }}{a} \left\lvert\, \frac{e}{d} z+\frac{c}{c}\right.
$$

$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{c} \xrightarrow{\text { }} \xrightarrow{\text { Z }} \xrightarrow{e}$

Motivation

Comparing genomes

Common genes: Unique genes:

$$
\begin{array}{ll}
\mathcal{G}=\{a, b, c, d, e\} & \mathcal{A}=\{u, v, w\} \\
\mathcal{B}=\{x, z\}
\end{array}
$$

$\boldsymbol{A} \xrightarrow{b} \xrightarrow{a} \mid \xrightarrow{u} \xrightarrow[\downarrow \text { inversion }]{d} \xrightarrow{e} \xrightarrow{v}$

$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{c} \xrightarrow{\text { }} \xrightarrow{\text { Z }} \xrightarrow{e}$

Motivation

Comparing genomes

Common genes: Unique genes:

$$
\begin{array}{ll}
\mathcal{G}=\{a, b, c, d, e\} & \mathcal{A}=\{u, v, w\} \\
\mathcal{B}=\{x, z\}
\end{array}
$$

$\boldsymbol{A} \xrightarrow{b} \xrightarrow{a} \mid \xrightarrow{u} \xrightarrow[\text { inversion }]{\text { d }} \mid \xrightarrow{v} \xrightarrow{w}$

Insertions and Deletions - (Indels) or Substitutions change the content of the genome

Rearrangements change the organization of the genome and are modeled by the Double Cut and Join - (DCJ)
(Yancopoulos, Attie and Friedberg, 2005)

DCJ model

Overview

(1) Motivation
(2) DCJ model

Master graph and its components
DCJ distance
Handling indels
3 Using the DCJ model to improve annotation
(Ongoing work)
Substitution or missing homology?
The Rickettsia database
Resolving duplications
4. Summary

DCJ model

Master graph $R(A, B) \quad$ (no duplicated genes) [Friedberg et al., 2008]
$\boldsymbol{A} \xrightarrow{b} \xrightarrow{a} \xrightarrow{u} \xrightarrow{d} \xrightarrow{e} \xrightarrow{v} \stackrel{c}{c}$ $B \xrightarrow{a} \xrightarrow{b} \xrightarrow{x} \xrightarrow{d} \xrightarrow{z}$

DCJ model

Master graph $R(A, B)$ (no duplicated genes) [Friedberg et al., 2008]

(The symbol o represents the telomeres in both genomes.)

DCJ model

Master graph $R(A, B)$ (no duplicated genes) [Friedberg et al., 2008]

$$
\begin{aligned}
& \boldsymbol{A} \xrightarrow{b} \xrightarrow{a} \xrightarrow{u} \xrightarrow{d} \xrightarrow{e} \xrightarrow{v} \xrightarrow{w} \stackrel{c}{\text { c }} \\
& \therefore b_{0}^{t} \quad b_{0}^{h} \quad a_{0}^{t} \quad a_{0}^{h} \quad a^{h} \cdot a_{0}^{t} \quad e^{t} \cdot e_{0}^{h} \quad c^{h} \quad c^{t} \quad 0
\end{aligned}
$$

$\therefore a^{t} \quad a^{h} \quad b^{t} \quad b^{h} \quad \therefore \quad \therefore \quad c^{t} \quad c^{h} \quad d^{t} \quad d^{h} \quad e^{t} \quad e^{h} \quad \dot{0}$

(The symbol o represents the telomeres in both genomes.)

DCJ model

Master graph $R(A, B)$ (no duplicated genes) [Friedberg et al., 2008]
$\boldsymbol{A} \xrightarrow{b} \xrightarrow{a} \xrightarrow{u} \xrightarrow{d} \xrightarrow{e} \xrightarrow{v} \stackrel{w}{c} \circ$

$$
\stackrel{b^{t}}{\bullet} \quad b^{h} \quad a^{t} \quad a^{a^{h} u d^{h}} \quad d^{t} e^{t} \quad e^{e^{h}{ }_{v w} h} \quad c_{0}^{t} \quad \circ
$$

$\boldsymbol{B} \stackrel{a}{\longrightarrow} \circ \stackrel{\text { c }}{ } \xrightarrow{x} \xrightarrow{d} \mathbb{Z}^{z} \xrightarrow{e} 0$
(The symbol o represents the telomeres in both genomes.)

DCJ model

Master graph $R(A, B) \quad$ (no duplicated genes) [Friedberg et al., 2008]

$\because b^{t} \quad b^{h} \quad a^{t} \quad a^{a_{u}} a^{\bullet} \quad d^{t} \quad e^{t} \quad e^{h_{V w} h} \quad c^{t} \quad \circ$

$B \xrightarrow{a} \xrightarrow{b} \circ \stackrel{c}{\longrightarrow} \xrightarrow{d} \overbrace{}^{z} \xrightarrow{e} \circ$
(The symbol o represents the telomeres in both genomes.)

DCJ model

Master graph $R(A, B) \quad$ (no duplicated genes) [Friedberg et al., 2008]

Components of $R(A, B)$:

One clean BB-path

(The symbol o represents the telomeres in both genomes.)

DCJ model

Master graph $R(A, B) \quad$ (no duplicated genes) [Friedberg et al., 2008]

Components of $R(A, B)$:

One clean BB-path
One clean $A B$-path
(The symbol o represents the telomeres in both genomes.)

DCJ model

Master graph $R(A, B) \quad$ (no duplicated genes) [Friedberg et al., 2008]

Components of $R(A, B)$:

One clean BB-path
One clean $A B$-path
One $A B$-path with four labels
(The symbol o represents the telomeres in both genomes.)

DCJ model

Master graph $R(A, B) \quad$ (no duplicated genes) [Friedberg et al., 2008]

Components of $R(A, B)$:

One clean BB-path
One clean $A B$-path
One $A B$-path with four labels
(collection of paths and cycles; the number of $A B$-paths is even)

$$
\boldsymbol{B} \circ \xrightarrow{a} \xrightarrow{b} \circ \quad \circ \xrightarrow{c} \xrightarrow{x} \xrightarrow{d} \&^{z} \xrightarrow{e} 0
$$

(The symbol o represents the telomeres in both genomes.)

DCJ model

For identical (or sorted) genomes...

$$
\circ \xrightarrow{a} \xrightarrow{b} \circ \quad \circ \xrightarrow{c} \xrightarrow{d} \stackrel{e}{l}
$$

$\circ \xrightarrow{a} \xrightarrow{b} \circ \stackrel{\rightharpoonup}{c} \xrightarrow{d} \stackrel{e}{\longrightarrow}$

DCJ model

For identical (or sorted) genomes...

$$
\circ \xrightarrow{a} \xrightarrow{b} \circ \circ \xrightarrow{c} \xrightarrow{d} \stackrel{e}{\longrightarrow}
$$

Components of $\boldsymbol{R}(A, B)$:

Only short cycles and short $A B$-paths

DCJ model

For identical (or sorted) genomes...

$$
\circ \xrightarrow{a} \xrightarrow{b} \circ \circ \xrightarrow{c} \xrightarrow{d} 0
$$

Components of $\boldsymbol{R}(A, B)$:

Only short cycles and short $A B$-paths

DCJ model

DCJ distance

c: number of cycles in $R(A, B)$
b: number of $A B$-paths in $R(A, B)$

Types of DCJ operations:

DCJ	
effect on $R(A, B)$ neutral neunter-optimal	increase c or b c and b unchanged decrease c or b

DCJ model

DCJ distance

c: number of cycles in $R(A, B)$
b: number of $A B$-paths in $R(A, B)$

Types of DCJ operations:

DCJ	
effect on $R(A, B)$ optimal neutral counter-optimal increase c or b c and b unchanged decrease c or b	

Bergeron et al. (2006): there is an optimal DCJ at each sorting step.

DCJ model

DCJ distance

c: number of cycles in $R(A, B)$
b: number of $A B$-paths in $R(A, B)$

Types of DCJ operations:

DCJ	
optimal neutral counter-optimal on $R(A, B)$	increase c or b c and b unchanged decrease c or b

Bergeron et al. (2006): there is an optimal DCJ at each sorting step.

DCJ distance of A and $B: \boldsymbol{d}_{\mathrm{DCJ}}(A, B)=|\mathcal{G}|-\left(c+\frac{b}{2}\right)$
(\mathcal{G} : set of common genes of A and B)

INMETRO

DCJ model

Handling indels - accumulating labels in both genomes:

$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{c} \xrightarrow{x} \xrightarrow{z}$

DCJ model

Handling indels - accumulating labels in both genomes:

$\boldsymbol{A}^{\prime} \xrightarrow{b} \xrightarrow{a} \stackrel{e}{\longrightarrow} \xrightarrow{d} \xrightarrow{u} \xrightarrow{w} \stackrel{c}{\leftarrow}$

one $B B$-path, two $A B$-paths, and four labels

one $B B$-path, two $A B$-paths, one cycle and three labels
$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{c} \xrightarrow{d} \xrightarrow{z}$

DCJ model

Handling indels - accumulating labels in both genomes:

one $B B$-path, two $A B$-paths, and four labels

$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{c} \xrightarrow{d} \xrightarrow{z}$

DCJ model

Handling indels - accumulating labels in both genomes:

one $B B$-path, two $A B$-paths, and four labels

DCJ model

Handling indels - accumulating labels in both genomes:

one $B B$-path, two $A B$-paths, and four labels

one $B B$-path, two $A B$-paths, one cycle and three labels

DCJ model

Handling indels - accumulating labels in both genomes:

one $B B$-path, two $A B$-paths, and four labels

one $B B$-path, two $A B$-paths, one cycle and three labels

$B \xrightarrow{a} \xrightarrow{c} \xrightarrow{X}|\xrightarrow{d}| \xrightarrow{z}$
(DCJ operations can increase the number of components and accumulate labels.)

DCJ model

Handling indels - the concept of run

Accumulating
labels:

two labels

DCJ model

Handling indels - the concept of run

Accumulating labels:

DCJ model

Handling indels - the concept of run

Accumulating
labels:

two labels

one label

clean cycle

DCJ model

Handling indels - the concept of run

Accumulating labels:

one label
two labels

DCJ model

Handling indels - the concept of run

Accumulating labels:

two labels

one label
clean cycle
(split DCJ)

Runs:

Each run can be entirely accumulated into a single label with split DCJs.

DCJ model

Handling indels - the concept of run

Accumulating labels:

Runs:

Each run can be entirely accumulated into a single label with split DCJs.
A split DCJ is always optimal.

DCJ model

A rearrangement can merge at most two \mathcal{A}-runs and two \mathcal{B}-runs:

Λ : $\quad 5$ runs

DCJ model

A rearrangement can merge at most two \mathcal{A}-runs and two \mathcal{B}-runs:

DCJ model

A rearrangement
can merge at
most two \mathcal{A}-runs
and two \mathcal{B}-runs:

$\lambda: \quad 3$ runs
$\lambda: \quad 3$ runs

DCJ model

A rearrangement can merge at most two \mathcal{A}-runs and two \mathcal{B}-runs:

DCJ model

Handling indels - the concept of potential

DCJ model

Handling indels - the concept of potential

Indel-potential of a component P [WABI 2010]

Minimum number of runs obtained sorting P with split DCJs:

$$
\lambda(P)=\left\lceil\frac{\Lambda(P)+1}{2}\right\rceil \quad(\text { for } \Lambda(P) \geq 1)
$$

DCJ model

Handling indels - the concept of potential

Indel-potential of a component P [WABI 2010]

Minimum number of runs obtained sorting P with split DCJs:

$$
\lambda(P)=\left\lceil\frac{\Lambda(P)+1}{2}\right\rceil \quad(\text { for } \Lambda(P) \geq 1)
$$

Substitution-potential of a component P [RECOMB-CG 2011]

Minimum number of pairs of runs obtained sorting P with split DCJs:

$$
\sigma(P)=\left\lceil\frac{\Lambda(P)+1}{4}\right\rceil \quad(\text { for } \Lambda(P) \geq 1)
$$

DCJ model

Handling indels - the concept of potential

Indel-potential of a component P [WABI 2010]

Minimum number of runs obtained sorting P with split DCJs:

$$
\lambda(P)=\left\lceil\frac{\Lambda(P)+1}{2}\right\rceil \quad(\text { for } \Lambda(P) \geq 1)
$$

Substitution-potential of a component P [RECOMB-CG 2011]

Minimum number of pairs of runs obtained sorting P with split DCJs:

$$
\sigma(P)=\left\lceil\frac{\Lambda(P)+1}{4}\right\rceil \quad(\text { for } \Lambda(P) \geq 1)
$$

$\Lambda(P)$	$\lambda(P)$		$\sigma(P)$
0	0		0
1	1		1
2	2		1
3	2	1	
4	3	2	
5	3	2	
6	4	2	
7	4	2	
$:$	$\left\lceil\frac{\Lambda(P)+1}{2}\right\rceil$	$\left\lceil\frac{\Lambda(P)+1}{4}\right\rceil$	

DCJ model

Distances with indels

DCJ model

Distances with indels

DCJ-indel distance [WABI 2010]
$>$ An upper bound is given by: $d_{\mathrm{DCJ}}^{i d}(A, B) \leq d_{\mathrm{DCJ}}(A, B)+\sum_{P \in R(A, B)} \lambda(P)$

- The exact distance can be computed in linear time.

DCJ model

Distances with indels

DCJ-indel distance [WABI 2010]
\Rightarrow An upper bound is given by: $d_{\mathrm{DCJ}}^{i d}(A, B) \leq d_{\mathrm{DCJ}}(A, B)+\sum_{P \in R(A, B)} \lambda(P)$

- The exact distance can be computed in linear time.

DCJ-substitution distance [RECOMB-CG 2011]
\Rightarrow An upper bound is given by: $d_{\mathrm{DCJ}}^{s b}(A, B) \leq d_{\mathrm{DCJ}}(A, B)+\sum_{P \in R(A, B)} \sigma(P)$

- The exact distance can be computed in linear time.

Using the DCJ model to improve annotation

Overview

1 Motivation
2 DCJ model
Master graph and its components
DCJ distance
Handling indels
(3) Using the DCJ model to improve annotation
(Ongoing work)
Substitution or missing homology?
The Rickettsia database
Resolving duplications
4) Summary

Using the DCJ model to improve annotation

- The labels in the same component of the master graph seem to be somehow related.
- This includes, but is not limited to, the case of adjacencies (when the unknown or mis-annotated genes are adjacent to genes of the same family in both genomes).
- Could this information be used to improve the annotation (missing homology assignment and duplicate disambiguation) of the genomes?

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

$$
\begin{aligned}
& A \xrightarrow{a} \xrightarrow{d} \xrightarrow{b} \xrightarrow{x} \xrightarrow{e} \\
& \therefore a^{t} a_{0}^{h} d^{t} a_{0}^{h} c_{0}^{t} c_{0}^{h} b^{t} b_{0}^{h} e^{t} e_{0}^{h} \quad e_{0}^{0}
\end{aligned}
$$

$$
\begin{aligned}
& B \xrightarrow{a} \xrightarrow{y} \xrightarrow{b} \xrightarrow{e}
\end{aligned}
$$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

$B \xrightarrow{a} \xrightarrow{y} \xrightarrow{b} \xrightarrow{d}$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

$a^{h} a^{t} \quad a^{h} c^{t} \quad c^{h} b^{t}$
(a
$a^{h}{ }^{h} b^{t}$
$B \xrightarrow{a} \xrightarrow{y} \xrightarrow{b} \xrightarrow{d}$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

$\sigma=1+1$ (two substitutions)
DCJ distance $=5-2-2 / 2=2$
DCJ-substitution distance $=4$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

$\sigma=1+1$ (two substitutions)
DCJ distance $=5-2-2 / 2=2$
DCJ-substitution distance $=4$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

$\sigma=1+1$ (two substitutions)
DCJ distance $=5-2-2 / 2=2$
DCJ-substitution distance $=4$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

$\sigma=1+1$ (two substitutions)
DCJ distance $=5-2-2 / 2=2$
DCJ-substitution distance $=4$

Using the DCJ model to improve annotation
Substitution or homology? A-label and B-label in distinct components

$\sigma=1+1$ (two substitutions)
DCJ distance $=5-2-2 / 2=2$
DCJ-substitution distance $=4$

Using the DCJ model to improve annotation
Substitution or homology? A-label and B-label in distinct components

$\sigma=1+1$ (two substitutions)
DCJ distance $=5-2-2 / 2=2$
DCJ-substitution distance $=4$

$$
\sigma=0 \text { (no substitution) }
$$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

$B \xrightarrow{a} \xrightarrow{y} \xrightarrow{b} \xrightarrow{d}$
$\sigma=1+1$ (two substitutions)
DCJ distance $=5-2-2 / 2=2$
DCJ-substitution distance $=4$

$$
B \xrightarrow{a} \xrightarrow{x} \xrightarrow{b} \xrightarrow{c} \xrightarrow{e}
$$

$$
\sigma=0 \text { (no substitution) }
$$

$$
\text { DCJ distance }=6-1-2 / 2=4
$$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

$B \xrightarrow{a} \xrightarrow{y} \xrightarrow{b} \xrightarrow{d}$
$\sigma=1+1$ (two substitutions)
DCJ distance $=5-2-2 / 2=2$
DCJ-substitution distance $=4$

$$
B \xrightarrow{a} \xrightarrow{x} \xrightarrow{b} \xrightarrow{c} \xrightarrow{e}
$$

$$
\sigma=0 \text { (no substitution) }
$$

DCJ distance $=6-1-2 / 2=4$
DCJ-substitution distance $=4$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

$B \xrightarrow{a} \xrightarrow{y} \xrightarrow{b} \xrightarrow{d}$
$\sigma=1+1$ (two substitutions)
DCJ distance $=5-2-2 / 2=2$
DCJ-substitution distance $=4$

$$
B \xrightarrow{a} \xrightarrow{x} \xrightarrow{b} \xrightarrow{c} \xrightarrow{e}
$$

$$
\sigma=0 \text { (no substitution) }
$$

DCJ distance $=6-1-2 / 2=4$
DCJ-substitution distance $=4$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

The distance does not decrease if x and y are homologous, independently of their relative orientations.

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

INMETRO

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

INMETRO

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

INMETRO

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

We "remove" two subst., but increase the number of common genes and decrease the number of comp.

INMETRO

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in distinct components

We "remove" two subst., but increase the number of common genes and decrease the number of comp.
The distance does not decrease if x and y are homologous, independently of their relative orientations.

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component
$\boldsymbol{A} \xrightarrow{a} \xrightarrow{c} \xrightarrow{x} \xrightarrow{b}$
$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{c}$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

$$
\begin{aligned}
& \boldsymbol{A} \xrightarrow{a} \xrightarrow{c} \xrightarrow{x} \xrightarrow{b} \\
& \circ a^{a^{t}} \quad a^{h} \quad c^{t} \\
& c^{h} \hat{x} b^{t} \\
& b^{h} \\
& d^{t} \\
& d^{h}
\end{aligned} \circ .
$$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

$$
\boldsymbol{A} \xrightarrow{a} \xrightarrow{c} \xrightarrow{x} \xrightarrow{b}
$$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{c}$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

DCJ distance $=4-1-2 / 2=2$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

$\sigma=1$ (one substitution)
DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

$\sigma=1$ (one substitution)
DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

$$
\boldsymbol{A} \xrightarrow{a} \xrightarrow{c} \xrightarrow{x} \xrightarrow{b} \xrightarrow{d}
$$

Using the DCJ model to improve annotation
Substitution or homology? A-label and B-label in the same component

$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{y} \xrightarrow{d}$
$\sigma=1$ (one substitution)
DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

B $\xrightarrow{a} \xrightarrow{b} \xrightarrow{x} \xrightarrow{d}$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

$$
\boldsymbol{B} \xrightarrow{a} \xrightarrow{b} \xrightarrow{y} \xrightarrow{c}
$$

$$
\sigma=1 \text { (one substitution) }
$$

DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{x} \xrightarrow{c}$

$$
\sigma=0 \text { (no substitution) }
$$

DCJ distance $=5-1-2 / 2=3$
DCJ-substitution distance $=3$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

DCJ-substitution distance $=3$

B $\xrightarrow{a} \xrightarrow{b} \xrightarrow{x} \xrightarrow{d}$

$$
\sigma=0 \text { (no substitution) }
$$

DCJ distance $=5-2-2 / 2=2$
DCJ-substitution distance $=2$

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{c}$

$$
\sigma=1 \text { (one substitution) }
$$

DCJ distance $=4-1-2 / 2=2$
DCJ-substitution distance $=3$

$B \xrightarrow{a} \xrightarrow{b} \xrightarrow{x} \xrightarrow{c}$

$$
\sigma=0 \text { (no substitution) }
$$

DCJ distance $=5-2-2 / 2=2$
DCJ-substitution distance $=2$

The distance decreases if x and y are homologous, for one of their two possible relative orientations.

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

INMETRO

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

INMETRO

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

INMETRO

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

We "remove" one subst., increase the number of common genes and may increase the number of comp.

INMETRO

Using the DCJ model to improve annotation

Substitution or homology? A-label and B-label in the same component

We "remove" one subst., increase the number of common genes and may increase the number of comp.
The distance decreases if x and y are homologous, for one of their two possible relative orientations.

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

$\Lambda=4 ; \sigma=2$ (two subst.)

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

$$
\Lambda=4 ; \sigma=2 \text { (two subst.) }
$$

DCJ distance $=7-1=6$
DCJ-substitution distance $=8$

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

$$
\Lambda=4 ; \sigma=2 \text { (two subst.) }
$$

DCJ distance $=7-1=6$
DCJ-substitution distance $=8$

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

$$
\Lambda=4 ; \sigma=2 \text { (two subst.) }
$$

DCJ distance $=7-1=6$
DCJ-substitution distance $=8$

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

$$
\Lambda=4 ; \sigma=2 \text { (two subst.) }
$$

DCJ distance $=7-1=6$
DCJ-substitution distance $=8$

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

$$
\Lambda=4 ; \sigma=2 \text { (two subst.) }
$$

$$
\text { DCJ distance }=7-1=6
$$

DCJ-substitution distance $=8$

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

$$
\Lambda=4 ; \sigma=2 \text { (two subst.) }
$$

$$
\text { DCJ distance }=7-1=6
$$

DCJ-substitution distance $=8$

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

$$
\Lambda=4 ; \sigma=2 \text { (two subst.) }
$$

$$
\text { DCJ distance }=7-1=6
$$

DCJ-substitution distance $=8$

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

$\Lambda=4 ; \sigma=2$ (two subst.)
DCJ distance $=7-1=6$

$$
\sigma=0 \text { (no substitution) }
$$

DCJ distance $=10-4=6$

Using the DCJ model to improve annotation

Finding missing homologies: a more complex example

$\Lambda=4 ; \sigma=2$ (two subst.)
DCJ distance $=7-1=6$
DCJ-substitution distance $=8$

$$
\sigma=0 \text { (no substitution) }
$$

DCJ distance $=10-4=6$
DCJ-substitution distance $=6$

Using the DCJ model to improve annotation

The Rickettsia database

Phylogenetic tree with DCJ distance in its branches
(Blanc et al., 2007)

Using the DCJ model to improve annotation

The Rickettsia database

Phylogenetic tree with DCJ distance in its branches
(Blanc et al., 2007)

Comparison	D	SC	LC	$\boldsymbol{\lambda}=\mathbf{1}$	$\boldsymbol{\lambda} \geq \mathbf{2}$
R.pr. x R.ty.	1	797	1	1	0
R.co. x R.af.	1	874	1	1	0
R.co. x R.ma.	3	867	2	9	0
R.af. x R.ma.	2	868	2	10	0
R.pr. x R.co.	4	789	1	38	1
R.ty. x R.co.	5	787	2	37	1
R.pr. x R.af.	3	788	1	39	1
R.ty. x R.af.	4	786	2	38	1
R.pr. x R.ma.	3	786	3	43	1
R.ty. x R.ma.	4	784	4	42	1
R.pr. x R.fe.	11	777	4	59	2
R.ty. x R.fe.	12	775	5	58	2
R.co. x R.fe.	11	844	3	38	2
R.af. x R.fe.	10	845	3	39	2
R.ma. x R.fe.	10	851	3	37	4

D = DCJ distance; SC = short cycle; LC = long cycle

Using the DCJ model to improve annotation

The Rickettsia database

Phylogenetic tree with DCJ distance in its branches
(Blanc et al., 2007)

Comparison	D	SC	LC	$\boldsymbol{\lambda}=\mathbf{1}$	$\boldsymbol{\lambda} \geq \mathbf{2}$
R.pr. x R.ty.	1	797	1	1	0
R.co. x R.af.	1	874	1	1	0
R.c. x R.ma.	3	867	2	9	0
R.af. x R.ma.	2	868	2	10	0
R.pr. x R.co.	4	789	1	38	1
R.ty. x R.co.	5	787	2	37	1
R.pr. x R.af.	3	788	1	39	1
R.ty. x R.af.	4	786	2	38	1
R.pr. x R.ma.	3	786	3	43	1
R.ty. x R.ma.	4	784	4	42	1
R.pr. x R.fe.	11	777	4	59	2
R.ty. x R.fe.	12	775	5	58	2
R.co. x R.fe.	11	844	3	38	2
R.af. x R.fe.	10	845	3	39	2
R.ma. x R.fe.	10	851	3	37	4

D = DCJ distance; SC = short cycle; LC = long cycle
With a quick look, we could find:

Using the DCJ model to improve annotation

The Rickettsia database

Phylogenetic tree with DCJ distance in its branches
(Blanc et al., 2007)

Comparison	D	SC	LC	$\boldsymbol{\lambda}=\mathbf{1}$	$\boldsymbol{\lambda} \geq \mathbf{2}$
R.pr. x R.ty.	1	797	1	1	0
R.co. x R.af.	1	874	1	1	0
R.co. x R.ma.	3	867	2	9	0
R.af. x R.ma.	2	868	2	10	0
R.pr. x R.co.	4	789	1	38	1
R.ty. x R.co.	5	787	2	37	1
R.pr. x R.af.	3	788	1	39	1
R.ty. x R.af.	4	786	2	38	1
R.pr. x R.ma.	3	786	3	43	1
R.ty. x R.ma.	4	784	4	42	1
R.pr. x R.fe.	11	777	4	59	2
R.ty. x R.fe.	12	775	5	58	2
R.co. x R.fe.	11	844	3	38	2
R.af. x R.fe.	10	845	3	39	2
R.ma. x R.fe.	10	851	3	37	4

D = DCJ distance; SC = short cycle; LC = long cycle
With a quick look, we could find:

- two pairs of genes that could be homologous between R. felis and the three species R. conorii, R. africae and R. massiliae.

Using the DCJ model to improve annotation

The Rickettsia database

Phylogenetic tree with DCJ distance in its branches
(Blanc et al., 2007)

Comparison	D	SC	LC	$\boldsymbol{\lambda}=\mathbf{1}$	$\boldsymbol{\lambda} \geq \mathbf{2}$
R.pr. x R.ty.	1	797	1	1	0
R.co. x R.af.	1	874	1	1	0
R.co. x R.ma.	3	867	2	9	0
R.af. x R.ma.	2	868	2	10	0
R.pr. x R.co.	4	789	1	38	1
R.ty. x R.co.	5	787	2	37	1
R.pr. x R.af.	3	788	1	39	1
R.ty. x R.af.	4	786	2	38	1
R.pr. x R.ma.	3	786	3	43	1
R.ty. x R.ma.	4	784	4	42	1
R.pr. x R.fe.	11	777	4	59	2
R.ty. x R.fe.	12	775	5	58	2
R.co. x R.fe.	11	844	3	38	2
R.af. x R.fe.	10	845	3	39	2
R.ma. x R.fe.	10	851	3	37	4

D = DCJ distance; SC = short cycle; LC = long cycle

With a quick look, we could find:

- two pairs of genes that could be homologous between R. felis and the three species R. conorii, R. africae and R. massiliae.
\square two pairs of genes that could be homologous between R. prowazekii and R. typhi and the four species R. felis, R. conorii, R. africae and R. massiliae.

Using the DCJ model to improve annotation

Resolving duplications

- The master graph is only defined for genomes without duplicated genes.
- However, duplicates could be represented as labels in the components of the graph.
- The information of the components could help to disambiguate the duplications.

Using the DCJ model to improve annotation

Resolving duplications - pairs from the same or from distinct components
Two cycles:

Using the DCJ model to improve annotation

Resolving duplications - pairs from the same or from distinct components
Two cycles:

Using the DCJ model to improve annotation

Resolving duplications - pairs from the same or from distinct components
Two cycles:

Pairs from distinct cycles
\hat{x}

Using the DCJ model to improve annotation

Resolving duplications - pairs from the same or from distinct components

Two cycles:

Pairs from distinct cycles

INMETRO

Using the DCJ model to improve annotation

Resolving duplications - pairs from the same or from distinct components

Two cycles:

\hat{x}

\hat{x}
Pairs from distinct cycles

INMETRO

Using the DCJ model to improve annotation

Resolving duplications - pairs from the same or from distinct components

Two cycles:

\hat{x}

Pairs from distinct cycles

Pairs from the same cycle

INMETRO

Using the DCJ model to improve annotation

Resolving duplications - pairs from the same or from distinct components

Two cycles:

\hat{x}

Pairs from distinct cycles

Pairs from the same cycle

INMETRO

Using the DCJ model to improve annotation

Resolving duplications - pairs from the same or from distinct components

Two cycles:

\hat{x}

\hat{x}

Pairs from distinct cycles

Pairs from the same cycle

Using the DCJ model to improve annotation

Resolving duplications - pairs from the same or from distinct components

Two cycles:

\hat{x}

\hat{x}

Pairs from distinct cycles

Pairs from the same cycle

Assigning pairs in the same cycle is better or at least as good as assigning pairs in distinct cycles.

Using the DCJ model to improve annotation

Resolving duplications - more labels in the same component

Using the DCJ model to improve annotation

Resolving duplications - more labels in the same component

Using the DCJ model to improve annotation

Resolving duplications - more labels in the same component

INMETRO

Using the DCJ model to improve annotation

Resolving duplications - more labels in the same component

Using the DCJ model to improve annotation

Resolving duplications - more labels in the same component

INMETRO

Using the DCJ model to improve annotation

Resolving duplications - more labels in the same component

Summary

Overview

(1) Motivation

2 DCJ model
Master graph and its components
DCJ distance
Handling indels
3 Using the DCJ model to improve annotation
(Ongoing work)
Substitution or miss ng homology?
The Rickettsia database
Resolving duplications
(4) Summary

Summary

- In genome rearrangements, the analysis usually has three main steps:

1. Find genes in the given genomes
2. Annotate genes
3. Compute distance according to some rearrangement model

Summary

- In genome rearrangements, the analysis usually has three main steps:

1. Find genes in the given genomes
2. Annotate genes
3. Compute distance according to some rearrangement model

- In the development of approaches to solve step (3), it is often assumed that steps (1) and (2) are given.

Summary

- In genome rearrangements, the analysis usually has three main steps:

1. Find genes in the given genomes
2. Annotate genes
3. Compute distance according to some rearrangement model

- In the development of approaches to solve step (3), it is often assumed that steps (1) and (2) are given.
- Here we have shown that the graph structure used in step (3) for the DCJ model, that actually requires some annotation of the genomes, can be used to improve the annotation itself.

Summary

- In genome rearrangements, the analysis usually has three main steps:

1. Find genes in the given genomes
2. Annotate genes
3. Compute distance according to some rearrangement model

- In the development of approaches to solve step (3), it is often assumed that steps (1) and (2) are given.
- Here we have shown that the graph structure used in step (3) for the DCJ model, that actually requires some annotation of the genomes, can be used to improve the annotation itself.
- However, finding candidates for homology in a component of the graph can be difficult, if the component is long and with many labels.

Summary

- In genome rearrangements, the analysis usually has three main steps:

1. Find genes in the given genomes
2. Annotate genes
3. Compute distance according to some rearrangement model

- In the development of approaches to solve step (3), it is often assumed that steps (1) and (2) are given.
- Here we have shown that the graph structure used in step (3) for the DCJ model, that actually requires some annotation of the genomes, can be used to improve the annotation itself.
- However, finding candidates for homology in a component of the graph can be difficult, if the component is long and with many labels.
- Fortunately, for some datasets (in particular closely related genomes such as Rickettsia), the components are usually short and have few labels.

Summary

- In genome rearrangements, the analysis usually has three main steps:

1. Find genes in the given genomes
2. Annotate genes
3. Compute distance according to some rearrangement model

- In the development of approaches to solve step (3), it is often assumed that steps (1) and (2) are given.
- Here we have shown that the graph structure used in step (3) for the DCJ model, that actually requires some annotation of the genomes, can be used to improve the annotation itself.
- However, finding candidates for homology in a component of the graph can be difficult, if the component is long and with many labels.
- Fortunately, for some datasets (in particular closely related genomes such as Rickettsia), the components are usually short and have few labels.
- There is a potential in the use of this graph to disambiguate duplicate genes.

Acknowledgements

This research is supported by the Brazilian research agency CNPq (grant PROMETRO 563087/2010-2)

Acknowledgements

This research is supported by the Brazilian research agency CNPq (grant PROMETRO 563087/2010-2)

Thank you for your attention!

