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Genome Rearrangement Scenarios

Finding genome rearrangement scenarios between two genomes is
usually easy.
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Genome Rearrangement Scenarios

What if we have more genomes? Can we find an evolutionary
scenario?

Ideally, we want a rearrangement phylogeny, explaining ancestral
configurations and rearrangement scenarios.

For instance, something like:
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Pevzner, Computational Molecular Biology: An Algorithmic Approach (2000)
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Multiple Genome Rearrangement

The complexity of many combinatorial problems increases when
the number of objects increase from 2 to 3.

Genome Rearrangement is no exception: when comparing 3 (or
more) genomes, most rearrangement models are NP-hard.
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Multiple Genome Rearrangement

We are looking for the most parsimonious phylogenetic tree. More
formally:

Multiple Genome Rearrangement Problem – MGR
Given n genomes, find a tree T with the n genomes as leaf nodes and
assign ancestral genomes to internal nodes of T such that the tree is
optimal, i.e., the sum of rearrangement distances over all edges of the
tree is minimal.

This problem is also called the Big Parsimony Problem.

In the Small Parsimony Problem, a tree T is given, and only the
ancestral assignment is needed.

The simplest form of the MGR is the median problem, when three
input genomes are considered.
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Genome Median Problem
Given three genomes A, B and C, and a genome distance measure d ,
find a genome M where the median score

s(M) = d(A,M) + d(B,M) + d(C,M)

is minimized.

M

A

B

C

This can be used as a subproblem to solve the Small Parsimony, iteratively
finding the median in the internal nodes of the tree until convergence is
achieved.
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Genome Median Problem

Unfortunately, the median problem is NP-hard for most rearrangement
distances, except for breakpoint distances in some cases.

Unichromosomal BP: NP-hard
Linear Genomes: Pe’er and Shamir, 1998
Circular Genomes: Bryant, 1998

Reversal: NP-hard (Caprara, 1997)

DCJ: NP-hard (Caprara, 1997; Tannier et al. 2009)

Multichromosomal BP: O(n3) (Tannier et al. 2009); O(n
√
n)

(Kováč, 2013)

Single-Cut-or-Join: O(n) (Feijão and Meidanis, 2009)
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Multichromosomal BP Distance

Proposed by Tannier et al., in 2009.

Similarly to the DCJ model, genomes are defined as sets of
adjacencies and telomeres, given a gene set A.
For instance, given A = {1, 2, 3, 4, 5, 6, 7}, we can define the
genome A = {1t , 1h3t , 3h4h, 4t , 2t , 2h5t , 5h, 6t , 6h7t , 7h}

1t 1h
1

3t 3h
3

4h 4t
−4

2t 2h
2

5t 5h
5

6t 6h
6

7t 7h
7
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Multichromosomal BP Distance

Multichromosomal BP Distance – Tannier et al., 2009
Given genomes A and B, the multichromosomal BP distance is defined as

dBP(A,B) = N − A−
T

2

where N is the number of genes, A is the number of common adjacencies
and T the number of common telomeres in A and B.

Alternatively, using the Adjacency Graph:

dBP(A,B) = N − C2 −
P1

2

where N is the number of genes, C2 is the number of cycles of lenght 2
and T the number of paths of lenght 1 in AG(A,B).
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Median Problem - BP Distance

Given a gene set A, consider a graph G whose vertex set has two
vertices, x and tx , for each extremity x of the genes in A.
There is an edge between x and tx , for all extremities x , and also
and edge between all pairs of x vertices and all pairs of tx vertices.

For instance, for A = {1, 2, 3} we have this graph:

Clique

Clique

t1t t1h t2t t2h t3t t3h

1t 1h 2t 2h 3t 3h

Property: Perfect Matching in G ⇐⇒ Genome in A.
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Example

For gene set A = {1, 2, 3}, and genome A = {1t , 1h2t , 2h3t , 3h} we have
the following matching:

t1t t1h t2t t2h t3t t3h

1t 1h 2t 2h 3t 3h

“Horizontal edges” → Adjacencies in the genome.

“Vertical edges” → Telomeres in the genome.
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Median Problem - BP Distance

Now consider the same graph G, in an weighted form: Given genomes A,
B and C, assign weights to the edges of G in this form:

Adjacency weights: for each adjacency edge (x, y), the weight is
# of genomes that have adjacency xy (w = 0, 1, 2 or 3).

Telomere weights: for each telomere edge (x, tx), weight is # of
genomes that have telomere x divided by 2 (w = 0, 1/2, 1 or 3/2).

Any other edge has weight 0.
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Matching Weight and Median Score

Claim
Consider three genomes A, B and C, and the weighted graph G. For any
genome M, the corresponding weighted matching in G has total weight

w = 3N − (dBP(A,M) + dBP(B,M) + dBP(C,M)) = 3N − s(M)

where s(M) is the median score of M.

Proof?

Therefore, solving the maximum weight perfect matching problem in
G (can be done in O(n3)), we find a median with minimum score, solving
the median problem.
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Single-Cut-or-Join – SCJ

Introduced by Feijao and Meidanis in 2009.

It is very similar to the Multichromosomal BP distance, but slightly
simpler.

The Median problem is solved in O(n). The small parsimony
problem can also be solved in polynomial time.
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SCJ – Definitions

A cut is an operation that breaks an adjacency in two telomeres.

A join is the reverse operation: two telomeres → one adjacency.

Any single cut or single join is a SCJ.

1t 1h

1

2t 2h

2

3t 3h

3

4t 4h

4

1t 1h

1

2t 2h

2

3t 3h

3

4t 4h

4

join 2h3t cut 2h3t
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Genomes as Sets of Adjacencies

When a gene set is given, a genome can be uniquely represented as
a set of adjacencies, omiting telomeres.

For instance, given A = {1, 2, 3, 4, 5, 6, 7}, we can define the
genome A = {1h3t , 3h4h, 2h5t , 6h7t}

1t 1h
1

3t 3h
3

4h 4t
−4

2t 2h
2

5t 5h
5

6t 6h
6

7t 7h
7

Then, SCJ operations can be seen as set operations:
A cut of an adjacency xy : A− {xy}.
A join of an adjacency xy : A ∪ {xy}.
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Genomes as Sets of Adjacencies - Example

Gene set: A = {1, 2, 3, 4}

A = {1h2t , 2h3t , 3h4t}

1t 1h

1

2t 2h

2

3t 3h

3

4t 4h

4

1t 1h

1

2t 2h

2

3t 3h

3

4t 4h

4

join 2h3t cut 2h3t

B = {1h2t , 3h4t}
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SCJ Distance and Sorting

How many SCJs do we need to tranform one genome into another?

If I have two sets A and B, and the only allowed operation is to
remove or include elements from the sets, how can I transform A
into B in the minimum number of operations?

One way: First, remove all elements of A that are not present in B.

Then, include in A all elements of B that are not already in A.

In set theory: remove (A− B) and include (B − A).
SCJ: Apply cuts of (A− B) and joins of (B − A).

dSCJ = |A− B|+ |B − A|
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SCJ Sorting

A = {ahch, ctbh, btdt}
at ah
a

ch c t
−c

bh bt
−b

d t dh
d

B = {ahbt , bhct , chdt}
at ah
a

bt bh
b

c t ch
c

d t dh
d

Red adjacencies must be cut

Blue adjacencies must be joined
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SCJ Sorting

A = {ahch, ctbh, btdt}
at ah

a

ch ct

−c
bh bt

−b
dt dh

d

A1 = A− {ahch} = {ctbh, btdt}
at ah

a

ch ct

−c
bh bt

−b
dt dh

d

A2 = A1 − {btdt} = {ctbh}
at ah

a

ch ct

−c
bh bt

−b
dt dh

d

A3 = A2 ∪ {ahbt} = {ahbt , ctbh}
at ah

a

bt bh

b

ct ch

c

dt dh

d

A4 = A3 ∪ {chdt} = {ahbt , bhct , chdt}
at ah

a

bt bh

b

ct ch

c

dt dh

d
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SCJ Distance with the Adjacency Graph

Simple equation for the SCJ distance using the Adjacency Graph:

dSCJ(A,B) = 2N − 2C2 − P

where N is the number of genes, C2 and P are the number of cycles of
lenght 2 and paths of AG(A,B), respectively.
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Proof of SCJ distance by AG(A,B)

We know from the definition of SCJ distance and basic set theory that

dSCJ(A,B) = |A− B|+ |B − A| = |A|+ |B| − 2|A ∩ B|.

|A ∩ B| = common adjacencies = C2.

For any A, we know that |A| = N − tA/2, where tA is the number
of telomeres of A.

Each path has exactly two telomeres ⇒ P = (tA + tB)/2.
Then,

dSCJ(A,B) = |A|+ |B| − 2|A ∩ B|
= 2N − (tA + tB)/2− 2C2

= 2N − 2C2 − P.
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SCJ with Adjacency Graph – Example

A = {1h2h, 2t3h, 3t4t , 4h6h, 6t5t}, B = {1t2t , 2h3h, 3t4t , 4h6t}

AG(A,B)

1t 1h2h 2t3h 3t4t 4h6h 6t5t 5h

1h 1t2t 2h3h 3t4t 4h6t 6h5t 5h

dSCJ(A,B) = |A− B|+ |B − A| = 4 + 4 = 8.
dSCJ(A,B) = 2N − 2C2 − P = 12− 2− 2 = 8.
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Relationship between SCJ, BP and DCJ distances

The “expected” relationship is SCJ = 2BP and SCJ = 4DCJ. The
theoretical bounds are:

Relationship between SCJ and Multichromosomal BP:

dBP (A,B) ≤ dSCJ(A,B) ≤ 2dBP (A,B)

Relationship between SCJ and DCJ:

dDCJ(A,B) ≤ dSCJ(A,B) ≤ 4dDCJ(A,B)

All the bounds are tight.
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Relationship between SCJ, BP and DCJ distances

Simulated data:
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SCJ Median Problem

Start with an “empty” genome M and think about the “effect” of
adding an adjacency to M.

M

A

B

C

If the adjacency is not present in any genome, ∆s(M) = +3.

If the adjacency is present in 1 genome, ∆s(M) = +1.

If the adjacency is present in 2 genomes, ∆s(M) = −1.

If the adjacency is present in 3 genomes, ∆s(M) = −3.

Adjacencies with ∆s(M) < 0 are good.
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SCJ Median Problem

Basically, for each adjacency the genomes A, B and C “vote” in favour or
against it, depending on whether the adjacency is present or not. The
solution is given by

SCJ Median Solution
Given genomes A, B and C, the genome M defined as

M = {a : adjacency a is present in at least two of the input genomes}

is a median of A, B and C.
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Weighted Multiple Genome Median Problem
Formulation
Given n genomes A1, . . . , An and nonnegative weights w1, . . . , wn, find M that

minimizes
n∑
i=1

wi · d(Ai ,M)

M

A1

w1

A2

w2

A3

w3

Ak

wk

An
wn
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Weighted Multiple Genome Median Problem

SCJ Solution
The genome M = {d : f (d) < 0}, where

f (d) =
∑
d /∈Ai

wi −
∑
d∈Ai

wi

is a solution to the Weighted Multiple Genome Median Problem.

If f (d) 6= 0 for all adjacencies d , the solution is unique.
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The Small Parsimony Problem

Tobacco

Platycodon

Cyananthus

Codonopsis

Merciera

Wahlenbergia

Symphyandra

Adenophora

Campanula

Trachelium

Legousia

Triodanis

Asyneuma

Phylogeny for 12 Campanulaceae genomes and Tobacco as an outgroup.

Small Parsimony Problem: Assign ancestral genomes the internal
nodes of the tree in a way that minimizes the total number of
rearrangements in the tree.
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The Small Parsimony Problem

This problem is NP-hard for any distance where the median is
NP-Hard (almost all)

Also for multichromosomal BP, which median is polynomial, this is
NP-Hard (Kováč, 2013).

The only known polynomial result is with the SCJ distance.
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Heuristics for the small parsimony problem

Sankoff and Blanchette (BPAnalysis, 1997) proposed an iterative
procedure: solving median problems in the internal nodes until
convergence.

Also tries to solve the Big Parsimony, by solving the small in all
possible trees.

More recent methods: GRAPPA (Moret et al., 2001); MGR
(Bourque and Pevzner, 2002).
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Solving the SCJ Small Parsimony

Fitch’s Algorithm (1971) for discrete character sets.

Tobacco

Platycodon

Cyananthus

Codonopsis

Merciera

Wahlenbergia

Symphyandra

Adenophora

Campanula

Trachelium

Legousia

Triodanis

Asyneuma

If each genome is a set of independent discrete characters, Fitch’s
Algorithm finds a tree that minimizes the number of character
changes in the tree.
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SCJ Small Parsimony with Fitch’s Algorithm

Since an adjacency can be seen as a binary character
(presence/absence), running Fitch’s Algorithm for each adjacency
reconstructs ancestral genomes that are optimal under the SCJ
distance

The only possible problem is that adjacencies are not independent,
which could cause conflits, but Feijao and Meidanis (2009) showed
how conflicts can be avoided.
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Review

Multiple genome rearrangement problems are usually NP-hard.

Median Problem: Polynomial for Multichromosomal BP and SCJ,
NP-hard (or open) for all the rest.

Small Parsimony: Polynomial only for SCJ.

Pedro Feijao Genome Rearrangements Summer 2014 36 / 36


	Multichromosomal BP
	SCJ Operation

