Algorithms in Genome Research

Pedro Feijao

Summer 2014
pfeijao@cebitec.uni-bielefeld.de
Lecture 7 - The Double Cut and Join Operation

Genome Rearrangements - Some History

Since the beginning of the genome rearrangement field, many models were studied. First, with only one operation.

■ Reversals Watterson et al. 1982; Sankoff 1992; Bafna \& Pevzner 1993; Hannenhalli \& Pevzner 1995; Kaplan, Shamir \& Tarjan 1999; Bader, Moret \& Yan 2001; Bergeron 2001; Bergeron, Heber \& S 2002; Bergeron, Mixtacki \& S 2004

- Transpositions Meidanis, Walter \& Dias, 1997; Elias \& Hartman 2006; Bulteau, Fertin, Rusu 2011
■ Block interchanges Christie 1996
■ Translocations Hannenhalli 1996; Bergeron, Mixtacki \& S 2005

Genome Rearrangements - Some History

Then, models combining more than one operation:

■ Translocations and Reversals("general HP model") Hannenhalli \& Pevzner 1995; Tesler 2002; Ozery-Flato \& Shamir 2003; Jean \& Nikolski 2007; Bergeron, Mixtacki \& S 2008; Erdõs, Sokoup \& S 2011

- Reversals + Transpositions: Walter, Dias \& Meidanis 1998; Christie \& Irving 2001
■ Fusion/Fission + Transpositions: Meidanis \& Dias 2001
- Double Cut and Join (DCJ) Yancopoulos, Attie \& Friedberg 2005; Bergeron, Mixtacki \& S 2006.

DCJ Operation

■ The DCJ operation was proposed by Yancopoulos et al. in 2005.

- It is based on the fact that lots of rearrangement operations can be modeled by applying two cuts followed by two joins in a genome.

Genome Rearrangements

Signed Reversal/Inversion

Genome Rearrangements

Translocation (multichromosomal operation)

Genome Rearrangements

Circular Fussion / Fission

Genome Rearrangements

Transposition

More than two cuts!

Genome Rearrangements

Block Interchange

More than two cuts! But...

Operations modelled with 2 DCJs

■ Transpositions and Block-Interchanges can be achieved with 2 DCJs: an excision followed by a reincorporation.

$$
\begin{aligned}
& \xrightarrow{a} \mid \xrightarrow{d} \xrightarrow{c} \\
& \text { excision } \downarrow \\
& \xrightarrow{a} \xrightarrow{b} \\
& \xrightarrow{d} \\
& \text { reincorporation } \downarrow \\
& \xrightarrow{a} \xrightarrow{c} \xrightarrow{d}
\end{aligned}
$$

Adapted from Braga and Stoye, BSB 2013

DCJ rearrangement problem

As usual, we are interested in the following questions:

- What is the minimum number of DCJ operations we need to transform one genome into another? (distance)
- Finding DCJ operations that actually transform one genome into another in minimal number of steps. (sorting scenario)

Genes, extremities and adjacencies

- A block (marker, gene) a is an oriented sequence of DNA that starts with a tail a_{t} and ends with a head a_{h}.
- Head and tail are called the extremities of a block.

- In the graph representation, each extremity is a vertex and there is a black directed edge from the tail to the head.

Genes, extremities and adjacencies

- An adjacency is a pair of extremities, representing the linkage between two consecutive blocks a and b.
- Depending on their respective orientation, can be of four different types: $a_{h} b_{t}, a_{h} b_{h}, a_{t} b_{t}, a_{t} b_{h}$

■ In the graph representation, adjacencies are represented by grey edges between the extremities.

Genes, extremities and adjacencies

- An extremity that is not adjacent to any other block is called a telomere.

- In this example, a_{t} and b_{h} are telomeres.

Genomes

- A genome is set of adjacencies and telomeres such that each extremity appears in exactly one adjacency or telomere.

$$
A=\left\{1_{t}, 1_{h} 3_{t}, 3_{h} 4_{h}, 4_{t}, 2_{h} 5_{t}, 5_{h} 8_{t}, 8_{h} 2_{t}, 6_{t}, 6_{h} 7_{t}, 7_{h}\right\}
$$

- Graph representation:

■ Linear chromosomes are paths, circular chromosomes are cyles.

DCJ Operation

The double cut and join (DCJ) operation acts in the adjacencies and telomeres of a genome one of the following three ways:

- (a) Adjacencies $\{p q, r s\}$ are replaced by $\left\{\begin{array}{l}\{p r, s q\} \\ \text { or } \\ \{p s, q r\}\end{array}\right.$
- (b) Adjacency $\{p q\}$ and telomere $\{r\}$ are replaced by $\left\{\begin{array}{l}\{p r, q\} \\ \text { or } \\ \{q r, p\}\end{array}\right.$
- (c) Telomeres $\{q, r\}$ are replaced by adjacency $\{q r\}$, or the inverse operation.

DCJ Operation - Type (a) example

- Cuts: $1_{h} 3_{h}, 2_{t} 4_{t}$
- Joins: $1_{h} 2_{t}, 3_{h} 4_{t}$

■ DCJ operation: $\left\{1_{h} 3_{h}, 2_{t} 4_{t}\right\} \rightarrow\left\{1_{h} 2_{t}, 3_{h} 4_{t}\right\}$

DCJ Operation - Type (b) example

- Cut: $2_{h} 4_{h}$ (telomere 3_{t} does not need a cut)
- Join: $2_{h} 3_{t}$ (new telomere 4_{h} does not need a join)
- DCJ operation: $\left\{2_{h} 4_{h}, 3_{t}\right\} \rightarrow\left\{2_{h} 3_{t}, 4_{h}\right\}$

DCJ Operation - Type (c) example

- Join: $2_{h} 3_{t}$

■ DCJ operation: $\left\{2_{h}, 3_{t}\right\} \rightarrow\left\{2_{h} 3_{t}\right\}$

Adjacency Graph

- The adjacency graph was proposed by Bergeron, Mixtacki and Stoye in 2006.
- Similarly to the BP graph, it is very useful for solving rearrangement problems.
- The adjacency graph $A G(A, B)$ is a graph where:
- Vertices are the adjacencies and telomeres of A and B.
- Edges connect corresponding extremities of A and B.

The adjacency graph is composed by cycles and (odd and even) paths.

Adjacency Graph

DCJ distance with the Adjacency Graph

- When A and B are the same, in $A G(A, B)$ there are only:
- Cycles of length 2 (common adjacencies)
- Paths of length 1 (common telomeres).

1_{t}	$1_{h} 2_{t}$	$2 h 3 t$	$3{ }_{h} 4_{t}$	$4 h$
	\mathfrak{q}	$($	Q	
1_{t}	$1_{h}{ }_{t}$	$2 h^{3}{ }_{t}$	$3{ }_{h}{ }_{t}$	$4 h$

DCJ Distance

Lemma (Bergeron, Mixtacki, Stoye, 2006)
Genomes A and B are the same $\Longleftrightarrow N=C+I / 2$, where N is the number of genes, C is the number of cycles and I the number of odd paths in $A G(A, B)$.

Corollary: when A and B are different, $N>C+I / 2$.

Proof?

Effect of a DCJ Operation in $A G(A, B)$

The application of one DCJ operation can change the graph $A G(A, B)$ in the following ways:

■ \# of odd paths by $-2,0$ or +2 . $\Delta I=-2,0,+2$
■ \# of cycles by $-1,0$ or +1 . $\Delta C=-1,0,+1$

- No DCJ changes odd paths and cycles at the same time.

Therefore, we have: $\Delta(C+I / 2)=-1,0,+1$.
When two genomes are the same, we have that $N-(C+I / 2)=0$, which results in the following lower bound:

$$
d_{\mathrm{DCJ}}(A, B) \geq N-(C+I / 2)
$$

Increasing Cycles and Odd Paths in $A G(A, B)$

- If an adjacency $p q$ in B is not present in A, then in $A G(A, B)$ the vertex $p q$ in B will be connected to two different vertices in A.

- Can we apply a DCJ operation in A that creates the adjacency $p q$, also increasing the number of cycles or odd paths in $A G(A, B)$?

DCJ in $A G(A, B)$, Type (a)

■ Type (a) operation: $\{p r, q s\} \rightarrow\{p q, r s\}$
■ $\Delta C=+1$, and the other component mantains the type and parity.

DCJ in $A G(A, B)$, Type (b)

- Type (b) operation: $\{p r, q\} \rightarrow\{p q, r\}$
- $\Delta C=+1$, and the original path mantains its parity.

DCJ in $A G(A, B)$, Type (c)

pror

- Type (c) operation: $\{p, q\} \rightarrow\{p q\}$
- $\Delta C=+1$, and the original even path is gone.

Another type (c) operation

- If all adjacencies of B exist in A, there is still one last possible case:

- Type (c) operation: $\{p q\} \rightarrow\{p, q\}$
- $\Delta I=+2$, and the original even path is gone.

Building a DCJ Algorithm

- Since in all cases we can always find a DCJ that increases $(C+I / 2)$ by 1 , this can be used to build a greedy algorithm that performs these kind of operations until A in transformed into B.

Algorithm 1 (Greedy sorting by DCJ)

1: for each adjacency $\{p, q\}$ in genome B do
2: let u be the element of genome A that contains p
3: let v be the element of genome A that contains q
4: if $u \neq v$ then
5: \quad replace u and v in A by $\{p, q\}$ and $(u \backslash\{p\}) \cup(v \backslash\{q\})$
6: end if
7: end for
8: for each telomere $\{p\}$ in genome B do
9: let u be the element of genome A that contains p
10: if u is an adjacency then
11: \quad replace u in A by $\{p\}$ and $(u \backslash\{p\})$
12: end if
13: end for

DCJ Distance

- Is this algorithm optimal?
- Since it can always increase $(C+I / 2)$ by one at each step, it is not difficult to show that it always transforms A into B in $N-(C+I / 2)$ steps, which is the lower bound.
- That means that the algorithm is optimal, and the DCJ distance is given by

$$
d_{\mathrm{DCJ}}(A, B)=N-(C+I / 2)
$$

Example

Examples of sorting DCJ operations from A to B :

- Type (a): $\left\{1_{h} 2_{h}, 2_{t} 3_{h}\right\} \rightarrow\left\{2_{h} 3_{h}, 1_{h} 2_{t}\right\}$
- Type (b): $\left\{1_{t}, 2_{t} 3_{h}\right\} \rightarrow\left\{1_{t} 2_{t}, 3_{h}\right\}$

■ Type (c): $\left\{3_{t}, 4_{t}\right\} \rightarrow\left\{3_{t} 4_{t}\right\}$

