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Introduction and biological background

Introduction and biological background

Consider two genomes with the same gene content.

Represent each gene by a signed integer between 0 and n.
The sign represents the orientation of a gene.

P= (O 2 -1 4 3 5 8 6 7 9

A reversal changes the order and the signs of an interval of genes.
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Introduction and biological background

Introduction and biological background

Problem: How many reversals do we need to transform one
genome into the other?
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Signed permutations and reversal distance
Definitions and examples Elementary intervals and cycles
Components

Signed permutations

initions

@ Signed permutation:

P= (0 2 e-10 4 ¢ 3 506 806 o7 o 0

L E——

@ Point: pair of consecutive elements p e g

@ Adjacency: point of the form je i+ 1or —(i+1) e — i,
otherwise breakpoint

@ Interval: defined by its two endpoints
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Reversal distance

Definition

Reversal distance d(P): minimum number of reversals needed to
transform P into the identity permutation.
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Signed permutations and reversal distance
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Theorem (Hannenhalli and Pevzner, 1995)

For a signed permutation P

dP)=n—c+h+f

where c is the number of cycles, h the number of hurdles, and f =1 if P has a

fortress, and f = 0 otherwise.

\,

Summary of our results
@ If a signed permutation P on the set {0, ..., n} has c cycles and the associated

tree Tp has minimal cost t, then

diP)=n—c+t

@ Yields a simple linear-time algorithm to compute the reversal distance.
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Signed permutations and reversal distance
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Elementary intervals

Definition
The elementary interval /i is the interval whose endpoints are:
1) the right point of k, if k is positive, otherwise its left point

2) the left point of k + 1, if k + 1 is positive, otherwise its right
point.

O 2 -1 4 3 5 8 6 7 09
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Elementary intervals

Definition
The elementary interval /i is the interval whose endpoints are:
1) the right point of k, if k is positive, otherwise its left point

2) the left point of k + 1, if k + 1 is positive, otherwise its right
point.

© 2 -1 4 3 5 -8 6 7 09
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Signed permutations and reversal distance
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Elementary intervals

Definition
The elementary interval /i is the interval whose endpoints are:
1) the right point of k, if k is positive, otherwise its left point

2) the left point of k + 1, if k + 1 is positive, otherwise its right
point.

0O -2 -1 4 3 5 8 6 7 9
Ioe
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Elementary intervals

Definition
The elementary interval /i is the interval whose endpoints are:
1) the right point of k, if k is positive, otherwise its left point

2) the left point of k + 1, if k + 1 is positive, otherwise its right
point.

0O 2 -1 4 3 5 8 6 7 09
Ioe ?
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Elementary intervals

Definition
The elementary interval /i is the interval whose endpoints are:
1) the right point of k, if k is positive, otherwise its left point

2) the left point of k + 1, if k + 1 is positive, otherwise its right
point.

O 2 -1 4 3 5 8 6 7 09
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Elementary intervals

Definition
The elementary interval /i is the interval whose endpoints are:
1) the right point of k, if k is positive, otherwise its left point

2) the left point of k + 1, if k + 1 is positive, otherwise its right
point.

0O 2 -1 4 3 5 8 6 7 09
Ioo—o
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Elementary intervals

Definition
The elementary interval /i is the interval whose endpoints are:
1) the right point of k, if k is positive, otherwise its left point

2) the left point of k + 1, if k + 1 is positive, otherwise its right
point.

o -2 -1 4 3 5 8 6 7 9
Ioo—o
Il'
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Elementary intervals

Definition

The elementary interval /i is the interval whose endpoints are:
1) the right point of k, if k is positive, otherwise its left point

2) the left point of k + 1, if k + 1 is positive, otherwise its right
point.

O 2 -1 4 3 5 8 6 7 09

lpo—— |5 o——o
/2.I1—.
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Elementary intervals

@ I, is oriented if elements k and k + 1 have different signs,
otherwise unoriented

Proposition

Reversing an oriented interval [, creates either the adjacency
k ® (k4 1) or the adjacency —(k +1) @ — k.
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Proposition

Exactly two elementary intervals meet at each breakpoint of a
permutation.

o -2 -1 4 3 5 -8 6 7 9)
o ——— ls e——o
P he H P ls ® .
b C P \ > I ' w C
3 ® /4 v 5 8

Definition

@ Cycle: sequence of points such that two successive points are
the endpoints of an elementary interval

o Adjacencies define trivial cycles

Julia Mixtacki
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Components

Definition

A component is an interval from i to (i + j) or from —(i + j) to
—i, for some j > 0, whose set of unsigned elements is
{i,...,i+j}, and that is not the union of two such intervals.

[o] [e][s] [7] [-15] [-13][-24]

12| [-10][-11]
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Components

Proposition

Two different components of a permutation are either disjoint,
nested with different endpoints, or overlapping on one element.

[o] [3][xT2] [+] [e][5] [7] [25] [-13][-14] [-12] [-10][-11] [-0][8] [16]

@ Chain: successive linked components

@ Maximal chain: cannot be extended to the left or right
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Signed permutations and reversal distance
Definitions and examples Elementary intervals and cycles

Components

[o] [-3][x]2] [] [e][5] [7] [-25] [-23][-24] [-12] [-20][-11] [-0][8] [16]

The tree Tp is defined by the following construction:

1) Each component is a round node.

2) Each maximal chain is a square node whose
(ordered) children are round nodes.

3) A square node is
the child of the (0..4)
smallest component
that contains
this chain. (1.2)4 (=15..—12)

—12..—9)
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Components

Definition

A point p e g belongs to the smallest component that contains
both p and gq.

[o] [s][s] [7] [-25] [-13][-24]

12] [-10][-11]

Definition

The sign of a point p e g is positive if both p and g are positive, it
is negative if both are negative. A component is unoriented if it
has one or more breakpoints and all of them have the same sign.
Otherwise the component is oriented.
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Definitions and examples

Components

Proposition

The endpoints of an elementary interval belong to the same

component, thus all the points of a cycle belong to the same
component.

[o] [3]

(2] [4] [e][s] [7]

1
[ay
o1

(3] (] 2] [0] 1] [9][&]

|
1

[
|

@ An oriented component contains at least two oriented
elementary intervals

@ All elementary intervals of an unoriented component are
unoriented

Julia Mixtacki
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Sorting oriented components
Orienting unoriented components
The distance formula

Computing the reversal distance Algorithms

Sorting oriented components

Theorem (Hannenhalli and Pevzner, 1995)

If a permutation P on the set {0,..., n} has no unoriented
components and c¢ cycles, then

d(P)=n—c.

(0 -2-14 3 5 86 7 9
S 1 o d(P)=9—-4=5
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Sorting oriented components
Orienting unoriented components
The distance formula

Algorithms

Computing the reversal distance

Orienting unoriented components

Proposition (Hurdle Cutting)

If a component C is unoriented, the reversal

of an elementary interval whose endpoints

belong to C, orients C and leaves

the number of cycles unchanged. c

\,

Proposition (Hurdle Merging)

A reversal that has its two endpoints in

different components A and B destroys, A
or orients, all components on the path

from A to B in Tp, without

creating new unoriented components.
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Computing the reversal distance

Orienting unoriented components

Definition

A cover C of Tp is a collection of paths joining all the unoriented
components of P, such that each terminal node of a path belongs
to a unique path.

@ Each cover of Tp describes a set of reversals
that orients all the components of P
@ Short path: contains only

one component
(7..16)

\(—12.. —-9)

(0..4)

@ Long path: contains two
or more unoriented
components

(1.2)
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Sorting oriented components
Orienting unoriented components
The distance formula

Algorithms

Computing the reversal distance

Orienting unoriented components

@ Cost of a cover is the sum of the costs of its paths:

1) Cost of a short path: 1
2) Cost of a long path: 2

(0..4)

@ t = cost of any optimal cover
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Sorting oriented components
Orienting unoriented components
The distance formula

Computing the reversal distance Algorithms

The distance formula

If a permutation P on the set {0, ..., n} has c cycles, and the
associated tree Tp has minimal cost t, then

d(P)=n—c+t.
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Sorting oriented components
Orienting unoriented components
The distance formula

Algorithms

Computing the reversal distance

Algorithms
[ BEE [ EE [F] Gl B [F] G [S6E 6]

d(P)=16—6-+3 =13

Cycle identification: by a left-to-right scan of the permutation

Component identification: by a linear-time algorithm (Bergeron,
Heber and Stoye, 2002)

Construction of Tp: by a simple pass over the components
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Summary and outlook

Summary and outlook

@ Intervals and components are defined directly in the
permutation

@ Properties of components like inclusion and linkage are
represented in a tree

@ Simple proof of the reversal distance formula
@ Linear-time algorithm to compute the reversal distance

@ Next step: application to multi-chromosomal rearrangement
problems
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