Algorithmica (2000) 26: 290-309 . .
DOI: 10.10075004539910014 Al go rithmica

© 2000 Springer-Verlag New York Inc.

Fast Algorithms to Enumerate All Common
Intervals of Two Permutations

T. Uno! and M. Yagiurd

Abstract. Given two permutations af elements, a pair of intervals of these permutations consisting of the
same set of elements is called@mmon intervalSome genetic algorithms based on such common intervals
have been proposed for sequencing problems and have exhibited good prospects. In this paper we propose three
types of fast algorithms to enumerate all common intervals: (i) a sipi&) time algorithm (LHP), whose
expected running time becom@xn) for two randomly generated permutations, (i) a practically fagn?)

time algorithm (MNG) using the reverse Monge property, and (iii{>xm + K) time algorithm (RC), where

K (< (g)) is the number of common intervals. It will also be shown that the expected number of common
intervals for two random permutations@1). This result gives a reason for the phenomenon that the expected
time complexityO(n) of the algorithm LHP is independent &f. Among the proposed algorithms, RC is

most desirable from the theoretical point of view; however, it is quite complicated compared with LHP and
MNG. Therefore, it is possible that RC is slower than the other two algorithms in some cases. For this reason,
computational experiments for various types of problems with up te 10f are conducted. The results
indicate that (i) LHP and MNG are much faster than RC for two randomly generated permutations, and (ii)
MNG is rather slower than LHP for random inputs; however, there are cases in which LHP reqires

time, but MNG runs ir(n?) time and is faster than both LHP and RC.

Key Words. Common intervals of permutations, Genetic algorithm, Linear time algorithm, Random permu-
tations, Monge property, Subtour exchange crossover.

1. Introduction. Two permutationsra andog of setN = {1, ..., n} are given as
the input, wheresa(i) = | (or agl(j) = i) denotes thaj is theith element ofo
(op is similarly defined). LetX, y] denote the index s€ix, x + 1, ..., y}. We call a
pair of intervals (Ka, Yal, [Xs, ¥8]) (1 < Xa < Ya <= N, 1 < Xg < yg < n) with
Ya — Xa + 1= yg — Xg + 1 acommon intervaif it satisfies

1) {oa() |1 €[Xa, Yal} = {os() | i € [XB, y8]}.

The length of a common intervalqf, yal, [Xs, Ys]) is defined to beya — xa + 1.

Some genetic algorithms based on common intervals have been proposed for sequenc-
ing problems (the traveling salesman problem, the job shop scheduling problem, and so
on, whose solution is a permutation or a set of permutations) and have exhibited good
prospect [1]-[5]. In such algorithms, common intervals are considered as similar por-
tions of two candidate solutions, and are used to generate new solutions by combining
two solutions (i.e., crossover operator). For example, new solutions are generated by

1 Department of Industrial Engineering and Management, Tokyo Institute of Technology, 2-12-1 Oh-okayama,
Meguro-ku, Tokyo 152-0033, Japan. uno@me.titech.ac.jp.

2 Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto
606-8501, Japan. yagiura@i.kyoto-u.ac.jp.

Received December 21, 1996; revised June 2, 1998. Communicated by D. T. Lee.

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 291

exchanging one of the common intervals of two permutations. The common intervals
can also be used to detect the similarity between two evolutionary trees [6].

In this paper we consider enumeration of all common intervals of length ZTioree
algorithms are proposed, which are improved versions of a sidfé) time algorithm
proposed in [7]:

1. AsimpleO(n?) time algorithm (called LHP), whose expected running time becomes
O(n) for two randomly generated permutations.

2. A practically fastO(n?) time algorithm (called MNG) using the reverse Monge
property.

3. An O(n+ K) time algorithm (called RC), wheti¢ (< (3)) is the number of outputs.

It will also be shown that the expected number of common intervals of length 2 &

for two random permutations is-2 O(n~1). This implies that the expected number of
common intervals of any length between 2 and O(1), since the number of common
intervals of lengtin — 1 orn is at most 3. This result gives a reason for the phenomenon
that the expected time complexi(n) of the algorithm LHP is independent &f.

We also give an example for which both LHP and MNG req@k@?) time, although

K = O(n).

Among the three algorithms proposed in this paper, RC is most desirable from the
theoretical point of view; however, itis quite complicated compared with LHP and MNG.
Therefore, it is possible that RC is slower than the other two algorithms in some cases.
For this reason, computational experiments for various types of problems with up to
n = 10° are conducted. The results indicate that

1. LHP and MNG are much faster than RC for two randomly generated permutations
(e.g., LHP is about 13 times faster than RC).

2. MNG is rather slower than LHP for random inputs; however, there are cases that LHP
requires2 (n?) time, but MNG runs ino(n?) time and is faster than both LHP and
RC.

A recommendation about the use of the three algorithms is discussed in Section 7 based
on these computational results.
These results are applicable to the similar problem defined on two cyclic permutations

(71, [8]-

2. Basic Algorithm. Here, we describe the basi(n?) time algorithm [7], which is

the starting point of all the algorithms proposed in this paper. For convenience, we denote
ogt-oabymag (i.e.,ma(i) = o5 (oali)) holds for alli, andrag(i) = j means that
theith element obr4 is located in thej th position ofog) throughout this paper, which

can be calculated froma andog in O(n) time. We also define the following functions

for an interval K, y] of oa:

2 l(x,y) = igpxi_r;]ma(i),
3) ux,y) = ig[%ms(i),

(4) fXy) = uXx,y) =X, y) = (y—X).

292 T. Uno and M. Yagiura

x y
w1 s 6 7 8 9 10 f@H=1
og: 7 9 | 4 I 5 | 3 | 2 I 10 8 6 | - no output
1 1
12,4=3 u(2,4=6
x y
4 ¥
og: 1| 2]3f4fs5]6 7 8 9 10 f2,5)=0
—
og: 7 9 l4fls]3]2]w 8 6 1 output (2, 51, [3, 6])
t f
12,5)=3 u(2,5=6

Fig. 1. An illustration of Algorithm BSC.

Since f (x, y) is the number of elements fag (i) | i € [I(X, y), u(X, Y]}I\{oal) |1 €
[, y]}, apair([x, y], [(X, y), u(x, y)]) isa common interval if and only if (x, y) = 0.
Then all common intervals can be enumerated by calculdtixgy) for all (x, y) pairs
satisfying 1< x < y < n. This gives rise to the following algorithm.

Algorithm BSC

Linel: forx=1,...,n—1do

Line 2: | :=u:=ma(X);

Line 3: fory=x+1,...,ndo

Line 4: I :=min{l, mas(Y)};

Line 5: u = maxu, Tas(y)};

Line 6: if u—Il —(y—x)=0then
Line 7; output (k, y1, [I, u])
Line 8: end for

Line 9: end for.

The variablesu and| in BSC correspond to the function valueéx, y) andl(x, y)
defined above. Figure 1 illustrates the algorithm. The time complexity of this algorithm
is O(n?), since Lines 4—7 can be executeddil) time.

3. Simple Improvements of the Basic Algorithm. In this section we propose two
improved versions of BSC, called LHP and MNG, both of which detect some redundant
inner loop iterations from Line 3 to 8 of BSC by simple tests, and remove them from
execution. They still requir®(n?) time in the worst case; however, it is observed that
they are practically much faster than BSC for many types of problems.

3.1. The Algorithm LHP Here we describe the algorithm LHP. It is shown in Section 5
that the expected running time of this algorithm for two randomly generated permutations
is O(n). For convenience, only the common intervals of length2-to2 are considered

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 293

in this subsection, and Line 3 of BSC is modified as
Line3: fory=x+1,...,min{n,x +n— 3} do

Modification of the algorithm to the original problem (where common intervals of length
2 to n are considered) is easy and the results of this paper are not affected by this
assumption. We improve the basic algorithm BSC in the following two respects.

The first is that, if

5) u—1I>min{n—x,n—3}

is satisfied just before entering Line 6 of BSC in #ib iteration, then the rest of current

inner loop can be omitted, and we move into tkeH 1)st iteration immediately. Note

thatu —1 is monotonically nondecreasing during tkié iteration. Condition (5) implies

that the length of interval [u] of og exceeds the maximum length of interval] of

oaWheny isincreased up to m{n, x + n — 3}. We call this conditiorlength condition
Let HP be the set

HP = N\{rag(w) |w=X,x+1,...,min{n, X +n — 3}}
= {map(w) |w e [1,x—-1]U{ze[1,n] | z= X — 2 (modn)
orz=x — 1 (modn)}}.

The second is that, if am € HP satisfies
(6) |l <h<u

just before entering Line 6 of BSC, then the rest of current inner loop can be omitted.
HP is the set of indices of the elements which will not be included in any intexval][
(y=x+1...,min{n,x + n — 3}) of oa. We call each element ¢1P a hole point

and call condition (6HP condition It is not advantageous to check the HP condition
for all h e HP, since the whole running time increasesQm?®). Hence, we check the

HP condition for only a sufficiently small portion &fP, which we callHP’, so that the
original worst-case time complexi®(n?) is preserved. For thi$HP’ | should be kept
constant. After trying several in preliminary computational experiments, we cliti¥se

as follows:

(7) HP = {map(w) |w € {ze€[1,n]|z=Xx—2(modn) or z= x — 1 (modn)}}.
As natural candidates, one may consider

(8) HP; = {mag(w) | w € [1,n]andw = x — 1 (modn)} or
HP, = {an element randomly chosen frolP}.

However, it is observed th& (nlogn) average time is needed for two randomly gen-

erated permutations if we us#P;, and it is also observed that the algorithm becomes

slower if we useHP, (one of the conceivable reasons for this phenomenon is that gen-

erating random values frequently is too expensive). More discussion is given in [8].

294 T. Uno and M. Yagiura

3.2. The Algorithm MNG Here we describe the second algorithm MNG. It uses the
fact that the functionf defined by (4) satisfies reverse Monge property, that is,

9) f)+ foxy) > fxX,y)+ f(x,y)

holds for allx’, x, y, ¥’ satisfyingx’ < x <y < Yy’ (see Appendix A for the proof).
From (9), we have

(10 fxy) = fxy) —(f(X,y) = (X, y))
> f(x,y)—{f(x/,y)— min f(X’,Z)}.
ze[y+1.n]
Since the above inequalities hold for every(< x),
(11) f(x,y) = f(x,y)— min {f(w, y) —__min f(w,Z)}
well,x—1] ze[y+1,n]

holds. The value of mipg1 x—17{ f (w, ¥) — Minge[y+1.n (w, 2)} gives an upper bound
for the decrease of (x, y) wheny is increased up ta. Hence, ifx > 2 and

(12) fx,y) — we@lxn_”{ f(w,y) — i f(w,2)}>0

holds just before entering Line 8 of BSC in tRéh iteration, then the rest of current
inner loop can be omitted, and we can move to the (L)st iteration immediately. Here
YViast IS defined as the value gfat Line 9 when we exit the inner loop. ¥fast < n — 1,
then we will not complete computing mifyy,...+1.n T (X, 2). Hence, we may fail to check
condition (12) for largex. Thus we define a function

(13)
LD(x,y)
(%) x=1y=23,...,n—1),
mln{LD(X - ls y)7 f(X - 1’ y) (X 2 21 y = X’ ceey YIast_ 1’
— minze[y+1$n] f(x—-1,2} Yiast = N),
_Jmin{LDx -1 y), f(x—1,y) (X=2,y=X,..., Yast
— min{Minzery11y.q T(X =1, 2), Viast < N — 1),
f(X - 11 ylast) - LD(X - 11 y|aS[)}}1
LD(X_l’y) (XZZ’YZMast+1,~-~,n—1,
Viast < N —1).

The functionL D(x, y) can be calculated evenyf,st < h — 1 and satisfies

(14) LD(x,y) > wemlxnil] { f(w,y) — Zewﬂn] f(w, z)} .

An inner loop can be terminated if condition

(15) f(Xx,y)—LD(x,y) >0

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 295

holds. The correctness of the algorithm is retained, since condition (15) implies condi-
tion (12). We call condition (15) thklonge condition

We definedL D as a function of botlx andy for convenience; however, the value of
L D(x, y) can be overwritten on the same memory space Wiih{(x — 1, y) in practice.
Such an update df D is executed every time we exit the inner loop, which is possible
in O(yiast— X) time. Hence, the worst-case running ti@€n?) of the algorithm BSC is
preserved for MNG.

We further set a parametd®® € (0, 1], and do not exit the inner loop foy >
R(n — x) + x even if Monge condition is satisfiedR(= 1 means the case we do not use
this modification.) Oncg > R(n— x)+ X holds,yiastis forced to ba and we can update
L D by using the second formula of (13); hentd) value may improve. The total time
spent to inner loops increases at mosRtimes compared with the case wikh= 1.
We setR to 0.5 in the computational experiments, since remarkable improvement was
observed in some problem instances compardfito 1.

3.3. Remarks about the Two AlgorithmsTwo algorithms LHP and MNG can be com-
bined; however, slight modifications are needed to the way of updatibg Using

a parameteR < (0, 1], that is, an inner loop is terminated by length condition, HP
condition, or Monge condition only foy < R(n — x) + X, will be useful. Since the
computational time gains at mostR times, expected running time of this combined al-
gorithm isO(n) for two randomly generated permutations. It is also noted that $¢dine
values may become larger than when MNG is used alone, and this combined algorithm
will not necessarily improve the performance of MNG.

Although it is observed that algorithms of this type are much faster than the algorithm
BSC for many types of problems, they always requré?) time for some problem
instances. For example, consider the problem given by setjitig =i (i =1,...,n)
and

. 2 — 1,
7s(l) = {2<n —i4),

The functionf takes

n/2i,

<7
i >[n/2] + 1

f(x,y) > 0, y=x+1...,n=-1 x=1...,n=-1
f(x,n) = 0, x=1...,n—1,

and the number of outputé = O(n). Any algorithm improved from BSC by “omitting
redundant loops” require (n?) time for this example. It shows a limitation of the
algorithms of this type.

4. An Algorithm with O(n + K) Worst-Case Running Time. In this section we
propose an algorithm called theduce candidate algorithrfabbreviated as RC) which

runs inO(n + K) time in the worst case. Since the algorithm runs in time proportional

to the number of inputs and outputs, it is optimal in the sense of time complexity. On the
other hand, those algorithms proposed in the previous section may take much time, e.g.,
Q(n?) time even if the number of outputé is O(n), though they are very simple and

fast for most of the tested problem instances.

296 T. Uno and M. Yagiura

For a fixedx, we call ay unnecessary it satisfies f (x’, y) > 0 for all X' < x. The
main idea of the algorithm RC is to reduce the time to check the conditigny) = 0
for somey which can be concluded as unnecessary from the past search information.
The framework of the algorithm is described as follows.

Algorithm RC

Line 1. Y := {n}.

Line2: forx=n—-1,...,1do

Line 3: Output ally(> x) in Y satisfying f (x, y) = 0.
Line 4: SetY = (Y U {xHh)\W

whereW C {y € N|y > xand f (X', y) > O for all X' < x}.
Line 5: end for.

Here,W is the set of unnecessary indices detected by the following lemmas, where their
proofs are straightforward and are omitted.

LEMMA 4.1. Suppose that we are givenx 1 and y > x. If u(x, y) < u(x, y) and
ux—1,y) =ux—1,y) hold for some y> vy, y satisfies fx’, y) > Oforall X’ < x.

LEMMA 4.2, Suppose that we are givenx1and y> x. If f(x,y) > f(x,y’) hold
for some y > vy, y satisfies fx’, y) > Oforall x” < x.

We will show an algorithm that removes eveyythat satisfies the conditions of
Lemma 4.1 or 4.2 from the s¥tat Line 4 of the algorithm RC. To maintaif the algo-
rithm uses a doubly linked list calledist composed of celly;, ..., y; corresponding
to eachy € Y. The cells are sorted in increasing order of their indices inytis¢ For
convenience, we consider only the case wiklzg(X — 1) > mag(X) throughout this sec-
tion. The opposite case is treated similarly. The algorithm for trimming the unnecessary
cells fromylist is as follows.

Algorithm TRIMMING _YLIST

Step 1: Findy* € N which is maximum among satisfyingu(x, y) <
ux —1,y).

Step 2: If the celly on the head of/list satisfiesu(x, y) < u(x, y*), then
remove it fromylist (from Lemma 4.1) and go to Step 2.

Step 3: Lety; andy; 1 be adjacent cells oflist satisfyingy, < y* < Vii1.
If f(x—1,y) > f(x—1,yi+1) then removey; from ylist (from
Lemma 4.2) and go to Step 3.

In Step 2, if there exists @ < y* satisfyingu(x, y') < u(x, y*), then the heag
of ylist also satisfiesi(x, y) < u(x, y*), sinceu(x, y) is monotonically nondecreasing
with y. Therefore ally satisfyingu(x, y) < u(x, y*) are removed fronylist during the
iteration of Step 2.

Initially, the ylist is composed of only one element. Suppds&, yi) < (X, Vi+1)
holds for everyi. For everyy; > y*, f(x —1,y;) — f(X, yi) = —1 holds and for every
yi < y*whichis notremoved in Step 2 oRIMMING _YLIST, f(Xx—1,y;)— f(X,y;) =c¢

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 297

N W AR U1 AN

1234567 Y

Fig. 2. Functionsu(2, y), u(3, y), I (2, y) andl (3, y) corresponding to permutatioas = (1, 2, 3,4, 5, 6, 7)
andog = (5,3, 1, 4,2,7,6).

(cis a constant satisfying > 0) holds (i.e.c is the same for al; < y*). Therefore, by
induction, f (x — 1, y;) < f(x — 1, yi,1) hold for all y; (= x) which remain in the/list
at the end of the algorithmrRIMMING _YLIST.

We have to spen@®(y — x) time to calculatei(x, y) without any data structure. In
our algorithm, we represent the functiamandl by linked lists calledilist andllist. For
a fixedx, u (resp.,l) is a monotonically nondecreasing (resp., nonincreasing) function
of y. (See Figure 2.) We will describe the construction of the linked list onlyfaince
the construction offist is similar. The intervalX + 1, n] is decomposed into intervals
[Vo=x+1y;—1],[y;. Yo — 1L ..., [¥/_1. ¥i = n] whereu(x, y') = u(x, y”) holds
if and only if bothy” andy” are included in¥, y/,, — 1]. From this decomposition,
we represent by ulist composed of cells which correspond to these intervals. Each cell
keeps the corresponding interval and the valge y) for y which the interval includes.
A pair of cells are doubly linked by pointers if they correspond to adjacent intervals. We
say thaty is included in the cell ofilist if the interval corresponding to it includes

To get the value ofu(x, y), we have to find the cell including. To realize the
operation in short time, we make a pointer from each gedf ylist to the cell ofulist
which includesy;. We also make a pointer from each cellutist to the celly; of ylist,
wherey; is the maximum among those included in the same cellist. (See Figure 3.)

The update ofilist andllist whenx changes tox — 1 is executed as follows. We
updatellist by adding a cell corresponding to interval f 1, x — 1] on the head of it.
(Recall that we treat only the casgg(x — 1) > map(X).) We delete all the cells aflist
which includey satisfyingu(x, y) < u(x, y*). For the cell includingy*, we change its
interval to x — 1, y*] and its value fromu(x, y*) tou(x — 1, y*). (See Figure 4.) Note
that we do not remove the cell representir{g, y*), but use it to represemi(x — 1, y*).
By doing this, pointers frony included in the cell corresponding tax, y*) to ulist
need not to be changed. It is one of the key points to speeding up of the algorithm.

In Step 2 of RIMMING _YLIST, if the pointer of the celly of ylist indicates a deleted
cell of ulist, we remove it fronylist, since this impliesi(x, y) < u(x, y*). Thus itis not
necessary to update pointers betwegkst andulist.

298 T. Uno and M. Yagiura

/l,ol 7:06,7) | #®]nit]

4

’
ulist [init [*T=e[2; [3, 31 [#]#]]

[é [[]
ylist |init|*T=le/ 3 ﬂﬂ.: 1o 5 [*=—le| 6 ’17_‘L.“7 nil |
__1_ o]
list Iinit|‘1ﬂo| 2;[3,4] o[
N\
Pl 1157 &[nil |

Fig. 3. Examples ofulist andllist corresponding tai(3, y) andl (3, y) of Figure 2.

Letus consider the time complexity of the algorithm RC. Since those update operations
of ulist are done by tracinglist from its head to the cell including*, Steps 1 and 2 of
the algorithm RIMMING _YLIST take O(d + 1) time, whered is the number of deleted
cells in Step 2. The total number of deleted cells during the execution of the algorithm
RC cannot exceed the number of created cells, whi€(ip), and thus the total time of
those operations in the algorithm RCGgn).

The same memory cell B +
r-S— f with @[&I [e[e) /I" [7:16.71 gl
bl s ofe

ulist |init |17 |

%] : :\ o]

vlist [init | *F==le] 2 ‘[\02 o:nly 4 o —le| 5 [*—le :6: ‘ﬁk:} nil |
T . LA L9 LE
ist [init[*==le] s; I2, 2]]*];|
Plma [N
\
\M 1;15,7] ®/nil |

Fig. 4. The process of updatinglist, llist, andylist. The cells represented by dotted lines are deleted when
ulist is updated.

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 299

In Step 3 of the algorithm RIMMING _YLIST, we can findy; andy; 1 in O(1) time by
tracing a pointer from the cell aflist including y* to the cell ofylist. (See Figure 4.)
Step 3 is repeated while the current cell is deleted. This is done in time proportional
to the number of deleted cells. Thus the total time spent for Step 3 of the algorithm
TRIMMING _YLIST in all iteration of the algorithm RC is proportional to the total number
of deleted cells. It can not exceed the number of created cells, and the total @t is

InLine 3ofthe algorithm RC, thecelis, ..., y; ofylistsatisfyf (X, yi) < f(X, Yii1)
(i=1,...,r —1). Therefore we can enumerate pkatisfying f (x, y) = 0 by tracing
ylistfromits head without scanningwith f (x, y) > 0inthe middle. Whenwe encounter
y with f(x,y) > 0, we stop the tracing sinck(x, y’) > 0 holds for ally’ > y. It takes
time proportional to the number of outputs, whichdsgn + K).

As a result, the following theorem holds.

THEOREM4.1. Algorithm RC withTRIMMING _YLIST outputs all common intervals in
O(n+ K) time

REMARK. Algorithm RC can also be applicable to the following problems with slight
modifications: (1) Enumerate the common intervals of length fiprto b, for two
specified lengthy < by. (2) Find a common interval of the maximum length among
those with length not more thdm (< n). The modified algorithm can solve problem (1)
in O(n+ K’) time, K’ is the number of outputs for this problem, and solve problem (2)
in O(n) time. For details, see [9].

5. Random Inputs. In this section we will show two properties of two permutations
generated uniformly at random (i.e., every permutation appears with probabfity 1
(i) expected number of common intervalgdg1), and (ii) expected running time of the
algorithm LHP isO(n). For convenience, only the common intervals of lengthr2+c?
are considered in this section. This assumption does not change the above results.

5.1. Expected Number of Common IntervaldVe define random variables as follows. A
variableXyx (x =1,...,n—k+1,k=2, ..., n—2)takesvalue 1if (x, x+k—1) = 0,
and 0 otherwise. We also defidg = Y1~ X, andX = Y0~2 X,. These variables
represent the number of common intervals of the lekgtind the number of common
intervals of the length from 2 to — 2, respectively.

THEOREM5.1. Forn > 5, E(X) = 24 O(n™1). To be preciseE(Xy) = 2 — 2/n,
E(Y rs X1 = O(n™Y).

PrOOE For fixedxa andxg,

(16) Pr({oa(i) |i € [xa, Xa+k—=1]} = {og(i) |i € [xg,xg +k —1]})
(n—k)!k!

n!

300 T. Uno and M. Yagiura

Since possible values af is from 1 ton — k + 1,
(n—Kk)!'k!

(17) E(kaA) = nl

x (Nn—k+1).

By the linearity of expectation, we have
n—k+1

(18) EX = Y EXk),
x=1
n-2

(19) E(X) = > E(X.
k=2

To observe the increase and decreaseEgiXy), we consider the solution of
E(Xk)/E(Xk-1) < 1. From

E(Xk) k(n—k+1)

EXe) (—k+22

(20)

(21) 2k — Bn+5k+(N?+4n+4) >0
is obtained, and we get the solutibn< «_(n), «, (n) < k, wheren > 4 and

3N+5-Vn2-2n-7

(22) a_(n) = 1
3N+5++4/nN2-2n-7

It is easy to check & «_(n) < n. By the fact

(24) n—-3%<n’-2n-7

forn > 4, we haver, (n) > n. Therefore E(Xy) is monotonically nonincreasing with
when 2< k < «_(n), and is monotonically nondecreasing wittvheno_(n) < k < n.
By usingE(X4) < 24/n? andE(X,_2) < 24/n? (n > 4), we have

(25) E(Xk)S% (k=4,5...,n—2,n> 4
and, from (18),
(26) E(Xp) = 2— %
_ 6(n—2)
27) E(X3) = =1
Hence, we can conclude, far> 5,
=3 24
(28) E k;xk = EX9+ (-5 —
(29) = Oo(n™,
n-2
(30) E(X) = E(Xp)) +E (Z xk>
k=3

(31) =2+ 0(n™h. O

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 301

By estimating the variance of, and using Chebyshev bound and Markov inequality,
the following theorem is also shown [7].

THEOREM5.2. If n > 5, Pr(X > /2t + 3) < 1/t + O(n~Y) holds for arbitrary
t > 0.

5.2. Expected Running Time of the Algorithm LHRFor eachx (x = 1,...,n — 1),

let Ty be a random variable representing the number of iterations for an inner loop of
LHP. We also defind = Y_7_] Tx, which represents the number of the whole inner
loop iterations.

THEOREM5.3. Forn> 4, E(T) < 3n.

Theorem 5.3 holds even if we do not incorporate the length condition (5) into LHP.
Before proving this theorem, we consider the following problem. We tkawhite

balls andm — k black balls (0< k < m—1,m > 1) in an urn. The probability of taking

out a ball is the same for all balls. Take out one ball. If it is white, we do not replace the

ball into the urn and continue the same trial, otherwise (i.e., once a black ball is taken)

we terminate the trial. LeE (M, k) denotes the expected number of trials until a black

ball is taken, then

m+1

(32) Eum(m, k) = m

holds (see Appendix B). We defiri&,»(m, m) = m for convenience. LeE}, (m, K, j)
denotes the expected number of trials until a black ball is taken or the number of trials
becomeg, then

(33) Ejm(ma ka]) S Eurn(ma k)

holds for 1< j, 0 < k <m, andm > 1 (see also Appendix B). These facts are used in
the proof.

PrROOF By linearity of expectation,

n—1
(34) E(T) =) E(T.
x=1

For afixedx, letr (x) be minn — x, n — 3}, which is the maximum number of inner loop
iterations forx. Since the two permutations are generated uniformly at ranétihis

{i, j} with probability ('2‘)_l for anyi andj (i,j € [1,n], i < j). For suchi andj,
probability that 1< wag(X) < i—1holdsis(i —1)/(n—2), and in this case, the expected
number of inner loop iterations B, ,(n — 3, i — 2, r (X)), secondly, the probability that
i+1<mag(X) <j—1holdsis(j —i —1)/(n — 2), and in this case, the expectation
is Bl (n—3,j —i —2,r(x)), and thirdly, the probability thaf + 1 < wag(X) < n
holds is(n— j)/(n—2), and in this case, the expectatior&§,(n—3,n— j — 1, r(x)).

302 T. Uno and M. Yagiura

Therefore,

n—-1 n —1n-1 n i—1
E(T) () {—Ejm(n —3,i —2,r(x)
4 = n—2

x=1 2 i=1]j=i
j—i—1 ..
+JnjEjm(n—3,j—|—2,r(x))
n—j_, .
+mEum(n—3,n—j—1,r(x))
_1n—1 n _1
< {'—Eum(n—s,i—Z)
(2) i=1j=i+1 -2
I el e R
n_2 urn(ﬂ])
n—j .
+rJ2Eurn(n_3an_J_1)}
n-1 _ &3 i—1
= 3 Y =) S ZEum(n—3.i —2)
(2) i=1 n-2
6% i-1 n-2
= - 2(”_')'n—2'n—i+(n_3)}
i=
=3n—-9<3n. a

6. Computational Results. In this section we compare the algorithms BSC, LHP,
MNG, and RC by applying them to six types of problem instances of size ug’to 10

6.1. Generation of Problem InstancesThe following six types of problem instances
are examined.

RAND. Two permutationsra andog are randomly generated (any permutation is
chosen with probability An!).

SWAP. Initially two permutationgp andog are set asra(i) = og(i) =i (i =
1,...,n). Then we repeas times a swap of two elementss(i) andog(j) for two
integers andj (i # j) randomly chosen from [I]. We sets = n in the experiment.

NBRAND. The permutatiorsa is set asoa(i) =i (i = 1,...,n). For an integer
k, let p andq be integers satisfying = kp+qgand 0< gq < k. For eachi (i =
0,1,...,k), a permutatiorsj: N; — N; is randomly generated, wheit = {ip +
1,ip+2,...,min{(i+1)p, n}},andog issetasg = ogo1 - - - ok. We sek = |/n+0.5]
in the experiment.

NBSWAP. Initially two permutationga andog are set aga(i) = og(i) =i (i =
1,...,n). Then a swap of two elemenig (i + j) andog(j) for an integeii randomly

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 303

chosen from [1k] and an integej randomly chosen from [In —i] is repeated times,
wherek is a parameter to restrict the swap distance. Wé set| ,/n + 0.5] ands = n
in the experiment.

SLIDE. Foran integek, let p andq be integers satisfying = kp+qand 0< q < k.
Two permutations are setag(i) =i (i = 1,...,n) and

i) = i—2k—1 (modkp)+1, i =0 (modk),
98U =1, otherwise

We setk = 4 in the experiment.

NET. Two permutations are setag(i) =i (i =1,2,...,n)and
(i) = (i+1)/2 i odd
8% =11y/21+i/2, ieven

The number of outputk is O(n) for all the tested instances as discussed in Appendix C.

6.2. Computational Results All the tested algorithms were coded in C language and
run on a workstation Sun SPARC classic. A simple multiplicative congruential method
was used to generate random sequences. For each type of problem (except for type SLIDE
and NET problems), we generate five instances for @aeh10°~1C°, and exhibit the
average computational time (etc.) of each tested algorithm. Since type SLIDE and NET
problems include no randomness, we exhibit the average data of three runs for each
tested algorithms.

Table 1 shows the average number of inner loop iterations of BSC, LHP, and MNG
divided byn for n = 10*. (This implies the average number of iterations for an inner
loop.) The mark ¥” was put if this value was not increased more than 5% when1(,
and, for the others, we marked" if the instances witt = 10° were solved in 1 minute.

Table 2 shows the average of the total number of scandist llist, andylist of the
algorithm RC divided by for n = 10P. Figures 5-10 show the average computational
time (in us.) divided byn. (Note that the data are identical to the average computational
time in seconds when = 10°.)

From these, we can observe the following:

e In Table 1 the marks«” and “A” imply the effectiveness of the speed-up techniques
proposed in Section 3. Especially for those withtharks, itis no problemto conclude
that the problem instances were solve@i(n) time on the average. For each of those

Table 1. Average number of inner loop iterations of BSC, LHP, and MNG divided Ky = 10%).

RAND SWAP NBRAND NBSWAP SLIDE NET
BSC 4999.50 4999.50 4999.50 4999.50 4999.50 4999.50
LHP *1.99 *2.33 99.62 *11.13 2498.50 1876.00

MNG *3.40 *3.66 53.50 A4.39 *6.25 A8.68

304 T. Uno and M. Yagiura

1000 BSC —— A
s RC ——
3 LHP -=—
@ 100 k E
2
[
g Pt
g Sl SN]
B
p—eeaafy, o es & o-oocefn
1 1 1
1000 10000 100000 1e+06
number of elements
Fig. 5. Computational time against(type RAND).
1000 ¢ BSC —— A
= RC ——
8 LHP —=—
a 100 ¢ E
3
(5]
g —aa aan "
'é 10 ;’Wx WH—‘X_*—X‘X*;“_
B
1 1)
1000 10000 100000 le+06
number of elements
Fig. 6. Computational time against(type SWAP).
1000 F / BSC —— -
= / LHP —=—
i e
Q RC —~—
2 100 |]
2
o ﬂ
£ e
g 10¢ 1
E
1 1 1
1000 10000 100000 1e+06

number of elements
Fig. 7. Computational time against(type NBRAND).

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 305

1000 BSC ——— A

S RC —~—
g LHP =—
2 100 5
2
Q
8 10
s

1

1000 10000 100000 1e+06

number of elements
Fig. 8. Computational time against(type NBSWAP).

1000 ¢ BSC — 4
E LHP -=—
3 MNG ——
@ 100 F 3
2
.g A—bpby A 250 PWOSVY
; 10 00—
8
1 1 i
1000 10000 100000 le+06
number of elements
Fig. 9. Computational time against(type SLIDE).
1000 ¢ BSC — 4
E LHP —=—
~ RC ———
& MNG ——
2 100 1
2
>
g 10 3
8
1 1 1
1000 10000 100000 le+06

number of elements
Fig. 10. Computational time against(type NET).

306 T. Uno and M. Yagiura

Table 2. Average of the total number of scans aiist, llist, andylist of RC divided
by n (n = 10f).

RAND SWAP NBRAND NBSWAP SLIDE NET

RC 27.45 27.44 28.94 27.60 29.75 28.00

with “A” marks, the value increases by about 13% (resp., 38%) for NBSWAP (resp.,
NET) whenn = 10°. For NBSWAP, this is because the variance of the data of MNG is
rather large. The same tendency was observed for LHP. Indeed, the value decreases by
about 23% for the LHP, NBSWAP combination wher= 10°. It is known that MNG
needsO(nlogn) time for type NET instances, which is the cause of the increase by
about 38%.

e The performances of BSC and RC are hardly affected by the type of instances: BSC
always require® (n?) time, while RC always runs i®(n) time (recall thak = O(n)
for all tested problem instances). Note that the values in Table 2 are almost the same
for other tested sizes.

e The algorithm LHP is quite effective for type RAND and SWAP instances. It is also
effective for type NBSWAP instances, though about three times longer computational
time is required compared with type RAND and SWAP instances. On the contrary,
0O(n%?) time is spent for type NBRAND instances a@dn?) time is needed for type
SLIDE and NET instances.

e The algorithm MNG is quite effective for almost all types of problems except for
NBRAND, for which it requiresO(n®?) time. It is noted, however, that the running
time of MNG is about three times larger than LHP in the case of type RAND and
SWAP instances, and MNG requir€gn log n) time for type NET instances. Itis also
noted that problem types SLIDE and NET are quite artificial, and these results do not
necessarily imply that MNG is more robust than LHP.

7. Conclusion. For the common interval enumeration problem, we proposed the fol-
lowing three algorithms: (i) a simpl@(n?) time algorithm (LHP), whose expected run-
ning time become® (n) for two randomly generated permutations, (ii) a practically fast
O(n?) time algorithm (MNG) using the reverse Monge property, and (jifan + K)

time algorithm (RC). It was observed in the computational experiment that: (1) LHP is
very fast for randomly generated problem instances, (2) MNG is rather slower than LHP
for random instances; however, there are cases that MNG can n(n3ntime while

LHP needx2(n?) time, and (3) the performance of RC is quite robust about the type of
problem instances, though it is rather slower than MNG for many of the tested problem
instances. It is noted that LHP and MNG are very simple and easy to program (LHP is
much simpler than MNG), while RC is rather complicated. On the other hand, it is also
noted that there are cases where both LHP and MNG ref(iné) time as mentioned at

the end of Section 3. From these, we recommend RC if one wants to solve large instances
(e.g.,n > 10°) with much programming time, and LHP if one wants to solve the in-
stances which seem to include randomness, or one prefers a simpler algorithm. MNG is
recommended if LHP fails to solve efficiently some problem instances one wants to solve.

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 307

Acknowledgments. The authors are grateful to Dr. Takeshi Tokuyama, currently at

IBM Japan Ltd., Professor Dao-Zhi Zeng, currently at Kagawa University, Professor
Hiroshi Nagamochi, and Professor Toshihide Ibaraki, currently at Kyoto University,
who gave them valuable comments for improving this paper.

Appendix A. Here we prove theeverse Monge properwyf f (-, -), that is,
Xy + fxy) = fix)+ F(XLy)

holds for allx’, x, y, ¥’ satisfyingx’ < X <y < y'. Subtracting right-hand side from
left-hand side, we get

u(x', y) +ux, y) — fux, y) + ux, yHy +1x, y) + 1L y) = {1 y) + 1, y0)-
It is sufficient to show thati(-, -) andl (-, -) satisfy

ux,y) +ulx,y) > ux,y)+ux,y) (reverse Monge property)
LX)+, YY) < TG y) +1, YD) (Monge property)

We prove this only foru(., -), since the latter case is symmetrically proven. Either
ux’, y) = u(x, y)orux’,y) = u(x,y) holds, since
max mwag(z) < u(x,y) = ux,y)=u(xy)
ze[x/,x—1]
max mas(2) > U(X,y) = ux,y)=ux,y).
ze[x/,x—1]
This fact, combined withu(x, y') > u(x, y) andu(x’, y) > u(x, y), implies thatu(, -)
satisfies the reverse Monge property, and hence, reverse Monge propérty 0fis
proven.

Appendix B. Here, we prove that

m+1
35 E K= ———
(35) urn(M, K) m—_Kk+1
forO<k<m-1andm=>1, and
(36) E:rn(mv ka]) S Eurn(m, k)

forl < j,0 <k <m,andm > 1, whereE,m(-, -) and E}(, -, -) are defined in
Section 5. Let us define a random varial@lleepresenting the number of trials until a
black ball is taken out. The probability that a black ball is taken out afiggils or more

is equal to the probability that white balls are taken in the firstl trials, so

[Kli-1
[mli—a’

(37) PrZ>i)= i=1...,k+1

308 T. Uno and M. Yagiura

holds, where
1, i =0,

(38) [m]‘z{m(m—l)---(m—i+1), i >0.
By using this fact, we can conclude

k+1
(39) Eun(m. k) = > iPr(Z=1)

i=1

k+1

- Z Pr(z=>1i)
i=1

See, for example, [10] for the last sigma calculation. Wkenm — 1,if 1 < j <Kk,
then
-1
(40) Eim(M Kk, j) =) iIPI(Z=0)+|Pr(Z=}))
i=1
i
=Y Pr(Z=i
i=1
S Eurn(mv k)v

andifj > k+ 1, thenE},,(m, K, j) = Eym(m, k). Whenk =m, E} (m,m, j) = <
m = E,m(m, k). (Recall that we definelt,,(m, m) = m for convenience.)

Appendix C. Here we discuss the number of outpitsfor the instances tested in
Section 6. For type RAND instances, the expected number of common intervals is 2
O(n~1) as shown in Section 5. By the similar discussion, we can show that the expected
number of common intervals for type NBRAND instances is at nk8g2 + o(k?) if

k = o(n). Recall that we choode= O(4/n) in the experiment, and hence, the expected
number of outputs i©(n).

For type SWAP and NBSWAP instances, it is observed that the number of common
intervals isO(n) as shown in Table 3, where each entry is the average of five instances
examined in Section 6.2.

For type SLIDE instances, the number of common intervals is at most

k—1
p())+(g)+k(q+1)§%kn+§k2.

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 309

Table 3. Average number of common
intervals divided byn for type SWAP
and NBSWAP instances.

K/n
n SWAP NBSWAP
1000 0.022 0.084
10,000 0.021 0.050
100,000 0.021 0.032
1,000,000 0.021 0.026

Recall that we choosk = 4, hence, the number of outputs@(n). For type NET
instances, the number of common intervals is at most one.

(1]
(2]

(3]

(4]
(5]

(6]

(7]

8]
[

[10]

References

R. M. Brady, Optimization Strategies Gleaned from Biological Evolutidature 317 (1985), 804—

806.

K. Katayama, H. Hirabayashi, and H. Narihisa, Performance Analysis of a New Genetic Crossover for
the Traveling Salesman Problelfa| CE Transactions on Fundamentals of Electronpi@smmunications

and Computer ScienceS81-A (1998), 738—750.

S. Kobayashi, I. Ono, and M. Yamamura, An Efficient Genetic Algorithm for Job Shop Scheduling
Problems, irProc. 6th International Conference on Genetic AlgoriththsJ. Eshelman, ed.), Morgan
Kaufmann, San Francisco, CA, 1995, pp. 506-511.

H. Muhlenbein, M. Gorges-Schleuter, and Oalrér, Evolution Algorithms in Combinatorial Opti-
mization,Parallel Computing7 (1988), 65-85.

M. Yamamura, T. Ono, and S. Kobayashi, Character-Preserving Genetic Algorithms for Traveling
Salesman Problem (in Japanes®urnal of Japanese Society for Artificial Intelligende(1992),
117-127.

T. Uno and M. Yagiura, Fast Algorithms to Enumerate All Common Intervals of Two Per-
mutations and Their Applications, manuscript availablehtp://sci.hirosaki-u.ac.jp/
~tamatama/RIMS/eprogram2.html ,1997.

M. Yagiura, H. Nagamochi, and T. Ibaraki, Two Comments on the Subtour Exchange Crossover Operator
(in Japanese), Technical Report of IEICE (COMP94-28)No. 88, 1994, pp. 1-10 (a short version is

in Journal of Japanese Society for Artificial Intelligend® (1995), 464—-467).

M. Yagiura and T. Ibaraki, Fast Algorithms to Enumerate All Common Intervals of Two Permutations
(in Japanese), Technical Report of IEICE (COMP94-83) No. 479, 1995, pp. 65-74.

T. Uno and M. Yagiura, Fast Algorithms to Enumerate All Common Intervals of Two Permutations,
Technical Report #96015, Department of Applied Mathematics and Physics, Graduate School of Engi-
neering, Kyoto University, Kyoto 606-8501, Japan.

R. L. Graham, D. E. Knuth, and O. Patashriigncrete Mathematics—A Foundation for Computer
ScienceAddison-Wesley, Reading, MA, 1989.

