
DOI: 10.1007/s004539910014

Algorithmica (2000) 26: 290–309 Algorithmica
© 2000 Springer-Verlag New York Inc.

Fast Algorithms to Enumerate All Common
Intervals of Two Permutations

T. Uno1 and M. Yagiura2

Abstract. Given two permutations ofn elements, a pair of intervals of these permutations consisting of the
same set of elements is called acommon interval. Some genetic algorithms based on such common intervals
have been proposed for sequencing problems and have exhibited good prospects. In this paper we propose three
types of fast algorithms to enumerate all common intervals: (i) a simpleO(n2) time algorithm (LHP), whose
expected running time becomesO(n) for two randomly generated permutations, (ii) a practically fastO(n2)

time algorithm (MNG) using the reverse Monge property, and (iii) anO(n+ K) time algorithm (RC), where
K (≤

(
n
2

)
) is the number of common intervals. It will also be shown that the expected number of common

intervals for two random permutations isO(1). This result gives a reason for the phenomenon that the expected
time complexityO(n) of the algorithm LHP is independent ofK . Among the proposed algorithms, RC is
most desirable from the theoretical point of view; however, it is quite complicated compared with LHP and
MNG. Therefore, it is possible that RC is slower than the other two algorithms in some cases. For this reason,
computational experiments for various types of problems with up ton = 106 are conducted. The results
indicate that (i) LHP and MNG are much faster than RC for two randomly generated permutations, and (ii)
MNG is rather slower than LHP for random inputs; however, there are cases in which LHP requiresÄ(n2)

time, but MNG runs ino(n2) time and is faster than both LHP and RC.

Key Words. Common intervals of permutations, Genetic algorithm, Linear time algorithm, Random permu-
tations, Monge property, Subtour exchange crossover.

1. Introduction. Two permutationsσA andσB of set N = {1, . . . ,n} are given as
the input, whereσA(i) = j (or σ−1

A (j) = i) denotes thatj is the i th element ofσA

(σB is similarly defined). Let [x, y] denote the index set{x, x + 1, . . . , y}. We call a
pair of intervals ([xA, yA], [xB, yB]) (1 ≤ xA < yA ≤ n,1 ≤ xB < yB ≤ n) with
yA − xA + 1= yB − xB + 1 acommon intervalif it satisfies

{σA(i) | i ∈ [xA, yA]} = {σB(i) | i ∈ [xB, yB]}.(1)

The length of a common interval ([xA, yA], [xB, yB]) is defined to beyA − xA + 1.
Some genetic algorithms based on common intervals have been proposed for sequenc-

ing problems (the traveling salesman problem, the job shop scheduling problem, and so
on, whose solution is a permutation or a set of permutations) and have exhibited good
prospect [1]–[5]. In such algorithms, common intervals are considered as similar por-
tions of two candidate solutions, and are used to generate new solutions by combining
two solutions (i.e., crossover operator). For example, new solutions are generated by

1 Department of Industrial Engineering and Management, Tokyo Institute of Technology, 2-12-1 Oh-okayama,
Meguro-ku, Tokyo 152-0033, Japan. uno@me.titech.ac.jp.
2 Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto
606-8501, Japan. yagiura@i.kyoto-u.ac.jp.

Received December 21, 1996; revised June 2, 1998. Communicated by D. T. Lee.

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 291

exchanging one of the common intervals of two permutations. The common intervals
can also be used to detect the similarity between two evolutionary trees [6].

In this paper we consider enumeration of all common intervals of length 2 ton. Three
algorithms are proposed, which are improved versions of a simpleO(n2) time algorithm
proposed in [7]:

1. A simpleO(n2) time algorithm (called LHP), whose expected running time becomes
O(n) for two randomly generated permutations.

2. A practically fastO(n2) time algorithm (called MNG) using the reverse Monge
property.

3. An O(n+ K) time algorithm (called RC), whereK (≤ (n2)) is the number of outputs.

It will also be shown that the expected number of common intervals of length 2 ton− 2
for two random permutations is 2+ O(n−1). This implies that the expected number of
common intervals of any length between 2 andn is O(1), since the number of common
intervals of lengthn−1 orn is at most 3. This result gives a reason for the phenomenon
that the expected time complexityO(n) of the algorithm LHP is independent ofK .
We also give an example for which both LHP and MNG requireÄ(n2) time, although
K = O(n).

Among the three algorithms proposed in this paper, RC is most desirable from the
theoretical point of view; however, it is quite complicated compared with LHP and MNG.
Therefore, it is possible that RC is slower than the other two algorithms in some cases.
For this reason, computational experiments for various types of problems with up to
n = 106 are conducted. The results indicate that

1. LHP and MNG are much faster than RC for two randomly generated permutations
(e.g., LHP is about 13 times faster than RC).

2. MNG is rather slower than LHP for random inputs; however, there are cases that LHP
requiresÄ(n2) time, but MNG runs ino(n2) time and is faster than both LHP and
RC.

A recommendation about the use of the three algorithms is discussed in Section 7 based
on these computational results.

These results are applicable to the similar problem defined on two cyclic permutations
[7], [8].

2. Basic Algorithm. Here, we describe the basicO(n2) time algorithm [7], which is
the starting point of all the algorithms proposed in this paper. For convenience, we denote
σ−1

B · σA by πAB (i.e.,πAB(i) = σ−1
B (σA(i)) holds for alli , andπAB(i) = j means that

the i th element ofσA is located in thej th position ofσB) throughout this paper, which
can be calculated fromσA andσB in O(n) time. We also define the following functions
for an interval [x, y] of σA:

l (x, y) = min
i∈[x,y]

πAB(i),(2)

u(x, y) = max
i∈[x,y]

πAB(i),(3)

f (x, y) = u(x, y)− l (x, y)− (y− x).(4)

292 T. Uno and M. Yagiura

Fig. 1.An illustration of Algorithm BSC.

Since f (x, y) is the number of elements in{σB(i) | i ∈ [l (x, y),u(x, y)]}\{σA(i) | i ∈
[x, y]}, a pair([x, y], [l (x, y),u(x, y)]) is a common interval if and only iff (x, y) = 0.
Then all common intervals can be enumerated by calculatingf (x, y) for all (x, y) pairs
satisfying 1≤ x < y ≤ n. This gives rise to the following algorithm.

Algorithm BSC

Line 1: for x = 1, . . . ,n− 1 do
Line 2: l := u := πAB(x);
Line 3: for y = x + 1, . . . ,n do
Line 4: l := min{l , πAB(y)};
Line 5: u := max{u, πAB(y)};
Line 6: if u− l − (y− x) = 0 then
Line 7: output ([x, y], [l ,u])
Line 8: end for
Line 9: end for.

The variablesu and l in BSC correspond to the function valuesu(x, y) and l (x, y)
defined above. Figure 1 illustrates the algorithm. The time complexity of this algorithm
is O(n2), since Lines 4–7 can be executed inO(1) time.

3. Simple Improvements of the Basic Algorithm. In this section we propose two
improved versions of BSC, called LHP and MNG, both of which detect some redundant
inner loop iterations from Line 3 to 8 of BSC by simple tests, and remove them from
execution. They still requireO(n2) time in the worst case; however, it is observed that
they are practically much faster than BSC for many types of problems.

3.1. The Algorithm LHP. Here we describe the algorithm LHP. It is shown in Section 5
that the expected running time of this algorithm for two randomly generated permutations
is O(n). For convenience, only the common intervals of length 2 ton−2 are considered

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 293

in this subsection, and Line 3 of BSC is modified as

Line 3′: for y = x + 1, . . . ,min{n, x + n− 3} do

Modification of the algorithm to the original problem (where common intervals of length
2 to n are considered) is easy and the results of this paper are not affected by this
assumption. We improve the basic algorithm BSC in the following two respects.

The first is that, if

u− l > min{n− x,n− 3}(5)

is satisfied just before entering Line 6 of BSC in thexth iteration, then the rest of current
inner loop can be omitted, and we move into the (x + 1)st iteration immediately. Note
thatu− l is monotonically nondecreasing during thexth iteration. Condition (5) implies
that the length of interval [l ,u] of σB exceeds the maximum length of interval [x, y] of
σA wheny is increased up to min{n, x+n−3}. We call this conditionlength condition.

Let HP be the set

HP = N\{πAB(w) | w = x, x + 1, . . . ,min{n, x + n− 3}}
= {πAB(w) | w ∈ [1, x − 1] ∪ {z ∈ [1,n] | z≡ x − 2 (modn)

or z≡ x − 1 (modn)}}.

The second is that, if anh ∈ HP satisfies

l < h < u(6)

just before entering Line 6 of BSC, then the rest of current inner loop can be omitted.
HP is the set of indices of the elements which will not be included in any interval [x, y]
(y = x + 1, . . . ,min{n, x + n − 3}) of σA. We call each element ofHP a hole point,
and call condition (6)HP condition. It is not advantageous to check the HP condition
for all h ∈ HP, since the whole running time increases toO(n3). Hence, we check the
HP condition for only a sufficiently small portion ofHP, which we callHP′, so that the
original worst-case time complexityO(n2) is preserved. For this,|HP′ | should be kept
constant. After trying several in preliminary computational experiments, we chooseHP′

as follows:

HP′ = {πAB(w) | w ∈ {z ∈ [1,n] | z≡ x − 2 (modn) or z≡ x − 1 (modn)}}.(7)

As natural candidates, one may consider

HP1 = {πAB(w) | w ∈ [1,n] andw ≡ x − 1 (modn)} or
HP2 = {an element randomly chosen fromHP}.(8)

However, it is observed thatO(n logn) average time is needed for two randomly gen-
erated permutations if we useHP1, and it is also observed that the algorithm becomes
slower if we useHP2 (one of the conceivable reasons for this phenomenon is that gen-
erating random values frequently is too expensive). More discussion is given in [8].

294 T. Uno and M. Yagiura

3.2. The Algorithm MNG. Here we describe the second algorithm MNG. It uses the
fact that the functionf defined by (4) satisfies reverse Monge property, that is,

f (x′, y)+ f (x, y′) ≥ f (x′, y′)+ f (x, y)(9)

holds for allx′, x, y, y′ satisfyingx′ < x ≤ y < y′ (see Appendix A for the proof).
From (9), we have

f (x, y′) ≥ f (x, y)− { f (x′, y)− f (x′, y′)}(10)

≥ f (x, y)−
{

f (x′, y)− min
z∈[y+1,n]

f (x′, z)
}
.

Since the above inequalities hold for everyx′ (< x),

f (x, y′) ≥ f (x, y)− min
w∈[1,x−1]

{
f (w, y)− min

z∈[y+1,n]
f (w, z)

}
(11)

holds. The value of minw∈[1,x−1]{ f (w, y)−minz∈[y+1,n] f (w, z)} gives an upper bound
for the decrease off (x, y) wheny is increased up ton. Hence, ifx ≥ 2 and

f (x, y)− min
w∈[1,x−1]

{ f (w, y)− min
z∈[y+1,n]

f (w, z)} > 0(12)

holds just before entering Line 8 of BSC in thexth iteration, then the rest of current
inner loop can be omitted, and we can move to the (x+ 1)st iteration immediately. Here
ylast is defined as the value ofy at Line 9 when we exit the inner loop. Ifylast ≤ n− 1,
then we will not complete computing minz∈[ylast+1,n] f (x, z). Hence, we may fail to check
condition (12) for largerx. Thus we define a function

(13)

L D(x, y)

=



∞ (x = 1, y = 2,3, . . . ,n− 1),

min{L D(x − 1, y), f (x − 1, y) (x ≥ 2, y = x, . . . , ylast− 1,
−minz∈[y+1,n] f (x − 1, z)} ylast= n),

min{L D(x − 1, y), f (x − 1, y) (x ≥ 2, y = x, . . . , ylast,

−min{minz∈[y+1,ylast] f (x − 1, z), ylast≤ n− 1),
f (x − 1, ylast)− L D(x − 1, ylast)}},

L D(x − 1, y) (x ≥ 2, y = ylast+ 1, . . . ,n− 1,
ylast≤ n− 1).

The functionL D(x, y) can be calculated even ifylast≤ n− 1 and satisfies

L D(x, y) ≥ min
w∈[1,x−1]

{
f (w, y)− min

z∈[y+1,n]
f (w, z)

}
.(14)

An inner loop can be terminated if condition

f (x, y)− L D(x, y) > 0(15)

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 295

holds. The correctness of the algorithm is retained, since condition (15) implies condi-
tion (12). We call condition (15) theMonge condition.

We definedL D as a function of bothx andy for convenience; however, the value of
L D(x, y) can be overwritten on the same memory space withL D(x− 1, y) in practice.
Such an update ofL D is executed every time we exit the inner loop, which is possible
in O(ylast− x) time. Hence, the worst-case running timeO(n2) of the algorithm BSC is
preserved for MNG.

We further set a parameterR ∈ (0,1], and do not exit the inner loop fory >

R(n− x)+ x even if Monge condition is satisfied. (R= 1 means the case we do not use
this modification.) Oncey > R(n−x)+x holds,ylast is forced to ben and we can update
L D by using the second formula of (13); hence,L D value may improve. The total time
spent to inner loops increases at most 1/R times compared with the case withR = 1.
We setR to 0.5 in the computational experiments, since remarkable improvement was
observed in some problem instances compared toR= 1.

3.3. Remarks about the Two Algorithms. Two algorithms LHP and MNG can be com-
bined; however, slight modifications are needed to the way of updatingL D. Using
a parameterR ∈ (0,1], that is, an inner loop is terminated by length condition, HP
condition, or Monge condition only fory < R(n − x) + x, will be useful. Since the
computational time gains at most 1/R times, expected running time of this combined al-
gorithm isO(n) for two randomly generated permutations. It is also noted that someL D
values may become larger than when MNG is used alone, and this combined algorithm
will not necessarily improve the performance of MNG.

Although it is observed that algorithms of this type are much faster than the algorithm
BSC for many types of problems, they always requireÄ(n2) time for some problem
instances. For example, consider the problem given by settingσA(i) = i (i = 1, . . . ,n)
and

σB(i) =
{

2i − 1, i ≤ dn/2e,
2(n− i + 1), i ≥ dn/2e + 1.

The function f takes

f (x, y) > 0, y = x + 1, . . . ,n− 1, x = 1, . . . ,n− 1,

f (x,n) = 0, x = 1, . . . ,n− 1,

and the number of outputsK = O(n). Any algorithm improved from BSC by “omitting
redundant loops” requiresÄ(n2) time for this example. It shows a limitation of the
algorithms of this type.

4. An Algorithm with O(n + K) Worst-Case Running Time. In this section we
propose an algorithm called thereduce candidate algorithm(abbreviated as RC) which
runs inO(n+ K) time in the worst case. Since the algorithm runs in time proportional
to the number of inputs and outputs, it is optimal in the sense of time complexity. On the
other hand, those algorithms proposed in the previous section may take much time, e.g.,
Ä(n2) time even if the number of outputsK is O(n), though they are very simple and
fast for most of the tested problem instances.

296 T. Uno and M. Yagiura

For a fixedx, we call ay unnecessaryif it satisfies f (x′, y) > 0 for all x′ ≤ x. The
main idea of the algorithm RC is to reduce the time to check the conditionf (x, y) = 0
for somey which can be concluded as unnecessary from the past search information.
The framework of the algorithm is described as follows.

Algorithm RC

Line 1: Y := {n}.
Line 2: for x = n− 1, . . . ,1 do
Line 3: Output ally(> x) in Y satisfying f (x, y) = 0.
Line 4: SetY := (Y ∪ {x})\W

whereW ⊆ {y ∈ N|y ≥ x and f (x′, y) > 0 for all x′ < x}.
Line 5: end for.

Here,W is the set of unnecessary indices detected by the following lemmas, where their
proofs are straightforward and are omitted.

LEMMA 4.1. Suppose that we are given x> 1 and y> x. If u(x, y) < u(x, y′) and
u(x−1, y) = u(x−1, y′) hold for some y′ > y, y satisfies f(x′, y) > 0 for all x ′ < x.

LEMMA 4.2. Suppose that we are given x> 1 and y> x. If f (x, y) > f (x, y′) hold
for some y′ > y, y satisfies f(x′, y) > 0 for all x ′ ≤ x.

We will show an algorithm that removes everyy that satisfies the conditions of
Lemma 4.1 or 4.2 from the setY at Line 4 of the algorithm RC. To maintainY, the algo-
rithm uses a doubly linked list calledylist composed of cellsy1, . . . , yr corresponding
to eachy ∈ Y. The cells are sorted in increasing order of their indices in theylist. For
convenience, we consider only the case withπAB(x−1) > πAB(x) throughout this sec-
tion. The opposite case is treated similarly. The algorithm for trimming the unnecessary
cells fromylist is as follows.

Algorithm TRIMMING YLIST

Step 1: Findy∗ ∈ N which is maximum amongy satisfyingu(x, y) <
u(x − 1, y).

Step 2: If the celly on the head ofylist satisfiesu(x, y) < u(x, y∗), then
remove it fromylist (from Lemma 4.1) and go to Step 2.

Step 3: Letyi andyi+1 be adjacent cells ofylist satisfyingyi ≤ y∗ < yi+1.
If f (x − 1, yi) > f (x − 1, yi+1) then removeyi from ylist (from
Lemma 4.2) and go to Step 3.

In Step 2, if there exists ay′ ≤ y∗ satisfyingu(x, y′) < u(x, y∗), then the heady
of ylist also satisfiesu(x, y) < u(x, y∗), sinceu(x, y) is monotonically nondecreasing
with y. Therefore ally satisfyingu(x, y) < u(x, y∗) are removed fromylist during the
iteration of Step 2.

Initially, the ylist is composed of only one element. Supposef (x, yi) ≤ f (x, yi+1)

holds for everyi . For everyyi > y∗, f (x − 1, yi)− f (x, yi) = −1 holds and for every
yi ≤ y∗ which is not removed in Step 2 of TRIMMING YLIST, f (x−1, yi)− f (x, yi) = c

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 297

Fig. 2. Functionsu(2, y), u(3, y), l (2, y) andl (3, y) corresponding to permutationsσA = 〈1,2,3,4,5,6,7〉
andσB = 〈5,3,1,4,2,7,6〉.

(c is a constant satisfyingc ≥ 0) holds (i.e.,c is the same for allyi ≤ y∗). Therefore, by
induction, f (x − 1, yi) ≤ f (x − 1, yi+1) hold for all yi (≥ x) which remain in theylist
at the end of the algorithm TRIMMING YLIST.

We have to spendO(y − x) time to calculateu(x, y) without any data structure. In
our algorithm, we represent the functionsu andl by linked lists calledulist andllist. For
a fixedx,u (resp.,l) is a monotonically nondecreasing (resp., nonincreasing) function
of y. (See Figure 2.) We will describe the construction of the linked list only foru, since
the construction ofllist is similar. The interval [x + 1,n] is decomposed into intervals
[y′0 = x + 1, y′1 − 1], [y′1, y′2 − 1], . . . , [y′r−1, y′r = n] whereu(x, y′) = u(x, y′′) holds
if and only if both y′ and y′′ are included in [y′i , y′i+1 − 1]. From this decomposition,
we representu by ulist composed of cells which correspond to these intervals. Each cell
keeps the corresponding interval and the valueu(x, y) for y which the interval includes.
A pair of cells are doubly linked by pointers if they correspond to adjacent intervals. We
say thaty is included in the cell ofulist if the interval corresponding to it includesy.

To get the value ofu(x, y), we have to find the cell includingy. To realize the
operation in short time, we make a pointer from each cellyi of ylist to the cell ofulist
which includesyi . We also make a pointer from each cell ofulist to the cellyi of ylist,
whereyi is the maximum among those included in the same cell ofulist. (See Figure 3.)

The update ofulist and llist when x changes tox − 1 is executed as follows. We
updatellist by adding a cell corresponding to interval [x − 1, x − 1] on the head of it.
(Recall that we treat only the caseπAB(x−1) > πAB(x).) We delete all the cells ofulist
which includey satisfyingu(x, y) < u(x, y∗). For the cell includingy∗, we change its
interval to [x − 1, y∗] and its value fromu(x, y∗) to u(x − 1, y∗). (See Figure 4.) Note
that we do not remove the cell representingu(x, y∗), but use it to representu(x−1, y∗).
By doing this, pointers fromy included in the cell corresponding tou(x, y∗) to ulist
need not to be changed. It is one of the key points to speeding up of the algorithm.

In Step 2 of TRIMMING YLIST, if the pointer of the celly of ylist indicates a deleted
cell of ulist, we remove it fromylist, since this impliesu(x, y) < u(x, y∗). Thus it is not
necessary to update pointers betweenylist andulist.

298 T. Uno and M. Yagiura

Fig. 3.Examples ofulist andllist corresponding tou(3, y) andl (3, y) of Figure 2.

Let us consider the time complexity of the algorithm RC. Since those update operations
of ulist are done by tracingulist from its head to the cell includingy∗, Steps 1 and 2 of
the algorithm TRIMMING YLIST takeO(d + 1) time, whered is the number of deleted
cells in Step 2. The total number of deleted cells during the execution of the algorithm
RC cannot exceed the number of created cells, which isO(n), and thus the total time of
those operations in the algorithm RC isO(n).

Fig. 4. The process of updatingulist, llist, andylist. The cells represented by dotted lines are deleted when
ulist is updated.

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 299

In Step 3 of the algorithm TRIMMING YLIST, we can findyi andyi+1 in O(1) time by
tracing a pointer from the cell ofulist including y∗ to the cell ofylist. (See Figure 4.)
Step 3 is repeated while the current cell is deleted. This is done in time proportional
to the number of deleted cells. Thus the total time spent for Step 3 of the algorithm
TRIMMING YLIST in all iteration of the algorithm RC is proportional to the total number
of deleted cells. It can not exceed the number of created cells, and the total time isO(n).

In Line 3 of the algorithm RC, the cellsyi , . . . , yr of ylistsatisfy f (x, yi) ≤ f (x, yi+1)

(i = 1, . . . , r − 1). Therefore we can enumerate ally satisfying f (x, y) = 0 by tracing
ylist from its head without scanningywith f (x, y) > 0 in the middle. When we encounter
y with f (x, y) > 0, we stop the tracing sincef (x, y′) > 0 holds for ally′ > y. It takes
time proportional to the number of outputs, which isO(n+ K).

As a result, the following theorem holds.

THEOREM4.1. Algorithm RC withTRIMMING YLIST outputs all common intervals in
O(n+ K) time.

REMARK. Algorithm RC can also be applicable to the following problems with slight
modifications: (1) Enumerate the common intervals of length frombl to bu for two
specified lengthsbl ≤ bu. (2) Find a common interval of the maximum length among
those with length not more thanbu(< n). The modified algorithm can solve problem (1)
in O(n+ K ′) time, K ′ is the number of outputs for this problem, and solve problem (2)
in O(n) time. For details, see [9].

5. Random Inputs. In this section we will show two properties of two permutations
generated uniformly at random (i.e., every permutation appears with probability 1/n!):
(i) expected number of common intervals isO(1), and (ii) expected running time of the
algorithm LHP isO(n). For convenience, only the common intervals of length 2 ton−2
are considered in this section. This assumption does not change the above results.

5.1. Expected Number of Common Intervals. We define random variables as follows. A
variableXkx (x = 1, . . . ,n−k+1,k = 2, . . . ,n−2) takes value 1 iff (x, x+k−1) = 0,
and 0 otherwise. We also defineXk =

∑n−k+1
x=1 Xkx andX =∑n−2

k=2 Xk. These variables
represent the number of common intervals of the lengthk and the number of common
intervals of the length from 2 ton− 2, respectively.

THEOREM5.1. For n ≥ 5, E(X) = 2+ O(n−1). To be precise, E(X2) = 2− 2/n,
E(
∑n−2

k=3 Xk) = O(n−1).

PROOF. For fixedxA andxB,

Pr({σA(i) | i ∈ [xA, xA + k− 1]} = {σB(i) | i ∈ [xB, xB + k− 1]})(16)

= (n− k)! k!

n!
.

300 T. Uno and M. Yagiura

Since possible values ofxB is from 1 ton− k+ 1,

E(XkxA) =
(n− k)! k!

n!
× (n− k+ 1).(17)

By the linearity of expectation, we have

E(Xk) =
n−k+1∑

x=1

E(Xkx),(18)

E(X) =
n−2∑
k=2

E(Xk).(19)

To observe the increase and decrease ofE(Xk), we consider the solution of
E(Xk)/E(Xk−1) < 1. From

E(Xk)

E(Xk−1)
= k(n− k+ 1)

(n− k+ 2)2
< 1,(20)

2k2− (3n+ 5)k+ (n2+ 4n+ 4) > 0(21)

is obtained, and we get the solutionk < α−(n), α+(n) < k, wheren ≥ 4 and

α−(n) = 3n+ 5−√n2− 2n− 7

4
,(22)

α+(n) = 3n+ 5+√n2− 2n− 7

4
.(23)

It is easy to check 0< α−(n) ≤ n. By the fact

(n− 3)2 ≤ n2− 2n− 7(24)

for n ≥ 4, we haveα+(n) > n. Therefore,E(Xk) is monotonically nonincreasing withk
when 2≤ k ≤ α−(n), and is monotonically nondecreasing withk whenα−(n) ≤ k ≤ n.
By usingE(X4) < 24/n2 andE(Xn−2) ≤ 24/n2 (n ≥ 4), we have

E(Xk) ≤ 24

n2
(k = 4,5, . . . ,n− 2,n ≥ 4)(25)

and, from (18),

E(X2) = 2− 2

n
,(26)

E(X3) = 6(n− 2)

n(n− 1)
.(27)

Hence, we can conclude, forn ≥ 5,

E

(
n−2∑
k=3

Xk

)
≤ E(X3)+ (n− 5) · 24

n2
(28)

= O(n−1),(29)

E(X) = E(X2)+ E

(
n−2∑
k=3

Xk

)
(30)

= 2+ O(n−1).(31)

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 301

By estimating the variance ofX2 and using Chebyshev bound and Markov inequality,
the following theorem is also shown [7].

THEOREM5.2. If n ≥ 5, Pr(X ≥ √2t + 3) ≤ 1/t2 + O(n−1) holds for arbitrary
t > 0.

5.2. Expected Running Time of the Algorithm LHP. For eachx (x = 1, . . . ,n − 1),
let Tx be a random variable representing the number of iterations for an inner loop of
LHP. We also defineT = ∑n−1

x=1 Tx, which represents the number of the whole inner
loop iterations.

THEOREM5.3. For n ≥ 4, E(T) ≤ 3n.

Theorem 5.3 holds even if we do not incorporate the length condition (5) into LHP.
Before proving this theorem, we consider the following problem. We havek white

balls andm− k black balls (0≤ k ≤ m− 1, m≥ 1) in an urn. The probability of taking
out a ball is the same for all balls. Take out one ball. If it is white, we do not replace the
ball into the urn and continue the same trial, otherwise (i.e., once a black ball is taken)
we terminate the trial. LetEurn(m, k) denotes the expected number of trials until a black
ball is taken, then

Eurn(m, k) = m+ 1

m− k+ 1
(32)

holds (see Appendix B). We defineEurn(m,m) = m for convenience. LetE∗urn(m, k, j)
denotes the expected number of trials until a black ball is taken or the number of trials
becomesj , then

E∗urn(m, k, j) ≤ Eurn(m, k)(33)

holds for 1≤ j , 0≤ k ≤ m, andm ≥ 1 (see also Appendix B). These facts are used in
the proof.

PROOF. By linearity of expectation,

E(T) =
n−1∑
x=1

E(Tx).(34)

For a fixedx, let r (x) be min{n− x,n−3}, which is the maximum number of inner loop
iterations forx. Since the two permutations are generated uniformly at random,HP′ is
{i, j } with probability

(n
2

)−1
for any i and j (i, j ∈ [1,n], i < j). For suchi and j ,

probability that 1≤ πAB(x) ≤ i−1 holds is(i−1)/(n−2), and in this case, the expected
number of inner loop iterations isE∗urn(n− 3, i − 2, r (x)), secondly, the probability that
i + 1≤ πAB(x) ≤ j − 1 holds is(j − i − 1)/(n− 2), and in this case, the expectation
is E∗urn(n − 3, j − i − 2, r (x)), and thirdly, the probability thatj + 1 ≤ πAB(x) ≤ n
holds is(n− j)/(n−2), and in this case, the expectation isE∗urn(n−3,n− j −1, r (x)).

302 T. Uno and M. Yagiura

Therefore,

E(T) =
n−1∑
x=1

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

{
i − 1

n− 2
E∗urn(n− 3, i − 2, r (x))

+ j − i − 1

n− 2
E∗urn(n− 3, j − i − 2, r (x))

+ n− j

n− 2
E∗urn(n− 3,n− j − 1, r (x))

}
≤ n− 1(n

2

) n−1∑
i=1

n∑
j=i+1

{
i − 1

n− 2
Eurn(n− 3, i − 2)

+ j − i − 1

n− 2
Eurn(n− 3, j − i − 2)

+ n− j

n− 2
Eurn(n− 3,n− j − 1)

}
= n− 1(n

2

) · 3 · n−1∑
i=1

(n− i) · i − 1

n− 2
Eurn(n− 3, i − 2)

= 6

n

{
n−2∑
i=1

(n− i) · i − 1

n− 2
· n− 2

n− i
+ (n− 3)

}
= 3n− 9≤ 3n.

6. Computational Results. In this section we compare the algorithms BSC, LHP,
MNG, and RC by applying them to six types of problem instances of size up to 106.

6.1. Generation of Problem Instances. The following six types of problem instances
are examined.

RAND. Two permutationsσA and σB are randomly generated (any permutation is
chosen with probability 1/n!).

SWAP. Initially two permutationsσA and σB are set asσA(i) = σB(i) = i (i =
1, . . . ,n). Then we repeats times a swap of two elementsσB(i) andσB(j) for two
integersi and j (i 6= j) randomly chosen from [1,n]. We sets= n in the experiment.

NBRAND. The permutationσA is set asσA(i) = i (i = 1, . . . ,n). For an integer
k, let p andq be integers satisfyingn = kp+ q and 0≤ q < k. For eachi (i =
0,1, . . . , k), a permutationσi : Ni → Ni is randomly generated, whereNi = {i p +
1, i p+2, . . . ,min{(i+1)p,n}}, andσB is set asσB = σ0σ1 · · · σk. We setk = b√n+0.5c
in the experiment.

NBSWAP. Initially two permutationsσA andσB are set asσA(i) = σB(i) = i (i =
1, . . . ,n). Then a swap of two elementsσB(i + j) andσB(j) for an integeri randomly

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 303

chosen from [1, k] and an integerj randomly chosen from [1,n− i] is repeateds times,
wherek is a parameter to restrict the swap distance. We setk = b√n+ 0.5c ands= n
in the experiment.

SLIDE. For an integerk, let p andq be integers satisfyingn = kp+q and 0≤ q < k.
Two permutations are set asσA(i) = i (i = 1, . . . ,n) and

σB(i) =
{

i − 2k− 1 (modkp)+ 1, i ≡ 0 (modk),
i, otherwise.

We setk = 4 in the experiment.

NET. Two permutations are set asσA(i) = i (i = 1,2, . . . ,n) and

σB(i) =
{
(i + 1)/2, i odd,
dn/2e + i /2, i even.

The number of outputsK is O(n) for all the tested instances as discussed in Appendix C.

6.2. Computational Results. All the tested algorithms were coded in C language and
run on a workstation Sun SPARC classic. A simple multiplicative congruential method
was used to generate random sequences. For each type of problem (except for type SLIDE
and NET problems), we generate five instances for eachn = 103–106, and exhibit the
average computational time (etc.) of each tested algorithm. Since type SLIDE and NET
problems include no randomness, we exhibit the average data of three runs for each
tested algorithms.

Table 1 shows the average number of inner loop iterations of BSC, LHP, and MNG
divided byn for n = 104. (This implies the average number of iterations for an inner
loop.) The mark “∗” was put if this value was not increased more than 5% whenn = 106,
and, for the others, we marked “4” if the instances withn = 106 were solved in 1 minute.
Table 2 shows the average of the total number of scans onulist, llist, andylist of the
algorithm RC divided byn for n = 106. Figures 5–10 show the average computational
time (inµs.) divided byn. (Note that the data are identical to the average computational
time in seconds whenn = 106.)

From these, we can observe the following:

• In Table 1 the marks “∗” and “4” imply the effectiveness of the speed-up techniques
proposed in Section 3. Especially for those with “∗” marks, it is no problem to conclude
that the problem instances were solved inO(n) time on the average. For each of those

Table 1.Average number of inner loop iterations of BSC, LHP, and MNG divided byn (n = 104).

RAND SWAP NBRAND NBSWAP SLIDE NET

BSC 4999.50 4999.50 4999.50 4999.50 4999.50 4999.50
LHP *1.99 *2.33 99.62 *11.13 2498.50 1876.00
MNG *3.40 *3.66 53.50 44.39 *6.25 48.68

304 T. Uno and M. Yagiura

Fig. 5.Computational time againstn (type RAND).

Fig. 6.Computational time againstn (type SWAP).

Fig. 7.Computational time againstn (type NBRAND).

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 305

Fig. 8.Computational time againstn (type NBSWAP).

Fig. 9.Computational time againstn (type SLIDE).

Fig. 10.Computational time againstn (type NET).

306 T. Uno and M. Yagiura

Table 2. Average of the total number of scans onulist, llist, andylist of RC divided
by n (n = 106).

RAND SWAP NBRAND NBSWAP SLIDE NET

RC 27.45 27.44 28.94 27.60 29.75 28.00

with “4” marks, the value increases by about 13% (resp., 38%) for NBSWAP (resp.,
NET) whenn = 106. For NBSWAP, this is because the variance of the data of MNG is
rather large. The same tendency was observed for LHP. Indeed, the value decreases by
about 23% for the LHP, NBSWAP combination whenn = 106. It is known that MNG
needsO(n logn) time for type NET instances, which is the cause of the increase by
about 38%.
• The performances of BSC and RC are hardly affected by the type of instances: BSC

always requiresO(n2) time, while RC always runs inO(n) time (recall thatK = O(n)
for all tested problem instances). Note that the values in Table 2 are almost the same
for other tested sizes.
• The algorithm LHP is quite effective for type RAND and SWAP instances. It is also

effective for type NBSWAP instances, though about three times longer computational
time is required compared with type RAND and SWAP instances. On the contrary,
O(n3/2) time is spent for type NBRAND instances andO(n2) time is needed for type
SLIDE and NET instances.
• The algorithm MNG is quite effective for almost all types of problems except for

NBRAND, for which it requiresO(n3/2) time. It is noted, however, that the running
time of MNG is about three times larger than LHP in the case of type RAND and
SWAP instances, and MNG requiresO(n logn) time for type NET instances. It is also
noted that problem types SLIDE and NET are quite artificial, and these results do not
necessarily imply that MNG is more robust than LHP.

7. Conclusion. For the common interval enumeration problem, we proposed the fol-
lowing three algorithms: (i) a simpleO(n2) time algorithm (LHP), whose expected run-
ning time becomesO(n) for two randomly generated permutations, (ii) a practically fast
O(n2) time algorithm (MNG) using the reverse Monge property, and (iii) anO(n+ K)
time algorithm (RC). It was observed in the computational experiment that: (1) LHP is
very fast for randomly generated problem instances, (2) MNG is rather slower than LHP
for random instances; however, there are cases that MNG can run ino(n2) time while
LHP needsÄ(n2) time, and (3) the performance of RC is quite robust about the type of
problem instances, though it is rather slower than MNG for many of the tested problem
instances. It is noted that LHP and MNG are very simple and easy to program (LHP is
much simpler than MNG), while RC is rather complicated. On the other hand, it is also
noted that there are cases where both LHP and MNG requireÄ(n2) time as mentioned at
the end of Section 3. From these, we recommend RC if one wants to solve large instances
(e.g.,n ≥ 105) with much programming time, and LHP if one wants to solve the in-
stances which seem to include randomness, or one prefers a simpler algorithm. MNG is
recommended if LHP fails to solve efficiently some problem instances one wants to solve.

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 307

Acknowledgments. The authors are grateful to Dr. Takeshi Tokuyama, currently at
IBM Japan Ltd., Professor Dao-Zhi Zeng, currently at Kagawa University, Professor
Hiroshi Nagamochi, and Professor Toshihide Ibaraki, currently at Kyoto University,
who gave them valuable comments for improving this paper.

Appendix A. Here we prove thereverse Monge propertyof f (·, ·), that is,

f (x′, y)+ f (x, y′) ≥ f (x, y)+ f (x′, y′)

holds for allx′, x, y, y′ satisfyingx′ < x ≤ y < y′. Subtracting right-hand side from
left-hand side, we get

u(x′, y)+ u(x, y′)− {u(x, y)+ u(x′, y′)} + l (x, y)+ l (x′, y′)− {l (x′, y)+ l (x, y′)}.

It is sufficient to show thatu(·, ·) andl (·, ·) satisfy

u(x′, y)+ u(x, y′) ≥ u(x, y)+ u(x′, y′) (reverse Monge property),

l (x′, y)+ l (x, y′) ≤ l (x, y)+ l (x′, y′) (Monge property).

We prove this only foru(·, ·), since the latter case is symmetrically proven. Either
u(x′, y′) = u(x, y′) or u(x′, y′) = u(x′, y) holds, since

max
z∈[x′,x−1]

πAB(z) < u(x, y′) ⇒ u(x′, y′) = u(x, y′)

max
z∈[x′,x−1]

πAB(z) ≥ u(x, y′) ⇒ u(x′, y′) = u(x′, y).

This fact, combined withu(x, y′) ≥ u(x, y) andu(x′, y) ≥ u(x, y), implies thatu(·, ·)
satisfies the reverse Monge property, and hence, reverse Monge property off (·, ·) is
proven.

Appendix B. Here, we prove that

Eurn(m, k) = m+ 1

m− k+ 1
(35)

for 0≤ k ≤ m− 1 andm≥ 1, and

E∗urn(m, k, j) ≤ Eurn(m, k)(36)

for 1 ≤ j , 0 ≤ k ≤ m, andm ≥ 1, whereEurn(·, ·) and E∗urn(·, ·, ·) are defined in
Section 5. Let us define a random variableZ representing the number of trials until a
black ball is taken out. The probability that a black ball is taken out afteri trials or more
is equal to the probability that white balls are taken in the firsti − 1 trials, so

Pr(Z ≥ i) = [k] i−1

[m] i−1
, i = 1, . . . , k+ 1(37)

308 T. Uno and M. Yagiura

holds, where

[m] i =
{

1, i = 0,
m(m− 1) · · · (m− i + 1), i > 0.

(38)

By using this fact, we can conclude

Eurn(m, k) =
k+1∑
i=1

i Pr (Z = i)(39)

=
k+1∑
i=1

Pr(Z ≥ i)

=
k∑

i=0

[k] i

[m] i

=
k∑

i=0

(m−i
k−i

)(m
k

)
= m+ 1

m− k+ 1
.

See, for example, [10] for the last sigma calculation. Whenk ≤ m− 1, if 1 ≤ j ≤ k,
then

E∗urn(m, k, j) =
j−1∑
i=1

i Pr (Z = i)+ j Pr (Z ≥ j)(40)

=
j∑

i=1

Pr(Z ≥ i)

≤ Eurn(m, k),

and if j ≥ k+ 1, thenE∗urn(m, k, j) = Eurn(m, k). Whenk = m, E∗urn(m,m, j) = j ≤
m= Eurn(m, k). (Recall that we definedEurn(m,m) = m for convenience.)

Appendix C. Here we discuss the number of outputsK for the instances tested in
Section 6. For type RAND instances, the expected number of common intervals is 2+
O(n−1) as shown in Section 5. By the similar discussion, we can show that the expected
number of common intervals for type NBRAND instances is at mostk2/2+ o(k2) if
k = o(n). Recall that we choosek = O(

√
n) in the experiment, and hence, the expected

number of outputs isO(n).
For type SWAP and NBSWAP instances, it is observed that the number of common

intervals isO(n) as shown in Table 3, where each entry is the average of five instances
examined in Section 6.2.

For type SLIDE instances, the number of common intervals is at most

p

(
k− 1

2

)
+
(

q

2

)
+ k(q + 1) ≤ 1

2kn+ 3
2k2.

Fast Algorithms to Enumerate All Common Intervals of Two Permutations 309

Table 3. Average number of common
intervals divided byn for type SWAP

and NBSWAP instances.

K/n

n SWAP NBSWAP

1000 0.022 0.084
10,000 0.021 0.050

100,000 0.021 0.032
1,000,000 0.021 0.026

Recall that we choosek = 4, hence, the number of outputs isO(n). For type NET
instances, the number of common intervals is at most one.

References

[1] R. M. Brady, Optimization Strategies Gleaned from Biological Evolution,Nature, 317 (1985), 804–
806.

[2] K. Katayama, H. Hirabayashi, and H. Narihisa, Performance Analysis of a New Genetic Crossover for
the Traveling Salesman Problem,IEICE Transactions on Fundamentals of Electronics,Communications
and Computer Sciences, E81-A (1998), 738–750.

[3] S. Kobayashi, I. Ono, and M. Yamamura, An Efficient Genetic Algorithm for Job Shop Scheduling
Problems, inProc. 6th International Conference on Genetic Algorithms(L. J. Eshelman, ed.), Morgan
Kaufmann, San Francisco, CA, 1995, pp. 506–511.

[4] H. Mühlenbein, M. Gorges-Schleuter, and O. Kr¨amer, Evolution Algorithms in Combinatorial Opti-
mization,Parallel Computing, 7 (1988), 65–85.

[5] M. Yamamura, T. Ono, and S. Kobayashi, Character-Preserving Genetic Algorithms for Traveling
Salesman Problem (in Japanese),Journal of Japanese Society for Artificial Intelligence, 7 (1992),
117–127.

[6] T. Uno and M. Yagiura, Fast Algorithms to Enumerate All Common Intervals of Two Per-
mutations and Their Applications, manuscript available athttp://sci.hirosaki-u.ac.jp/

~tamatama/RIMS/eprogram2.html , 1997.
[7] M. Yagiura, H. Nagamochi, and T. Ibaraki, Two Comments on the Subtour Exchange Crossover Operator

(in Japanese), Technical Report of IEICE (COMP94-18),94, No. 88, 1994, pp. 1–10 (a short version is
in Journal of Japanese Society for Artificial Intelligence, 10 (1995), 464–467).

[8] M. Yagiura and T. Ibaraki, Fast Algorithms to Enumerate All Common Intervals of Two Permutations
(in Japanese), Technical Report of IEICE (COMP94-83),94, No. 479, 1995, pp. 65–74.

[9] T. Uno and M. Yagiura, Fast Algorithms to Enumerate All Common Intervals of Two Permutations,
Technical Report #96015, Department of Applied Mathematics and Physics, Graduate School of Engi-
neering, Kyoto University, Kyoto 606-8501, Japan.

[10] R. L. Graham, D. E. Knuth, and O. Patashnik,Concrete Mathematics—A Foundation for Computer
Science, Addison-Wesley, Reading, MA, 1989.

