Exercises - Algorithms for Genome Research

Universität Bielefeld, WS 2014, Dr. Pedro Feijao
http://wiki.techfak.uni-bielefeld.de/gi/Teaching/2014winter/AlgoGR

Exercise List 4 - 21.11.2014

Discussion of exercises on: 28.11.2014

Exercise 1 Given the following genomes:

$$
\begin{gathered}
A=\left\{1_{t}, 1_{h} 6_{h}, 6_{t} 2_{h}, 2_{t} 5_{t}, 5_{h} 4_{h}, 4_{t}, 3_{h}, 3_{t} 7_{t}, 7_{h}, 9_{h} 8_{t}, 8_{h} 9_{t}, 12_{t} 10_{h}, 10_{t} 11_{t}, 11_{h} 12_{h}\right\} \\
B=\left\{3_{h} 1_{t}, 1_{h} 2_{t}, 2_{h} 3_{t}, 4_{t}, 4_{h} 5_{t}, 5_{h} 6_{t}, 6_{h} 7_{t}, 7_{h} 8_{t}, 8_{h} 9_{t}, 9_{h}, 12_{h} 10_{t}, 10_{h} 11_{t}, 11_{h} 12_{t}\right\}
\end{gathered}
$$

(a) Draw the chromosomes of A and B.
(b) Draw the adjacency graph of A and B .
(c) Compute the DCJ distance between A and B.
(d) Find 3 different DCJ operations applied in A that decrease its distance to B, and redraw the adjacency graph for each operation.
(e) What is type of the operations that you applied in (c)? (Reversal, translocation, fission...)

Exercise 2 Given a genome A with l_{1} linear chromosomes, and B with l_{2} linear chromosomes, how many paths does the adjacency graph $A G(A, B)$ have?

Exercise 3 The reversal distance between the permutation $\pi=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$ and the identity $\left(\begin{array}{ll}1 & 2\end{array} 4\right)$ is 3 . But the DCJ distance between these two genomes is 2. Why?

