Algorithms for Genome Research

Pedro Feijão

Winter 2014/15

pfeijao@cebitec.uni-bielefeld.de

Preliminaries

 Wiki Page: http://wiki.techfak.uni-bielefeld.de/gi/Teaching

Organization

Genome Rearrangements

Lecture 1 - Comparative Genomics – Genome Rearrangements

Turnip (Speiserübe) vs. Cabbage (Weißkohl)

Although cabbages and turnips share a recent common ancestor, they look and taste different.

Genome Rearrangements - Background

- In the 1980s Jeffrey Palmer studied evolution of plant organelles by comparing mitochondrial genomes of cabbage and turnip.
- He found 99% similarity between genes.
- These surprisingly similar gene sequences differed in gene order.
- This study helped pave the way to analyzing genome rearrangements in molecular evolution.

Genome Rearrangements - Background

Reversal Example

Human vs. Mouse – X-chromosome

Pevzner, P.A. and Tesler, G. 2003. Genome rearrangements in mammalian evolution: Lessons from human and mouse genomic sequences. *Genome Res.* **13**: 13-26.

Human vs. Mouse – X-chromosome

How many rearrangements do we need to *transform* one genome into the other?

Human vs. Mouse – X-chromosome

X Chromosome history

Rat Consortium, Nature, 2004

Genome Rearrangements

- **Genome rearrangements** are evolutionary events that *shuffle* the genome.
- Important questions:
 - What is the minimum number of rearrangement operations needed to transform one genome into another? (Distance)
 - Can we find a rearrangement scenario with this minimum number of operations? (Sorting)
- Several types of **rearrangement operations** were studied:

Unsigned Reversal/Inversion

Signed Reversal/Inversion

Transposition

Block Interchange

Translocation (*multichromosomal* operation)

Genome Rearrangement Models

- Several models were proposed, allowing only one operation or combining two or more.
- Each different models results in a *combinatorial problem* that must be solved.
- Usually polinomially solvable, notable exceptions: Unsigned reversal and Transposition (NP-hard)

Reversal Models

- Since 1990, beginning with Sankoff in 1992, many papers have been devoted to the subject of reversal distance.
- The *unsigned reversal* distance is NP-hard (Caprara 1997)
- The signed reversal was solved polynomially by Hannenhalli and Pevzner in 1995.

Definitions

A signed permutation is a permutation on the set {0, 1, ..., n} in which every element has a sign. To simplify, permutations will always start with 0 and end with n. For example:

 $\pi_1 = (0 \quad -2 \quad -1 \quad 4 \quad 3 \quad 5 \quad -8 \quad 6 \quad 7 \quad 9)$

- A point *p* · *q* is a pair of consecutive elements in the permutation. In the above example, 0 · −2 and −2 · −1 are the first two points of *π*₁.
- When a point is in the form i · (i + 1) or -(i + 1) · -i it is called an (conserved) adjacency. Otherwise, it is a breakpoint.

Breakpoints

 $\pi_1 = (0 \quad -2 \quad -1 \quad 4 \quad 3 \quad 5 \quad -8 \quad 6 \quad 7 \quad 9)$

- In this permutation, there are *two* adjacencies, $-2 \cdot -1$ and $6 \cdot 7$, and *seven* breakpoints.
- The Breakpoint Distance is the number of breakpoints in a permutation, that is, distance from the identity:

$$Id = (0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9)$$

It is one the simplest measure of dissimilarity for genome rearrangements. *Notation*: $d_{BP}(\pi_1) = 7$.

For instance, the permutation

$$\pi_2 = (0 \quad -4 \quad -3 \quad -2 \quad -1 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9)$$

has 2 breakpoints, which means that π_2 is *closer* to the identity than π_1 .

Reversals

• An **reversal** of a permutation interval reverts the *order* and *sign* of all elements of the interval.

$$\pi_1 = \begin{pmatrix} 0 & -2 & -1 & 4 & 3 & 5 & -8 & 6 & 7 & 9 \end{pmatrix}$$

$$\pi_1' = \begin{pmatrix} 0 & -2 & -5 & -3 & -4 & 1 & -8 & 6 & 7 & 9 \end{pmatrix}$$

- The **reversal distance** is the minimum number of reversals needed to transform one permutation into another (usually the other permutation is the identity). Notation: $d_R(\pi_1)$.
- Finding such a scenario of reversals is called **sorting by reversals**.
 - Distance vs. Sorting

A reversal changes the number of breakpoints by at most 2.This gives a simple *lower bound* for the reversal distance:

$$d_R(\pi_1) \geq \frac{d_{\mathsf{BP}}(\pi_1)}{2}$$

 Using BP for lower bound is an useful *first approach* in many models.

Breakpoint Graph - Genomes as Graphs

- The BP graph of a is a very useful structure for studying rearrangement problems. Notation $BP(\pi)$.
- Vertices are the gene extremities (tail and head).
- Black edges between consecutive gene extremities (reality edges).
- Grey edges between consecutive gene extremities of the identity (desire edges).

Breakpoint Graph

When the input genome is the identity, the BP graph is composed of *n* trivial cycles.

- Sorting is equivalent to **increasing the cycles of the BP graph**.
- What happens in the BP graph when a reversal is applied?

BP Graph Elements

Two black edges in they same cycle are convergent if, when traversing the cycle both edges induce the same direction. Otherwise, they are divergent.

BP Graph Elements

A grey edge is **oriented** if its two incident black edges are divergent, otherwise the edge is **unoriented**.

Equivalently, a grey edge is oriented if it "contains" an odd number of vertices, and unoriented otherwise (even number of vertices).

BP Graph Elements

A cycle is oriented if it contains at least one oriented edge.
 Otherwise, it is unoriented.

Figure : Example of unoriented and oriented cycles.

BP Graph Components

Two cycles are connected if they have overlapping edges.
A component is a subset of connected cycles.

An oriented component has at least one oriented cycle, otherwise it is a unoriented component.

Inducing Reversals

 A reversal induced by a grey edge (equivalenty, by two black edges) reverses the elements that are *completely* contained in the edge.

Reversals and effect on cycles

- **1** Black Edges are on the **same cycle**:
 - **Type I**: Divergent edges: breaks the cycle. $\Delta C = +1$.
 - **Type II**: Convergent edges: $\Delta C = 0$, may change cycle orientation.
- 2 Black Edges on **different cycles**:
 - **Type III**: Merges the two cycles. $\Delta C = -1$.

So far, we only used **Type I** operations, to sort oriented components.

Type I - Same Cycle, divergent

Type I - Same Cycle, divergent

This reversal increases the number of cycles by one, $\Delta C = +1$.

Type II - Same Cycle, convergent

Type II - Same Cycle, convergent

Does not change number of cycles ($\Delta C = 0$), but the cycle is **oriented**.

Type III - Different Cycles

Type III - Different Cycles

Merges the two cycles, decreasing the number of cycles by one $(\Delta C = -1)$, but the new cycle is **oriented**.

Breakpoint Graph - Lower Bound

- A reversal changes the number of cycles of the BP graph at most by 1.
- Then, we have a **lower bound** for the reversal distance:

 $d_R(\pi) \ge N - C$

where C is the *number of cycles* in the BP graph of π .

- This bound is very tight, that is, usually it is exactly the reversal distance.
- When is this bound not *exactly* the distance?
 - When it is not possible to increase the cycles of BP with a reversal.
 - That occurs in the presence of **unoriented components**.

Unoriented components

In the example below, there is no reversal that increases the number of cycles.

- The lower bound is N C = 5 3 = 2, but the real distance is 3, because one extra reversal is needed to *orient* the unoriented cycle in the BP graph.
- Let's first consider the *good* cases, without unoriented components.

Sorting oriented components

- If there are only oriented components, there is always a reversal that increases the number of cycles.
- The problem is, after such a reversal, it is possible the some components become **unoriented**.

Bad reversal - Example

Increased number of cycles but created a bad component!

Finding "good" reversals

Is it possible to find a reversal that increases the number of cycles AND also does not create an unoriented component? YES!

Sorting oriented components

Theorem (Hannenhalli-Pevzer, 95)

If the graph $BP(\pi)$ has only **oriented components**, then

$$d_R(\pi) = N - C$$

where N is the number of elements of π and C is the number of cycles of $BP(\pi)$.

- This means that there is always at least one "good" reversal, that increases the number of cycles of $BP(\pi)$ and *does not create any unoriented component*.
- These are called **safe reversals**. How can we find them?