Algorithms for Genome Research

Pedro Feijão

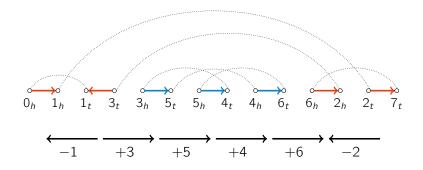
Lecture 2 - Sorting by Signed Reversals II

Summer 2014

pfeijao@cebitec.uni-bielefeld.de

Quick Recap

BP Graph, oriented and unoriented components:



Quick Recap

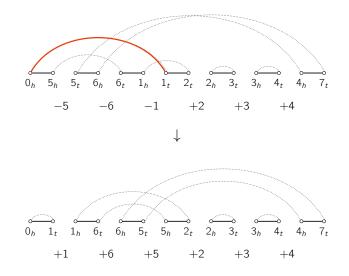
- Sorting is equivalent of increasing # of cycles in BP graph
 - In oriented (good) components at least 1 oriented edge this is always possible.
 - In *unoriented (bad) components*, not, so we need extra operations.

So we have the following **lower bound**:

$$d_R(\pi) \ge N - C$$

• There are also reversals that increase the number of cycles, but create unoriented components.

Bad reversal - Example



Increased number of cycles but created a bad component!

Finding "good" reversals

Is it possible to find a reversal that increases the number of cycles AND also does not create an unoriented component? YES!

Sorting oriented components

Theorem (Hannenhalli-Pevzer, 95)

If the graph $BP(\pi)$ has only **oriented components**, then

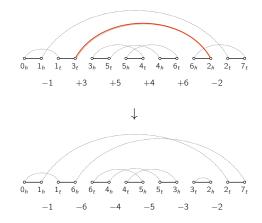
$$d_R(\pi) = N - C$$

where N is the number of elements of π and C is the number of cycles of $BP(\pi)$.

- This means that there is always at least one "good" reversal, that increases the number of cycles of $BP(\pi)$ and *does not create any unoriented component*.
- These are called **safe reversals**. How can we find them?

Safe reversals - Definitions

■ The score of a reversal is the number of *oriented edges* in the BP graph, *after* the application of the reversal.



The score of this reversal is **two**.

Safe reversals

- Safe reversals are reversals that increase the number of cycles of the BP graph by one and do not create new unoriented components.
- Can we always find safe reversals? Yes:

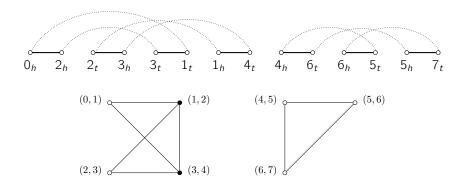
Theorem (Bergeron, 2001)

Among all possible oriented reversals, a reversal of maximal score is always safe.

 Algorithm: Apply maximal score reversals until all components are sorted.

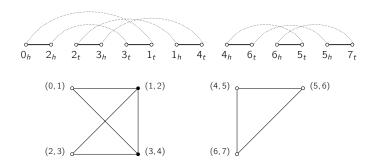
Finding safe reversals with the Overlap Graph

- The **overlap graph** $O(\pi)$ is a graph where:
 - Vertices are the grey edges of $BP(\pi)$. If the edge is oriented, the vertex is black, otherwise is white.
 - When two grey edges overlap, there is an edge between the corresponding vertices.



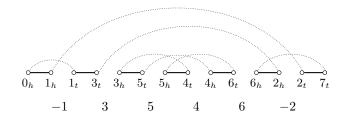
BP Graph vs Overlap Graph

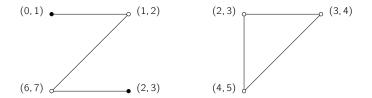
BP Graph	Overlap Graph
Component	Connected component
Oriented edge	Black vertex, odd degree
Unoriented edge	White vertex, even degree
Oriented component	Component with at least 1 black vertex
Unoriented component	Component with only white vertices



Another Example

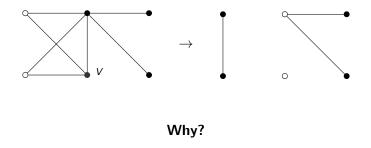
 $\pi = [-1 \ 3 \ 5 \ 4 \ 6 \ -2]$

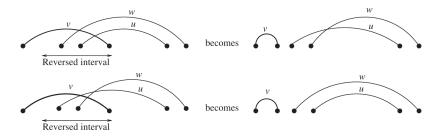




Effect of Reversal in the Overlap Graph

- A reversal *induced by a vertex v* is the reversal that is induced by the corresponding grey edge in the breakpoint graph.
- What happens in O(π) after applying an oriented reversal in a vertex v?
- **1** The subgraph induced by v and its neighbours is **complemented**.

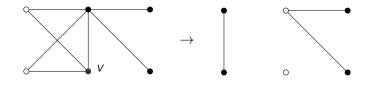




A. Bergeron/Discrete Applied Mathematics 146 (2005) 134-145

Effect of Reversal in the Overlap Graph

2 All neighbours of v have their orientation inverted.



Why?

Reversal Score with $O(\pi)$

We know how the overlap graph changes with a reversal, then it is possible to find an equation for the reversal score of any vertex v:

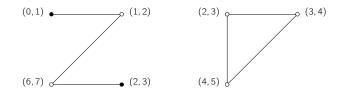
Definition (Reversal score)

The score of a reversal induced by a vertex v in the overlap graph is given by

$$s(v) = T + U - O - 1$$

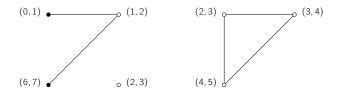
where T is the number of oriented vertices in the graph, U and O are the number of unoriented and oriented vertices adjacent to v, respectively.

Reversal Score - example



For v = (2, 3), we have T = 2, U = 1, O = 0. Therefore s(v) = T + U - O - 1 = 2.

After applying the reversal, we have the following graph:



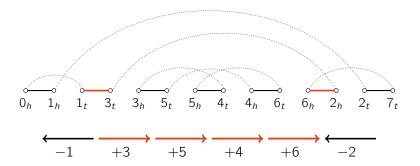
and we see that the score (number of oriented vertices) is indeed 2.

Sorting Example

$$\pi = (0 \quad 3 \quad 1 \quad 6 \quad 5 \quad -2 \quad 4 \quad 7)$$

Sorting Unoriented Components

- Let's analyse the effect that reversals have on cycles of $BP(\pi)$.
- Reversals change # of cycles by -1, 0, or +1.
- What happens exactly when we apply a reversal defined by two black edges?



java InversionVisualisation L2/recap1.txt

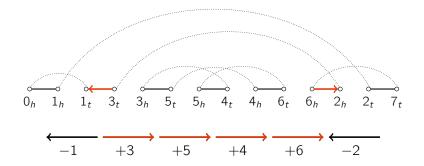
Reversals and effect on cycles

1 Edges are on the **same cycle**:

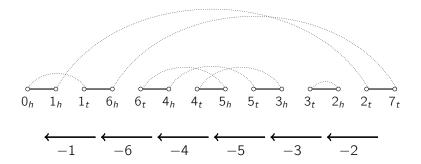
- **Type I**: Divergent edges: breaks the cycle. $\Delta C = +1$.
- **Type II**: Convergent edges: $\Delta C = 0$, may change cycle orientation.
- 2 Edges on different cycles:
 - **Type III**: Merges the two cycles. $\Delta C = -1$.

So far, we only used **Type I** operations, to sort oriented components.

Type I - Same Cycle, divergent

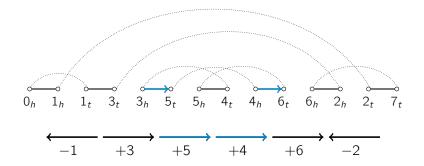


Type I - Same Cycle, divergent

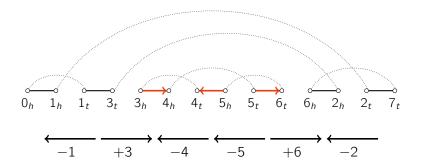


This reversal increases the number of cycles by one, $\Delta C = +1$.

Type II - Same Cycle, convergent

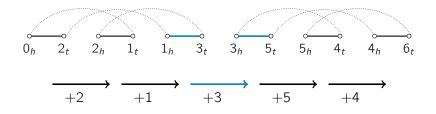


Type II - Same Cycle, convergent

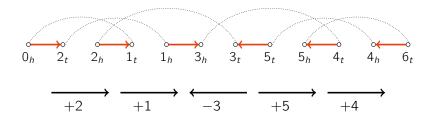


Does not change number of cycles ($\Delta C = 0$), but the cycle is **oriented**.

Type III - Different Cycles



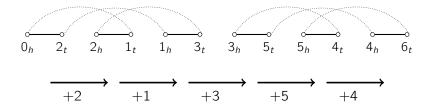
Type III - Different Cycles



Merges the two cycles, decreasing the number of cycles by one $(\Delta C = -1)$, but the new cycle is **oriented**.

Extra Operations

How many extra operations do we need to sort unoriented components?



java InversionVisualisation L2/2unoriented.txt

Extra Operations

 Applying one reversal in each cycle, orients both cycles, with 2 extra operations:

$$d = N - C + 2$$

 Applying one reversal merging both cycles, creates one new oriented cycle. Only one operation, but also one less cycle:

$$d = N - (C - 1) + 1 = N - C + 2$$

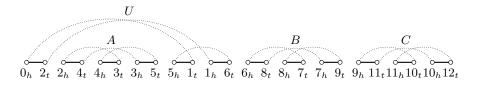
In both cases, 2 extra operations. Does this mean that

$$d = N - C + K$$

where *K* is the number of unoriented components? **Almost...**

Definitions

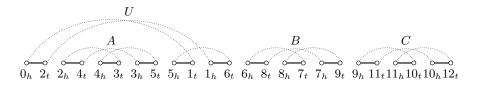
A Component U separates two other components A and B if any edge from a vertex from A to B would cross an edge of U.



U separates A and B. (Also A and C).

Definitions

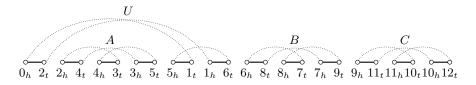
 A hurdle is an unoriented component that does not separate other two unoriented components.



■ *A*,*B* and *C* are hurdles.

Definitions

 A super-hurdle is a hurdle that, when removed, causes the creation of a new hurdle.



• A is a super-hurdle. B and C are called *simple* hurdles.

 Why are these definitions important? Because except for one very rare special case, we have

$$d = N - C + H$$

where H is the number of hurdles.

BP Graph – Component Types



Reversal Types

- **Type I**: **Oriented Reversal**: $\Delta C = +1$.
 - Edges on same cycle, divergent.
- **Type II**: **Hurdle Cutting**: $\Delta C = 0$, $\Delta H = -1$.
 - Edges on same cycle (hurdle), convergent.
- **Type III: Hurdle Merging:** $\Delta C = -1$, $\Delta H = -2$.
 - Edges on different cycles (hurdles).

Separating component

- Why a separating component is not a Hurdle?
- Because it can be oriented by a Hurdle Merging of two hurdles that is separates.

java InversionVisualisation L2/sep-hur-example.txt

Super-hurdles: Problems might occur

- Cutting a super-hurdle is bad.
- Merging hurdles that are separated from a super-hurdle can cause the separating component to become a hurdle.

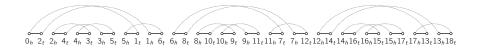
java InversionVisualisation L2/sep-hur-example.txt

Super-hurdles: Problems might occur

- How to avoid those problems?
- When there is an odd *#* of hurdles, cut a simple hurdle.
- When there is an even *#* of hurdles, merge opposite hurdles.
- Can we always do that? No... meet the fortress!

Fortresses

 A fortress is a permutation that has an odd number of hurdles, and all are super-hurdles.



In this kind of permutation, there is no way to avoid an **extra operation**, a hurdle cut that creates a new hurdle.

java InversionVisualisation L2/fortress.txt

Reversal Distance - Complete equation

Theorem (Reversal Distance, HP 95) The reversal distance of a permutation π is given by

$$d(\pi) = N - C + H + F$$

where:

- *N* is the number of genes
- *C* is the number of cycles in $BP(\pi)$
- *H* the number of hurdles in $BP(\pi)$

$$F = \begin{cases} 1, & \pi \text{ is a fortress} \\ 0, & otherwise \end{cases}$$

Reversal Distance - Complete Algorithm

- 1: **procedure** ReversalSort(π)
- while $\pi \neq$ identity do 2.
- if \exists oriented component in $BP(\pi)$ then 3. 4:
 - \rightarrow Apply a max score oriented reversal Type I
- else if even # of hurdles then 5:
 - \rightarrow Apply a Hurdle Merging on opposite hurdles Type III
- else if \exists simple hurdle then 7.
 - \rightarrow Apply a Hurdle Cutting on a simple hurdle Type II
- else 9:

6:

8.

- \rightarrow Merge any two super hurdles (Fortress) 10:
- end if 11.
- end while 12.
- 13: end procedure