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Genome Rearrangement Scenarios

Finding genome rearrangement scenarios between two genomes is
usually easy.
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Genome Rearrangement Scenarios

What if we have more genomes? Can we find an evolutionary
scenario?

Ideally, we want a rearrangement phylogeny, explaining ancestral
configurations and rearrangement scenarios.

For instance, something like:
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Pevzner, Computational Molecular Biology: An Algorithmic Approach (2000)
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Multiple Genome Rearrangement

The complexity of many combinatorial problems increases when
the number of objects increase from 2 to 3.

Genome Rearrangement is no exception: when comparing 3 (or
more) genomes, most rearrangement models are NP-hard.
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Multiple Genome Rearrangement

We are looking for the most parsimonious phylogenetic tree. More
formally:

Multiple Genome Rearrangement Problem – MGR
Given n genomes, find a tree T with the n genomes as leaf nodes and
assign ancestral genomes to internal nodes of T such that the tree is
optimal, i.e., the sum of rearrangement distances over all edges of the
tree is minimal.

This problem is also called the Big Parsimony Problem.

In the Small Parsimony Problem, a tree T is given, and only the
ancestral assignment is needed.

The simplest form of the MGR is the median problem, when three
input genomes are considered.
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Genome Median Problem
Given three genomes A, B and C, and a genome distance measure d ,
find a genome M where the median score

s(M) = d(A,M) + d(B,M) + d(C,M)

is minimized.

M

A

B

C

This can be used as a subproblem to solve the Small Parsimony, iteratively
finding the median in the internal nodes of the tree until convergence is
achieved.
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Genome Median Problem

Unfortunately, the median problem is NP-hard for most rearrangement
distances, except for breakpoint distances in some cases.

Unichromosomal BP: NP-hard
Linear Genomes: Pe’er and Shamir, 1998
Circular Genomes: Bryant, 1998

Reversal: NP-hard (Caprara, 1997)

DCJ: NP-hard (Caprara, 1997; Tannier et al. 2009)

Multichromosomal BP: O(n3) (Tannier et al. 2009); O(n
√
n)

(Kováč, 2013)

Single-Cut-or-Join: O(n) (Feijão and Meidanis, 2009)
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Multichromosomal BP Distance

Proposed by Tannier et al., in 2009.

Similarly to the DCJ model, genomes are defined as sets of
adjacencies and telomeres, given a gene set A.
For instance, given A = {1, 2, 3, 4, 5, 6, 7}, we can define the
genome A = {1t , 1h3t , 3h4h, 4t , 2t , 2h5t , 5h, 6t , 6h7t , 7h}

1t 1h
1

3t 3h
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4h 4t
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Multichromosomal BP Distance

Multichromosomal BP Distance – Tannier et al., 2009
Given genomes A and B, the multichromosomal BP distance is defined as

dBP(A,B) = N − A−
T

2

where N is the number of genes, A is the number of common adjacencies
and T the number of common telomeres in A and B.

Alternatively, using the Adjacency Graph:

dBP(A,B) = N − C2 −
P1
2

where N is the number of genes, C2 is the number of cycles of lenght 2
and T the number of paths of lenght 1 in AG(A,B).
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Median Problem - BP Distance

Given a gene set A, consider a graph G whose vertex set has two
vertices, x and tx , for each extremity x of the genes in A.
There is an edge between x and tx , for all extremities x , and also
and edge between all pairs of x vertices and all pairs of tx vertices.

For instance, for A = {1, 2, 3} we have this graph:

Clique

Clique

t1t t1h t2t t2h t3t t3h

1t 1h 2t 2h 3t 3h

Property: Perfect Matching in G ⇐⇒ Genome in A.
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Example

For gene set A = {1, 2, 3}, and genome A = {1t , 1h2t , 2h3t , 3h} we have
the following matching:

t1t t1h t2t t2h t3t t3h

1t 1h 2t 2h 3t 3h

“Horizontal edges” → Adjacencies in the genome.

“Vertical edges” → Telomeres in the genome.
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Median Problem - BP Distance

Now consider the same graph G, in an weighted form: Given genomes A,
B and C, assign weights to the edges of G in this form:

Adjacency weights: for each adjacency edge (x, y), the weight is
# of genomes that have adjacency xy (w = 0, 1, 2 or 3).

Telomere weights: for each telomere edge (x, tx), weight is # of
genomes that have telomere x divided by 2 (w = 0, 1/2, 1 or 3/2).

Any other edge has weight 0.
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Matching Weight and Median Score

Claim
Consider three genomes A, B and C, and the weighted graph G. For any
genome M, the corresponding weighted matching in G has total weight

w = 3N − (dBP(A,M) + dBP(B,M) + dBP(C,M)) = 3N − s(M)

where s(M) is the median score of M.

Proof?

Therefore, solving the maximum weight perfect matching problem in
G (can be done in O(n3)), we find a median with minimum score, solving
the median problem.
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