Algorithms for Genome Rearrangements

Pedro Feijão

Lecture 3 - Sorting by Signed Reversals
Summer 2015
pfeijao@cebitec.uni-bielefeld.de

Definitions

- A signed permutation is a permutation on the set $\{0,1, \ldots, n\}$ in which every element has a sign. To simplify, permutations will always start with 0 and end with n. For example:

$$
\pi_{1}=\left(\begin{array}{llllllllll}
0 & -2 & -1 & 4 & 3 & 5 & -8 & 6 & 7 & 9
\end{array}\right)
$$

- A point $p \cdot q$ is a pair of consecutive elements in the permutation. In the above example, $0 \cdot-2$ and $-2 \cdot-1$ are the first two points of π_{1}.
- When a point is in the form $i \cdot(i+1)$ or $-(i+1) \cdot-i$ it is called an (conserved) adjacency. Otherwise, it is a breakpoint.

Breakpoints

$$
\pi_{1}=\left(\begin{array}{llllllllll}
0 & -2 & -1 & 4 & 3 & 5 & -8 & 6 & 7 & 9
\end{array}\right)
$$

■ In this permutation, there are two adjacencies, $-2 \cdot-1$ and $6 \cdot 7$, and seven breakpoints.

- The Breakpoint Distance is the number of breakpoints in a permutation, that is, distance from the identity:

$$
\mathrm{Id}=\left(\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}\right)
$$

- It is one the simplest measure of dissimilarity for genome rearrangements. Notation: $d_{\mathrm{BP}}\left(\pi_{1}\right)=7$.

For instance, the permutation

$$
\pi_{2}=\left(\begin{array}{llllllllll}
0 & -4 & -3 & -2 & -1 & 5 & 6 & 7 & 8 & 9
\end{array}\right)
$$

has 2 breakpoints, which means that π_{2} is closer to the identity than π_{1}.

Reversals

- An reversal of a permutation interval reverts the order and sign of all elements of the interval.

$$
\left.\begin{array}{l}
\pi_{1}=\left(\begin{array}{llllllllll}
0 & -2
\end{array} \bullet-1\right. \\
\bullet
\end{array}\right)
$$

- The reversal distance is the minimum number of reversals needed to transform one permutation into another (usually the other permutation is the identity). Notation: $d_{R}\left(\pi_{1}\right)$.
- Finding such a scenario of reversals is called sorting by reversals.
- Distance vs. Sorting

BP vs. Reversals

- A reversal changes the number of breakpoints by at most 2 .
- This gives a simple lower bound for the reversal distance:

$$
d_{R}\left(\pi_{1}\right) \geq \frac{d_{\mathrm{BP}}\left(\pi_{1}\right)}{2}
$$

- Using BP for lower bound is an useful first approach in many models.

Breakpoint Graph - Genomes as Graphs

- The BP graph of a is a very useful structure for studying rearrangement problems. Notation $B P(\pi)$.
- Vertices are the gene extremities (tail and head).

■ Black edges between consecutive gene extremities (reality edges).

- Grey edges between consecutive gene extremities of the identity (desire edges).

Breakpoint Graph

- When the input genome is the identity, the BP graph is composed of n trivial cycles.

- Sorting is equivalent to increasing the cycles of the BP graph.

■ What happens in the BP graph when a reversal is applied?

BP Graph Elements

- Two black edges in they same cycle are convergent if, when traversing the cycle both edges induce the same direction. Otherwise, they are divergent.

BP Graph Elements

- A grey edge is oriented if its two incident black edges are divergent, otherwise the edge is unoriented.

- Equivalently, a grey edge is oriented if it "contains" an odd number of vertices, and unoriented otherwise (even number of vertices).

BP Graph Elements

- A cycle is oriented if it contains at least one oriented edge. Otherwise, it is unoriented.

Figure: Example of unoriented and oriented cycles.

BP Graph Components

- Two cycles are connected if they have overlapping edges.
- A component is a subset of connected cycles.

- An oriented component has at least one oriented cycle, otherwise it is a unoriented component.

Inducing Reversals

- A reversal induced by a grey edge (equivalenty, by two black edges) reverses the elements that are completely contained in the edge.

Reversals and effect on cycles

1 Black Edges are on the same cycle:

- Type I: Divergent edges: breaks the cycle. $\Delta C=+1$.
- Type II: Convergent edges: $\Delta C=0$, may change cycle orientation.

2 Black Edges on different cycles:

- Type III: Merges the two cycles. $\Delta C=-1$.

So far, we only used Type I operations, to sort oriented components.

Type I - Same Cycle, divergent

Type I - Same Cycle, divergent

This reversal increases the number of cycles by one, $\Delta C=+1$.

Type II - Same Cycle, convergent

Type II - Same Cycle, convergent

Does not change number of cycles $(\Delta C=0)$, but the cycle is oriented.

Type III - Different Cycles

Type III - Different Cycles

Merges the two cycles, decreasing the number of cycles by one $(\Delta C=-1)$, but the new cycle is oriented.

Breakpoint Graph - Lower Bound

- A reversal changes the number of cycles of the BP graph at most by 1 .
- Then, we have a lower bound for the reversal distance:

$$
d_{R}(\pi) \geq N-C
$$

where C is the number of cycles in the BP graph of π.
■ This bound is usually tight, that is, most of the times it is exactly the reversal distance.

- When is this bound not exactly the distance?
- When it is not possible to increase the cycles of BP with a reversal.
- That occurs in the presence of unoriented components.

Unoriented components

- In the example below, there is no reversal that increases the number of cycles.

- The lower bound is $N-C=5-3=2$, but the real distance is 3 , because one extra reversal is needed to orient the unoriented cycle in the BP graph.
- Let's first consider the good cases, without unoriented components.

Sorting oriented components

- If there are only oriented components, there is always a reversal that increases the number of cycles.
- The problem is, after such a reversal, it is possible the some components become unoriented.

Bad reversal - Example

- Increased number of cycles but created a bad component!

Finding "good" reversals

- Is it possible to find a reversal that increases the number of cycles AND also does not create an unoriented component? YES!

Sorting oriented components

Theorem (Hannenhalli-Pevzer, 95)

If the graph $B P(\pi)$ has only oriented components, then

$$
d_{R}(\pi)=N-C
$$

where N is the number of elements of π and C is the number of cycles of $B P(\pi)$.

■ This means that there is always at least one "good" reversal, that increases the number of cycles of $B P(\pi)$ and does not create any unoriented component.
■ These are called safe reversals. How can we find them?

Safe reversals - Definitions

- The score of a reversal is the number of oriented edges in the BP graph, after the application of the reversal.

The score of this reversal is two.

Safe reversals

- Safe reversals are reversals that increase the number of cycles of the BP graph by one and do not create new unoriented components.
■ Can we always find safe reversals? Yes:

```
Theorem (Bergeron, 2001)
Among all possible oriented reversals, a reversal of maximal score is always safe.
```

■ Algorithm: Apply maximal score reversals until all components are sorted.

Finding safe reversals with the Overlap Graph

- The overlap graph $O(\pi)$ is a graph where:
- Vertices are the grey edges of $B P(\pi)$. If the edge is oriented, the vertex is black, otherwise is white.
- When two grey edges overlap, there is an edge between the corresponding vertices.

BP Graph vs Overlap Graph

BP Graph	Overlap Graph
Component	Connected component
Oriented edge	Black vertex, odd degree
Unoriented edge	White vertex, even degree
Oriented component	Component with at least 1 black vertex
Unoriented component	Component with only white vertices

Another Example

$$
\pi=\left[\begin{array}{llllll}
-1 & 3 & 5 & 4 & 6 & -2
\end{array}\right]
$$

Effect of Reversal in the Overlap Graph

- A reversal induced by a vertex v is the reversal that is induced by the corresponding grey edge in the breakpoint graph.
- What happens in $O(\pi)$ after applying an oriented reversal in a vertex v ?

1 The subgraph induced by v and its neighbours is complemented.

Why?

A. Bergeron/Discrete Applied Mathematics 146 (2005) 134-145

Effect of Reversal in the Overlap Graph

2 All neighbours of v have their orientation inverted.

Why?

Reversal Score with $O(\pi)$

We know how the overlap graph changes with a reversal, then it is possible to find an equation for the reversal score of any vertex v :

Definition (Reversal score)

The score of a reversal induced by a vertex v in the overlap graph is given by

$$
s(v)=T+U-O-1
$$

where T is the number of oriented vertices in the graph, U and O are the number of unoriented and oriented vertices adjacent to v, respectively.

Reversal Score - example

For $v=(2,3)$, we have $T=2, U=1, O=0$. Therefore $s(v)=T+U-O-1=2$.
After applying the reversal, we have the following graph:

and we see that the score (number of oriented vertices) is indeed 2.

Sorting Example

$$
\pi=\left(\begin{array}{llllllll}
0 & 3 & 1 & 6 & 5 & -2 & 4 & 7
\end{array}\right)
$$

