Algorithms for Genome Rearrangements

Pedro Feijão

Lecture 3 – Sorting by Signed Reversals

Summer 2015

pfeijao@cebitec.uni-bielefeld.de

Definitions

■ A **signed permutation** is a permutation on the set $\{0, 1, ..., n\}$ in which every element has a *sign*. To simplify, permutations will always start with 0 and end with *n*. For example:

$$\pi_1 = (0 \quad -2 \quad -1 \quad 4 \quad 3 \quad 5 \quad -8 \quad 6 \quad 7 \quad 9)$$

- A **point** $p \cdot q$ is a pair of consecutive elements in the permutation. In the above example, $0 \cdot -2$ and $-2 \cdot -1$ are the first two points of π_1 .
- When a point is in the form $i \cdot (i+1)$ or $-(i+1) \cdot -i$ it is called an **(conserved) adjacency**. Otherwise, it is a **breakpoint**.

Breakpoints

$$\pi_1 = (0 \quad -2 \quad -1 \quad 4 \quad 3 \quad 5 \quad -8 \quad 6 \quad 7 \quad 9)$$

- In this permutation, there are *two* adjacencies, $-2 \cdot -1$ and $6 \cdot 7$, and *seven* breakpoints.
- The **Breakpoint Distance** is the number of breakpoints in a permutation, that is, distance from the **identity**:

$$Id = (0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9)$$

It is one the simplest measure of dissimilarity for genome rearrangements. *Notation*: $d_{BP}(\pi_1) = 7$.

For instance, the permutation

$$\pi_2 = (0 \quad -4 \quad -3 \quad -2 \quad -1 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9)$$

has 2 breakpoints, which means that π_2 is *closer* to the identity than π_1 .

Reversals

■ An **reversal** of a permutation interval reverts the *order* and *sign* of all elements of the interval.

$$\pi_1 = \begin{pmatrix} 0 & -2 & -1 & 4 & 3 & 5 & -8 & 6 & 7 & 9 \end{pmatrix}$$
 $\pi'_1 = \begin{pmatrix} 0 & -2 & -5 & -3 & -4 & 1 & -8 & 6 & 7 & 9 \end{pmatrix}$

- The reversal distance is the minimum number of reversals needed to transform one permutation into another (usually the other permutation is the identity). Notation: $d_R(\pi_1)$.
- Finding such a scenario of reversals is called **sorting by reversals**.
 - Distance vs. Sorting

BP vs. Reversals

- A reversal changes the number of breakpoints by at most 2.
- This gives a simple *lower bound* for the reversal distance:

$$d_R(\pi_1) \geq \frac{d_{\mathsf{BP}}(\pi_1)}{2}$$

Using BP for lower bound is an useful first approach in many models.

Breakpoint Graph - Genomes as Graphs

- The BP graph of a is a very useful structure for studying rearrangement problems. Notation $BP(\pi)$.
- **Vertices** are the gene extremities (tail and head).
- Black edges between consecutive gene extremities (reality edges).
- **Grey edges** between consecutive gene extremities of the identity (desire edges).

Breakpoint Graph

■ When the input genome is the identity, the BP graph is composed of *n* trivial cycles.

$$0_{h} \quad 1_{t} \quad 1_{h} \quad 2_{t} \quad 2_{h} \quad 3_{t} \quad 3_{h} \quad 4_{t} \quad 4_{h} \quad 5_{t} \quad 5_{h} \quad 6_{t} \quad 6_{h} \quad 7_{t}$$

$$+1 \quad +2 \quad +3 \quad +4 \quad +5 \quad +6$$

- Sorting is equivalent to increasing the cycles of the BP graph.
- What happens in the BP graph when a reversal is applied?

BP Graph Elements

Two black edges in they same cycle are convergent if, when traversing the cycle both edges induce the same direction. Otherwise, they are divergent.

BP Graph Elements

A grey edge is oriented if its two incident black edges are divergent, otherwise the edge is unoriented.

■ Equivalently, a grey edge is **oriented** if it "contains" an odd number of vertices, and **unoriented** otherwise (even number of vertices).

BP Graph Elements

A cycle is **oriented** if it contains at least one oriented edge.
 Otherwise, it is **unoriented**.

Figure: Example of unoriented and oriented cycles.

BP Graph Components

- Two cycles are connected if they have overlapping edges.
- A **component** is a subset of connected cycles.

■ An **oriented component** has at least one oriented cycle, otherwise it is a **unoriented component**.

Inducing Reversals

A reversal **induced** by a grey edge (equivalenty, by two black edges) reverses the elements that are *completely* contained in the edge.

Reversals and effect on cycles

- 1 Black Edges are on the **same cycle**:
 - **Type I**: Divergent edges: breaks the cycle. $\Delta C = +1$.
 - **Type II**: Convergent edges: $\Delta C = 0$, may change cycle orientation.
- 2 Black Edges on **different cycles**:
 - **Type III**: Merges the two cycles. $\Delta C = -1$.

So far, we only used **Type I** operations, to sort oriented components.

Type I - Same Cycle, divergent

Type I - Same Cycle, divergent

This reversal increases the number of cycles by one, $\Delta C = +1$.

Type II - Same Cycle, convergent

Type II - Same Cycle, convergent

Does not change number of cycles ($\Delta C = 0$), but the cycle is **oriented**.

Type III - Different Cycles

Type III - Different Cycles

Merges the two cycles, decreasing the number of cycles by one $(\Delta C = -1)$, but the new cycle is **oriented**.

Breakpoint Graph - Lower Bound

- A reversal changes the number of cycles of the BP graph at most by 1.
- Then, we have a **lower bound** for the reversal distance:

$$d_R(\pi) \geq N - C$$

where C is the *number of cycles* in the BP graph of π .

- This bound is usually **tight**, that is, most of the times it is exactly the reversal distance.
- When is this bound not *exactly* the distance?
 - When it is not possible to increase the cycles of BP with a reversal.
 - That occurs in the presence of **unoriented components**.

Unoriented components

In the example below, there is no reversal that increases the number of cycles.

- The lower bound is N C = 5 3 = 2, but the real distance is 3, because one extra reversal is needed to *orient* the unoriented cycle in the BP graph.
- Let's first consider the *good* cases, without unoriented components.

Sorting oriented components

- If there are only oriented components, there is always a reversal that increases the number of cycles.
- The problem is, after such a reversal, it is possible the some components become **unoriented**.

Bad reversal - Example

• Increased number of cycles but created a bad component!

Finding "good" reversals

■ Is it possible to find a reversal that increases the number of cycles AND also does not create an unoriented component? **YES!**

Sorting oriented components

Theorem (Hannenhalli-Pevzer, 95)

If the graph $BP(\pi)$ has only **oriented components**, then

$$d_R(\pi) = N - C$$

where N is the number of elements of π and C is the number of cycles of $BP(\pi)$.

- This means that there is always at least one "good" reversal, that increases the number of cycles of $BP(\pi)$ and does not create any unoriented component.
- These are called safe reversals. How can we find them?

Safe reversals - Definitions

■ The **score** of a reversal is the number of *oriented edges* in the BP graph, *after* the application of the reversal.

The score of this reversal is **two**.

Safe reversals

- Safe reversals are reversals that increase the number of cycles of the BP graph by one and do not create new unoriented components.
- Can we always find safe reversals? Yes:

Theorem (Bergeron, 2001)

Among all possible oriented reversals, a reversal of maximal score is always safe.

 Algorithm: Apply maximal score reversals until all components are sorted.

Finding safe reversals with the Overlap Graph

- The **overlap graph** $O(\pi)$ is a graph where:
 - Vertices are the grey edges of $BP(\pi)$. If the edge is oriented, the vertex is black, otherwise is white.
 - When two grey edges overlap, there is an edge between the corresponding vertices.

BP Graph vs Overlap Graph

BP Graph	Overlap Graph
Component	Connected component
Oriented edge	Black vertex, odd degree
Unoriented edge	White vertex, even degree
Oriented component	Component with at least 1 black vertex
Unoriented component	Component with only white vertices

Another Example

$$\pi = [-1 \ 3 \ 5 \ 4 \ 6 \ -2]$$

Effect of Reversal in the Overlap Graph

- A reversal *induced by a vertex v* is the reversal that is induced by the corresponding grey edge in the breakpoint graph.
- What happens in $O(\pi)$ after applying an oriented reversal in a vertex v?
- The subgraph induced by *v* and its neighbours is **complemented**.

Why?

A. Bergeron/Discrete Applied Mathematics 146 (2005) 134-145

Effect of Reversal in the Overlap Graph

All neighbours of v have their orientation inverted.

Why?

Reversal Score with $O(\pi)$

We know how the overlap graph changes with a reversal, then it is possible to find an equation for the reversal score of any vertex v:

Definition (Reversal score)

The score of a reversal induced by a vertex v in the overlap graph is given by

$$s(v) = T + U - O - 1$$

where T is the number of oriented vertices in the graph, U and O are the number of unoriented and oriented vertices adjacent to v, respectively.

Reversal Score - example

For v = (2, 3), we have T = 2, U = 1, O = 0. Therefore s(v) = T + U - O - 1 = 2.

After applying the reversal, we have the following graph:

and we see that the score (number of oriented vertices) is indeed 2.

Sorting Example

$$\pi = (0 \quad 3 \quad 1 \quad 6 \quad 5 \quad -2 \quad 4 \quad 7)$$