(((A,C)1,(B,D)2)3,E)4;

Exercises – Phylogenetics

Universität Bielefeld, WS 2015/2016, Dipl.-Inform. Damianos Melidis, B. Sc. Kevin Lamkiewicz

http://wiki.techfak.uni-bielefeld.de/gi/Teaching/2015 winter/Phylogenetikal/teaching/2015 winter/Phy

Exercise List 1 — 20.10.2015

Due to: 27.10.2015

Exercise 1

Write down your name and the name of your tutor on each solution. If you have to use multiple sheets, connect them with a staple. This "exercise" applies to every exercise list.

Exercise 2 Properties of trees.

Let there be n statements. You have to show:

 $1 <=> 2 <=> 3 <=> \cdots <=> n - 1 <=> n$

Instead of doing both directions of the proof you can also show:

 $1 => 2 => 3 => \dots => n => 1$

Because of this circular argumentation the other direction is saved. Let's try out this proof technique:

Let G = (V, E) be a non-directional graph. Proof that following statements are equivalent.

- (a) G is a tree.(Use the definition of a tree given by the lecture notes.)
- (b) Every pair of nodes $\{v_1, v_2\} \in {\binom{V}{2}}$ is connected by an unique, simple path.
- (c) G is minimal connected, i.e for all $e \in E$: if e is removed the resulting graph $G' = (V, E \setminus \{e\})$ is not connected.
- (d) G is connected and |E| = |V| 1.
- (e) G is free of cycles and |E| = |V| 1.
- (f) is maximal free of cycles, i.e. for all $e \in \binom{V}{2} \setminus E$: if e is added to E, the resulting graph $G' = (V, E \cup \{e\})$ contains a cycle.

Hint: Some parts are proper for a direct proof, other parts for a proof by contradiction and sometimes it makes sense to show $\neg(j) \Rightarrow \neg(i)$ instead of $(i) \Rightarrow (j)$.

Exercise 3 Rooted and unrooted trees.

Consider this tree:

(a) Add a new root at the edge {2,B}, draw the resulting tree and write the corresponding NEWICK notation.

(b) Draw the tree to the following NEWICK notation:

To make that task a little bit easier we split the steps of the proof according to your registration numbers (Matrikelnummer). Take the **last digit** of your registration number and do the two parts of the proof.

Digit	Parts of proof.	
0	$(a)\Rightarrow(b),$	$(e) \Rightarrow (f)$
1	$(\mathbf{b}){\Rightarrow}(\mathbf{c}),$	$(f) \Rightarrow (a)$
2	$(c) \Rightarrow (d),$	$(a) \Rightarrow (b)$
3	$(\mathbf{d}) {\Rightarrow} (\mathbf{e}),$	$(b) \Rightarrow (c)$
4	$(e) \Rightarrow (f),$	$(c) \Rightarrow (d)$
5	$(f) \Rightarrow (a),$	$(d) \Rightarrow (e)$
6	$(a){\Rightarrow}(b),$	$(e) \Rightarrow (f)$
7	$(\mathbf{b}){\Rightarrow}(\mathbf{c}),$	$(f) \Rightarrow (a)$
8	$(c) \Rightarrow (d),$	$(a) \Rightarrow (b)$
9	$(\mathbf{d}){\Rightarrow}(\mathbf{e}),$	$(b) \Rightarrow (c)$

(0 Points)

(2 Points)

(2 Points)

Exercise 4 NEWICK notation and rooted trees.

Draw the trees to the following NEWICK notations:

- ((A,B),C,(D,E));
- (A,((D,B),(E,C)));
- (A,((B,D),(E,C)));
- (((C,E),(B,D)),A);

Point out differences and similarites between the trees.

(2 Points)