Exercises – Phylogenetics

Universität Bielefeld, WS 2015/2016, Dipl.-Inform. Damianos Melidis · B. Sc. Kevin Lamkiewicz http://wiki.techfak.uni-bielefeld.de/gi/Teaching/2015winter/Phylogenetik

Exercise List 10 — 12.01.2016

Due to: 19.01.2016

Exercise 1 Programming exercise: Splitstree.

Implement a function that calculates the "isolation index" for the *split decomposition*: For two given sets J and K calculate $\alpha_{J,K}(d)$ w.r.t a matrix d:

$$\alpha_{J,K}(d) = \frac{1}{2} \min_{\substack{i,j \in J \\ k,l \in K}} \left(\max\{d_{ij} + d_{kl}, d_{ik} + d_{jl}, d_{il} + d_{jk}\} - d_{ij} - d_{kl} \right)$$

Send a version of your program to your TA^1 and describe how to use the program. Make it as easy as possible to calculate all the α in task 3. You'll find another matrix and some solutions on the back of this sheet if you want to test your implementation.

Exercise 2 Calculation of d-Splits.

Look at the algorithm that calculates d-Splits (lecture notes, page 62).

- (a) Explain: If a split J, K is extended by one taxon $(J', K, \text{ where } J' := J \cup \{i\}), \alpha_{J',K}$ does not have to be recalculated completely to decide whether J', K is a valid split $(\alpha_{J',K} \neq 0)$. A complete recalculation would take $\mathcal{O}(n^4)$. Without the recalculation it is possible to do in $\mathcal{O}(n^3)$. How?
- (b) Explain the running time of \$\mathcal{O}(n^6)\$.
 Hint: There are \$\begin{pmatrix} n \ 2 \end{pmatrix}\$ splits for n taxa maximally (you don't need to show this.)

Exercise 3 Splitstree.

Consider the following distance matrix and the corresponding splitstree:

	A	B	C	D	E
A:	0	9	13	12	13
B:		0	12	7	15
C:			0	6	10
D:				0	12
E:					0

Calculate the length of the edges a bis j in the given network.

(Hint: $a = \alpha_{\{A\},\{B,C,D,E\}}, g = \alpha_{\{A,E\},\{B,C,D\}}, \text{etc.}$) Solve this exercise with your implementation. You can also use the software *Splitstree* (www.splitstree.org) describe the format of your input and your proceeding.

Turn around!

 1 jeschulz@techfak.uni... dmelidis@cebitec.uni...

(4 Points)

(4 Points)

(3 Points)

Exercise 4 Comparison of methods.

(2 Points)

If one uses the *Neighbor Joining* algorithm on the distance matrix from task 3, the result is the following tree. Compare the tree with the result from task 3.

Neighbor Joining-Tree:

Matrix and some solution to test your implementation in task 1 (optional!):

A	B	C	D	E	!
A: 0	6	8	5	10)
B:	0	5	8	10)
C:		0	4	8	5
D:			0	7	•
E:				0)
				-	
J	K				$\alpha_{J,K}$
$\overline{\{A, B, C, E\}}$	$\{L$)}			0.5
$\{A, B, D, E\}$	$\{C$	'}			0.5
$\{A, B, E\}$	$\{C$	$^{\prime}, D\}$			0.5
$\{A, C, D, E\}$	$\{B$?} [`]			1.5
$\{A, C, E\}$	$\{B$	$\{D\}$			0.0
$\{A, D, E\}$	$\{B$	C			1.5
$\{A, E\}$	$\{B$	C, C,	D		0.0
$\{B, C, D, E\}$	À	}	-		1.5
$\{B, C, E\}$	ÌA	,D			1.0
$\{B, D, E\}$	$\{A$	$, C \}$			0.0
$\{B,E\}$	$\{A$, C,	$D\}$		0.0
$\{C, D, E\}$	À	, B			2.0
$\{C, E\}$	À	, B,	D		0.0
$\{D, E\}$	À	, B,	C		0.0
${E}$	ÌΑ	, B,	C, D	}	4.5