Exercises - Phylogenetics

Universität Bielefeld, WS 2015/2016,
Dipl.-Inform. Damianos Melidis • B. Sc. Kevin Lamkiewicz
http://wiki.techfak.uni-bielefeld.de/gi/Teaching/2015winter/Phylogenetik

Exercise List 11 — 19.01.2016

Due to: 26.01.2016

Exercise 1 Revision: Basics on Probability.

Let $\Omega=\{1,2, \ldots, 6\}$ be the sample space of a die with the uniform distribution Pr and $\left(\Omega_{2}, \operatorname{Pr}_{2}\right)=$ $(\Omega, \operatorname{Pr}) \times(\Omega, \operatorname{Pr})$ be the sample space of two independently thrown dices. We can distinguish between the two dices (let's call them dice 1 and dice 2) and we write the elementary events as $\left(e_{1}, e_{2}\right)$. Solve the probabilities for the following events in Ω_{2} :
(a) Dice 2 shows a 4 .
(b) The sum of both dices is 8 .
(c) Dice 1 shows an odd number.
(d) Dice 1 and dice 2 form a double.
(e) Dice 1 shows an even number and dice 2 shows a number between 4 and 6 .

Exercise 2 Modeling of sequence volution.

(7 Points)
Consider the following model of nucleotide substitution:

$$
\begin{gathered}
\pi=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \\
Q=\left(\begin{array}{rrrr}
-5 / 8 & 3 / 8 & 1 / 8 & 1 / 8 \\
3 / 8 & -5 / 8 & 1 / 8 & 1 / 8 \\
1 / 8 & 1 / 8 & -5 / 8 & 3 / 8 \\
1 / 8 & 1 / 8 & 3 / 8 & -5 / 8
\end{array}\right) \\
P(t)=\left(\begin{array}{cccc}
1-(x+2 y) & x & y & y \\
x & 1-(x+2 y) & y & y \\
y & y & 1-(x+2 y) & x \\
y & y & x & 1-(x+2 y)
\end{array}\right)
\end{gathered}
$$

where

$$
x=\frac{1-2 \exp (-t)+\exp (-t / 2)}{4}, y=\frac{1-\exp (-t / 2)}{4}
$$

(a) At how much PEM is the model calibrated?
(b) Recalibrate the corresponding matrix to 1 PEM.
(You're not supposed to calibrate both matrices to 1 PEM.)
(c) At how much PAM is the model calibrated?
(d) Recalibrate the corresponding matrix to 1 PAM.
(You're not supposed to calibrate both matrices to 1 PAM.)

