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The extent to which evolutionary changes have impacted the phenotypic relationships among human
diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the
evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or
rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological
phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings
establish a clear evolutionary connection between disease classes and disease phenotypes for the first time.
Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints
enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary
constraints on disease genes are a new layer of molecular connection in the network-based exploration of
human diseases.

T
he recent rapid accumulation of functional-genomics and proteomics data provides insight into establishing
the evolutionary relationship between the genotypes and phenotypes of human diseases1. We now know that
sequence evolution correlates with diverse, genome-wide variables, including gene expression levels, con-

nectivity of gene and protein interactions, and gene-knockout effects2–4. These correlations imply that there is an
evolutionary relationship between genotypes and phenotypes, though their weakness makes it hard to establish
functionally meaningful associations4.

Diseases are often thought of as rare mutations that trigger the loss of a function in an organism5. Sometimes,
certain disease phenotypes are reported to be beneficial to the organism’s survival and reproduction6,7, meaning
that they might have undergone positive selection and evolved faster in response to particular environmental
challenges8. While these findings have improved our understanding of the evolutionary constraints on human
diseases, the true impact of the evolutionary connections between disease genes and the phenotypic similarities
among human diseases needs to be elucidated more fully.

Disease progression is not dictated solely by a mutation in a single gene, but by the totality of the molecular
connections in disease modules9–12. A disease module represents a group of disease genes that share phenotypic
similarities as well as molecular connections such as co-expression, protein interactions, metabolic pathways, and
co-localizations12–14. The disruptions of the connections within disease modules are known to cause particular
disease phenotypes12. Thus, it is important to consider the phenotypic connections of diseases to characterize the
mechanisms of disease progression9.

We investigated the evolution of human disease genes and found that genes in the same disease class share
evolutionary constraints, indicating that the molecular evolution of genes is a novel factor in explaining the
phenotypic connections between human diseases. Based on the evolutionary connections of human disease genes,
we were able to identify slowly or rapidly evolving disease modules. Furthermore, disease pairs connected by
similar evolutionary rates showed a nearly 2-fold increase in comorbidity in comparison with unconnected
disease pairs, thus improving the predictability of the relative risk of human diseases. Our findings reveal, for
the first time, the relationship between evolutionary connections and comorbidity among diseases, offering a new
insight into previously unexplained mechanisms of disease progression.
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Results
Diverse evolutionary rates of human disease genes. The evolution
of the human genome is believed to have profoundly affected
human phenotypes. Accordingly, the evolutionary history of hu-
man disease genes has been examined in the hope of gaining
insights into the natural selection and adaptive evolution of
disease-causing mutations15. To the best of our knowledge, how-
ever, a systematic exploration of the evolutionary connections
between human disease genes, which may establish a novel mole-
cular connection to human disease classes and phenotypes, is
lacking. Hence, we analyzed the evolutionary history of 1,777
human disease genes from the Online Mendelian Inheritance in
Man (OMIM) database16 within the framework of disease mo-
dules9. For the analysis of the evolution of disease modules, we

grouped human diseases into 21 classes based on the affected
physiological systems13.

The evolution of human disease genes was examined through the
ratios of the non-synonymous nucleotide substitution rate (dN) to
the synonymous nucleotide substitution rate (dS) among orthologs of
human disease genes; the evolutionary rate (dN/dS) represents the
global mutation rate across genomes as well17. We observed a modest
difference in the evolutionary rates between disease genes and all
human genes (mean of dN/dS for human disease genes 5 0.14, for
all human genes 5 0.16, P 5 0.003, Mann-Whitney U test; Fig. 1a
and Supplementary Fig. S1). When a gene shows a lower dN/dS than
other genes, it has been under purifying selection due to a strong
evolutionary constraint, whereas, a gene with a higher dN/dS than
other genes indicates faster evolution via positive selection18.

Figure 1 | Evolutionary divergence among disease genes in various disease classes. (a) Cumulative frequency of the evolutionary rate (dN/dS) of human

disease genes compared with all human genes (P 5 0.003; Mann-Whitney U test). (b) Evolutionary rate of human disease genes classified by the

phenotypic system affected; D dN/dS values indicate the difference in average evolutionary rates (dN/dS) between all human disease-associated genes and

each disease class-associated gene (*P , 0.01, **P , 0.001; Mann-Whitney U test). (c) Enrichment of disease genes within each group quantified by the

hypergeometric distribution. Each disease group was divided by the same number of disease genes. The intensity of the green color indicates the

significance of enrichment (hypergeometric P-values). (d) Cumulative frequency of evolutionary rate (dN/dS) for all human disease genes and slowly and

rapidly evolving human disease genes (P , 1.10 3 1024; Mann-Whitney U test).
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A careful examination of the genes in various disease classes
revealed that they possess diverse evolutionary rates. In fact, most
disease genes showed significantly different dN/dS values compared
with the average (Fig. 1b). In particular, the evolutionary rates of the
genes in the muscular, ear/nose/throat, skeletal, cardiovascular,
neurological, and ophthalmological disease classes were significantly
lower than the average (P , 0.01; Mann-Whitney U test). The means
of dN/dS for these disease classes were about 50% smaller than mean
value for all human genes, indicating that their sequences are under
purifying selection. Meanwhile, the genes in the hematological,
immunological, and respiratory disease classes showed significantly
higher rates of evolution (P , 0.001; Mann-Whitney U test). Their
mean dN/dS values were twice as large as the average for all human
genes, indicating that their sequences experienced strong, positive
selection. The current understanding of disease genes is that they are
mutant alleles responsible for disorders and thus are subjected to
purifying selection. Alleles associated with new functions, however,
are subjected to positive selection and can be considered human-
specific functional adaptations19,20. Notably, the genes of respiratory
diseases showed the highest rates of evolution; the high rates may be
the result of pathogens of intracellular physiology or positive selec-
tion on the proteins involved in respiratory functions that transduce
environmental factors21.

We also confirmed that phenotypically connected disease genes
are linked by similar evolutionary constraints. Specifically, genes in
the same disease class exhibit significant enrichment within a par-
ticular evolutionary group (Fig. 1c; P , 0.01, Mann-Whitney U test).

The slowly evolving disease genes are significantly enriched in the
muscular, cardiovascular, skeletal, ear/nose/throat, ophthalmolo-
gical, and neurological disease classes; whereas the rapidly evolving
disease genes are significantly enriched in the immunological, hema-
tological, and respiratory disease classes. Therefore, from this point
onward, we will refer to the diseases as either slowly or rapidly
evolving. We also found significant differences in the evolutionary
rates between the slowly and rapidly evolving disease genes (Fig. 1d;
the mean dN/dS 5 0.22 for rapidly evolving disease genes and 0.11 for
slowly evolving disease genes, P , 1.10 3 1024, Mann-Whitney U
test).

Phenotypic similarity implies similar evolutionary history. We
discovered that disease genes associated with different phenotypes
have distinct evolutionary rates; disease genes affecting morpho-
logical traits such as anatomical structures evolve more slowly than
those affecting physiological traits such as immune responses
(Fig. 2). To systematically analyze the relationship between mole-
cular evolution and disease phenotypes, we utilized the mutational
phenotypes in the Mouse Genome Database (MGD)22, which con-
tains nearly 4,000 well-annotated genotype-phenotype associations
identified through gene knockout, knockdown, trapping, or point
mutation. We obtained 134 human morphological disease genes,
152 human physiological disease genes, and 910 human genes with
both phenotypes via the ortholog mapping of mouse mutant phe-
notypes (Fig. 2a, see Methods). Each mouse mutant phenotype was
categorized in the Mammalian Phenotype (MP) ontology and classi-
fied into three phenotypes: morphogenes which exclusively affect

Figure 2 | Morphological- and physiological-disease genes enriched in different disease classes. (a) Morphological and physiological human disease

genes were classified by mapping mouse phenotypic alterations taken from the MGI database; the database describes 5,199 mouse genes that have one or

more phenotypic alterations; morphological, physiological, and both; caused by knockout, knockdown, or other mutations. (b) Morphological and

physiological human disease genes are enriched differently in various human disease classes. The intensity of color indicates the significance of

enrichment (hypergeometric P-values).
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morphological traits; physiogenes which exclusively affect physio-
logical traits; and morpho-physiological genes which affect both
traits17.

We observed that morphological and physiological disease genes
showed significantly disparate enrichment patterns across diver-
se disease classes (Fig. 2b; P , 0.001 in the hypergeometric

distribution); for instance, morphogenes are significantly enriched
in dermatological diseases and skeletal diseases, whereas physiogenes
are grossly enriched in immunological disease and hematological
diseases. Acheiropodia, a common skeletal disease that features bilat-
eral congenital amputations of extremities and aplasia of the hands
and feet23, shows enrichment of morphological disease genes. In

Figure 3 | Molecular evolution of disease genes connects disease comorbidity tendency. (a) Network representation of 515 comorbid diseases (nodes)

connected by 9,230 comorbidity links (comorbidity tendency, RR). Links with 99% confidence intervals are presented. Examples of evolutionarily

connected diseases are shown with ICD-9 codes. (b) Comorbid disease pairs connected by similar evolutionary constraints are compared with a random

control. (c) Average comorbidity tendencies (Log RR) in various links are indicated by the size of the circle. (d) Fold enrichment of phenotypic

interactions according to link types: similarly evolving diseases (diseases that have similar evolutionary rates) and dissimilar disease pairs (diseases that

have different evolutionary rates). Adjusted relative risk using 99% confidence intervals was used. (e) Comorbid disease pairs connected by similar

evolutionary rates had shared genes linked by protein-protein interactions and connected by subcellular localizations. The enrichment ratio is

proportional to the dark gray scale; fold-enrichment was calculated as the ratio of the observed to expected comorbid disease pairs in the evolutionary

rate.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 757 | DOI: 10.1038/srep00757 4



contrast, Thrombocytopenia, a well-known hematological disease
characterized by the destruction of platelets and the suppression of
platelet production24, shows enrichment of physiological disease
genes.

Evolutionary constraints and comorbidity. Given the strong
correlation between the evolution of disease genes and disease phe-
notypes, we explored the possibility that the evolutionary connection
could manifest itself at the population level via comorbidity25. To
evaluate whether evolutionarily connected diseases are more comor-
bid than disconnected diseases, we measured the relative risks (RRs)
of disease pairs with their evolutionary rates and represented them in
a phenotypic disease network (see equation (1)) (Fig. 3a), where the
nodes are diseases and links connect nodes that are significantly
comorbid. We only used the disease pairs with relative risks based
on 99% confidence intervals26,27 (see equations (2), (3) and (4)). The
network consists of 515 diseases, of which 165 are slowly evolving, 91
are rapidly evolving, and 424 have in-between evolutionary rates.

At first glance, the phenotypic disease network was largely divided
into two obvious subnetworks of slowly evolving (blue) and rapidly
evolving (red) diseases (Fig. 3a). To quantify the enrichment of
slowly and rapidly evolving diseases, we used the Markov CLu-
stering algorithm (MCL; Supplementary Fig. S2). We observed that
disease pairs connected by similar evolutionary rates tended to
enrich within clusters compared with the random control (Fig. 3b;
P , 0.0012, Mann-Whitney U test). Moreover, we found that disease
pairs that were connected by similar evolutionary rates tend to have
high comorbidity tendency (Fig. 3c). For example, the pair of
Blepharospasm (ICD-9-CM 33.81) and Facial Nerve Disorders
(ICD-9-CM 351.8), both slowly evolving diseases, had high comor-
bidity (RR 5 96.51), whereas the pair of Acquired Hemolytic Anemia
(ICD-9-CM 283.9) and Primary Cardiomyopathies (ICD-9-CM
425.4), one rapidly evolving and the other slowly evolving, had low
comorbidity (RR 5 2.19).

The tendency is widespread; pairs of similarly evolving diseases
(slow-slow or rapid-rapid) have higher comorbidities than dissimilar
pairs. The positive correlation between the similarity in evolutionary
constraints and comorbidity raises an important question: would
disease pairs with high comorbidity be strongly connected evolutio-
narily? To address this, we analyzed the increase in comorbidity
tendency with regard to interaction types (Fig. 3d). Strongly comor-
bid disease pairs (RR . 50) showed a nearly 2-fold increase in simi-
larly evolving groups compared with weakly comorbid pairs (RR .

2), suggesting that evolutionary constraints do indeed connect phe-
notypes and strengthen the relative risks of human diseases.

We further examined whether disease pairs with similar evolu-
tionary rates also share other molecular connections. Because evolu-
tion is one of the important aspects of understanding molecular
function, we expected that diseases connected by similar evolution-
ary constraints would share other molecular connections compared
with non-connected disease pairs. Previous studies showed that
comorbid diseases also share molecular connections such as genes,
protein-protein interactions, subcellular localizations, and metabolic
pathways12,14,25. Indeed, we discovered that diseases connected by
similar evolutionary constraints tend to have other molecular con-
nections as well (Fig. 3e). In particular, diseases in similarly evolving
groups showed nearly a 2-fold increase in the strength of molecular
connections. Our results strongly suggest that a deeper evolutionary
analysis of disease genes is a frontier of research that can be useful in
understanding the human disease network.

Discussion
We showed that evolutionary constraint is a new layer of molecular
connection in the human disease network. Until now, evolution has
not been studied quantitatively as a concrete link between pheno-
types in the human disease network. Our analysis establishes for the

first time that evolutionary connections definitely exist in disease
modules, offering a new avenue for gaining insights into the etiology
of human diseases and the mechanisms of disease progression.

We can ask whether evolution has also impacted phenotypic con-
nections between complex diseases such as diabetes or bipolar dis-
order. It has been shown that both genetic and environmental factors
contribute to the phenotypic connections between complex diseases.
The genes associated with complex diseases are under more positive
selection than genetic diseases, and they also display more recent
evolutionary origins6,28. We analyzed the evolution of complex dis-
ease genes and found that various classes of complex diseases are
also under diverse evolutionary constraints. The evolutionary rates
of complex disease genes were analyzed based on the Genetic
Association Database (GAD) which provides common, complex dis-
ease-gene relationships29. Specifically, complex diseases with similar
evolutionary rates fall into the same classes, and complex diseases
show a wide range of evolutionary rates, as we also observed for
genetic diseases (Supplementary Fig. S3). For instance, the evolution-
ary rates of chemo-dependency and psychiatric diseases were low,
whereas those of infectious and hematological diseases were high.
Based on these observations, we conclude that evolution also affects
the phenotypic connections of complex diseases.

Our findings on the evolution of disease classes are in good accord
with the tissue specificity of human diseases, as various tissues and
organs are associated with different disease types, and their features
are reflected in the tissue-specific pathology of human diseases12,30.
It was recently shown that tissue-specific gene expression varies
according to different evolutionary pressures. Brawand et al. showed,
from the comparison of mammalian transcriptomes, that the rate of
gene evolution varied among mammalian organs31. In particular, the
genes in neural tissues evolve much more slowly than the genes in
other tissues, which is consistent with our finding that neurological
disease genes evolve slowly. This presents a need for further explora-
tion of the connections between tissue types and the evolution of
human diseases.

We classified human disease genes by using mouse mutational
phenotypes that relate to morphological or physiological traits.
Among model organisms, the mouse is considered important for
the study of human diseases because it offers extensive genotype-
phenotype associations that allow us to overcome the present limita-
tions on genotype-phenotype linkages in humans32. Although two
different phenotypes, morphological and physiological traits, dis-
played distinct evolutionary patterns, it could be the result of a bias
in the mouse mutational phenotypes. To further verify the relation-
ship between disease phenotypes and evolutionary constraints, we
analyzed the enrichment of human Gene Ontology (GO) biological
processes according to evolutionary groups. We confirmed that each
evolutionary group showed distinct human GO biological process
enrichment patterns (Supplementary Fig. S4).

Regardless of evolutionary origins, it is clear that evolutionary
connections do exist in disease modules, offering a new insight into
the etiology of human diseases and the mechanisms of disease pro-
gression. We demonstrated that diseases connected by similar evolu-
tionary constraints tend to have similar phenotypes and comorbidity
tendencies. The implications and applications of the evolutionary
understanding of disease phenotypes are important in characterizing
human disease phenotypes and contribute to a more robust founda-
tion for network medicine.

Methods
Data set for the human disease genes. The gene-disease associations were collected
from the OMIM database (http://www.ncbi.nlm.nih.gov/omim/) as described in Park
et al.12 The OMIM database provides gene-disease associations between the 2,929
disease types in the Morbid Map and 1,777 disease-associated genes. The disease
types were grouped into 1,340 distinct diseases by combing disease subtypes into
single diseases based on their given disease names13. Finally, 2,161 disease terms were
grouped into 1,228 unique diseases. For the evolutionary analysis of disease classes,
diseases types were grouped into 21 classes based on the physiological systems they
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affected. For example, 215 disorders, such as HMG-CoA synthase-2 deficiency and
CPT II deficiency, constituted the ‘‘Metabolic’’ disease class. This classification
scheme reflects the phenotypic similarities among diseases in the same class and has
been successfully used in the recent studies of systematic disease analyses12,14. To
analyze phenotypically connected disease genes that are linked by similar
evolutionary constraints, we grouped the disease genes according to their
evolutionary rates. Each group contains roughly the same number of genes (type I,
687; type II, 659; and type III, 667). To analyze the evolutionary rates of non-
Mendelian diseases, we used the GAD archive29 as described by Park et al.12 Among
the 167 disease-associated genes, we collected 151 that have mouse-orthologs
information.

Comorbidity information was obtained from the United States Medicare database
recorded in the ICD-9-CM format (http://www.icd9data.com). This database con-
tains the diagnoses of 13,039,018 elderly patients from 1990 to 1993 and has been
successfully used in comorbidity analyses12,14,25,27. We manually mapped between
ICD-9-CM codes and OMIM diseases14,25 to further analyze 83,924 comorbid pairs of
hereditary diseases in this study.

Comparative genomics analysis. The dN/dS values of the human and mouse genes
were computed. The human and mouse genomes were downloaded from National
Center for Biotechnology Information NCBI36 and NCBIM36, respectively. The
mouse orthologs, including sequences, of human genes were extracted using BioMart
(http://www.biomart.org/). The human-mouse orthologs were grouped into 14,423
pairs, similarly to the work of Liao et al.33 Sequence alignments between the human
and mouse genes were carried out through phylogenetic analysis (www.ensembl.org/
info/docs/compara/homology_method.html). The dS and dN values between human
and mouse orthologs were obtained from BioMart and estimated by the likelihood
method33. Finally, the evolutionary rates of 1,662 disease genes were obtained from
the 1,777 human disease genes (Supplementary Table S1).

Morphological and physiological disease genes. To obtain the morphological and
physiological traits, the mutational phenotypes of the mouse genes were taken from
the Mouse Genome Information (MGI) database (http://www.informatics.jax.org/)
version 4.1122. The MGD provides a well-annotated list of 5,199 genes with one or
more MP IDs identified from gene knockout, knockdown, trapping, or point
mutations. The MP IDs were further classified into two groups: morphological (129
IDs), and physiological (183 IDs); similarly to the work of Liao et al.17 We analyzed
821 mouse morphogenes, 912 mouse physiogenes, and 2,855 mouse genes associated
with both morphological and physiological IDs. Human orthologs of 4,588 mouse
genes were obtained from MGI_MouseHumanSequence.rpt. Mouse-to-human
ortholog mapping was downloaded from MGI; and finally, we obtained 4,379 human
orthologs of mouse genes. In total, 790 human morphogenes, 874 human
physiogenes, and 2,763 human genes with both phenotypes were obtained
(Supplementary Table S2).

Comorbidity measure (RR). We used the RR as the quantitative measure of the
comorbidity tendency of disease pairs25. The RR allows us to quantify the co-
occurrence of disease pairs compared with the random expectation. It is calculated as

Relative risk RRð Þ~ Cij

C�ij
ð1Þ

where N is the total number of Medicare patients (13,039,018), Ii is the incidence of
disease i, Ij is the incidence of disease j, Cij is the number of patients who had both
diseases i and j, and Cij* is equal to the random expectation IiIj/N.

To calculate the significance of the RR, we used the method of Katz et al. to estimate
confidence intervals34. According to their estimation, the 99% confidence interval for
the RR between two diseases i and j is calculated by:

Lower bounds of conf idence interval LBð Þ~RR|exp {2:576|s12ð Þ ð2Þ

Upper bounds of conf idence interval UBð Þ~RR|exp 2:576|s12ð Þ, ð3Þ

where s12 is given by:

s12~sqrt 1=Cijz1= Pi|Pj

� �
{1=N{1=N2

� �
: ð4Þ

Disease pairs within the 99% confidence interval are only considered if the LB value is
larger than 1 when RR is larger than 1, or if the UB value is smaller than 1 when RR is
smaller than 1.

Clustering analysis in the phenotypic disease network. To identify clusters in the
phenotypic disease network, we used the MCL with the default option. To quantify
the enrichment of slowly and rapidly evolving diseases in the clusters, we measured
the difference of enrichment between the slowly and rapidly evolving diseases within
the clusters. To measure statistical significance, we randomly assigned disease classes
to the diseases. After 10,000 randomizations, we calculated the P-value by the Mann-
Whitney U test.

Gene ontology enrichment analysis. Each disease-associated gene was annotated
with a GO biological process based on the Database for Annotation, Visualization and
Integrated Discovery (DAVID; http://david.abcc.ncifcrf.gov)35,36. The P-values in the
functional enrichment analyses were calculated using a hypergeometric distribution
on each evolutionary group: slow, rapid, and in-between.

Subcellular localization analysis. Subcellular localization information was assigned
to every disease-associated protein12. Briefly, the underlying data stems from the Swiss
Prot annotation information and subcellular-localization predictors, ConLoc, and
Proteome Analyst37,38, which have previously been shown to be effective for mapping
subcellular-localization information to disease-associated proteins12. Subcellular-
localization information was available for 1,168 disease-associated proteins from the
‘‘Cellular Component’’ field of Swiss Prot. The subcellular localizations of the
remaining proteins were predicted by ConLoc and Proteome Analyst. ConLoc was
designed to predict protein subcellular localization by optimizing the results of 13
predictors for five major localizations (cytosol, extracellular, mitochondria, nucleus,
and plasma membrane)38. Other subcellular localizations (endoplasmic reticulum,
Golgi, peroxisome, and lysosome) were predicted by Proteome Analyst37.

Protein-protein interaction network. The human protein interaction network was
compiled by integrating eight existing interaction databases: the Biomolecular
Interaction Network Database, the Human Protein Reference Database, the
Molecular Interaction database, the Database of Interacting Proteins, IntAct,
BioGRID, Reactome, and the Protein-Protein Interaction Database. Redundant
interactions and low-confidence interactions were filtered out12. The final network
comprises 65,135 interactions among 10,652 human proteins.
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